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Some Analytical Investigations of
Phase Contrast Imaging

By C. M. NAGEL, JR.
(Manuseript received December 1, 1970)

An analytical study of phase contrast imaging is performed. It 1is
shown that the complex disturbance in the image plane can be repre-
sented as a convolution of the object disturbance and the Fourier
transform. of the transmission function of the phase plate. The simple
theory of the phase contrast microscope is then derived as a limiting
case of this more general result that is applicable when the size of the
phase object is small compared to the area of the entrance aperture of
the system. The response of a general system to several simple large
phase objects is also examined, and it is shown that qualitative infor-
mation about these objects can be obtained from the intensity pattern
when the phase perturbations are small, providing the background is
sufficiently uniform, and the size of the phase spot on the phase plate is
carefully chosen. The study provides insight into the type of perform-
ance that can be achieved, for example, if phase contrast imaging 18
used to extract phase information from an optical memory or if it
is used as an experimental tool to study the qualitative behavior of
such phenomena as clear air turbulence.

I. INTRODUCTION

One of the most popular techniques for converting a spatial phase
variation into a spatial intensity variation is the phase contrast
imaging scheme originally proposed by F. Zernike'"® in 1935. Pro-
ceeding mainly from a heuristic point of view, Zernike recognized
that, with a conventional imaging system, most of the direct light
passes through a small region R in the focal plane while, in many
instances, most of the diffracted light is scattered away from this
region. If a plate whose transmission function is given by

T ]ae" “ in R
1 1 otherwise
1943

(1)
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is placed in the focal plane, the direct light can be modified and made
to interfere with the diffracted light to produce an intensity pattern
in the image plane. Moreover, if the phase perturbations ¢ that are
introduced by the object are small enough so that the approximation

et~ 1+ jo
holds, the intensity in the image plane and the phase of the object
may be linearly related. These concepts led to the design of the phase
contrast microscope.

The key assumption in the theory is that the effect of the phase
plate on the diffracted light is negligible. In 1953, H. H. Hopkins*
rigorously demonstrated that, if this assumption holds, a phase object
will produce an intensity pattern given by

I=M1§|ae"“—1—|—e"" 2. 2)

In this expression, M is the magnification of the system, and it is
assumed in the derivation that the object is illuminated by a unit
amplitude monochromatic plane wave. When ¢ is small, a linear
relationship,

1., .
I = Hﬁ(a + 2a¢ sin ), (3)

results, as predicted by Zernike.t

There are many potential applications of phase contrast imaging
in which the basic assumption employed in Refs. 1-5 will not be
valid. Therefore, it is interesting to examine what results will follow
if these assumptions are not made. In this regard, Hopkins® rigorously
studied the diffraction images of circular disks under coherent illumi-
nation, and M. De and S. C. Som,” and De and P. K. Mondal,* in-
vestigated the images produced by similar objects under incoherent
illumination. In this paper, we will derive the theory from the point of
view of Fourier optics and demonstrate that, in general, the complex
disturbance over the image plane can be represented by a convolution
of the object disturbance and the Fourier transform of the transmission
function of the phase plate. The approximate theory, equations (2)
and (3), is then shown to be a limiting case of the general theory,
applicable if the size of the phase object is small compared to the
entrance aperture of the system. Such is usually the case when the

t A related analysis is also given in Born and Wolf,? Chapter 8.
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magnification of the system is large. For larger objects, the convolution
integral yields a complicated relationship between the phase of the
object and the intensity of the image.

The response of the system to several simple large phase objects is
then studied, and it is shown that qualitative information about the
phase distributions of these objects can be obtained when the phase
perturbations are small if an appropriate phase plate is employed.

The work that is discussed in this paper complements the experi-
mental investigations carried on at Bell Telephone Laboratories by
N. J. Kolettis.

II. GENERAL THEORY

The optical system that we will consider is shown in Fig. 1. A
circular entrance aperture with radius R, is located a distance d, in
front of the lens, and a phase plate with a transmission function

ac'® r, = R}
Tr)=1931 R;<r 2R, 4
1 0 ng < Ty

is centered in the focal plane. The phase object is assumed to oceupy
some portion of the entrance aperture, and the illuminating light is
taken to be a normally incident unit amplitude monochromatic plane
wave.

Let the complex disturbance in the objeet plane be denoted by
U,(z,, y,) where U, is assumed to be zero at points outside the
entrance aperture. Then, from the Fresnel approximation,® it follows

i |
Ro '-Vﬁd —_—f e [« [RE— c'

ENTRANCE LENS PHASE IMAGE
APERTURE PLATE PLANE
U=Up (2g,Y0) U=Ug (xr,Yr) U= Ui (x¢,yi)

Fig. 1—System geometry.
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that the complex disturbance in the focal plane to the left of the
phase plate is

U;(:Er , yf) — exp [Jk(d ;’;\ff + n A )] exp [Qf( - d?)(x; + y;)]

f‘[_ Uo(xo ’ yﬂ)PL(mu + % Ty Yo + dfqyf)

- exp [—_fﬂc’ (e, + yuy,«)] dz, dy, . ®)

In this expression f is the focal length of the lens, A is the wavelength
of the illuminating light, k is the wavenumber 2=/A, and kna, is the
phase shift introduced by the lens. Py, is the pupil function of the lens
which assumes the value of unity over the region covered by the lens,
and is zero elsewhere.

Now, the complex disturbance on the right side of the phase plate
is simply U,T,, and, therefore, if the Fresnel approximation is also
used to describe the propagation from this plane to the image plane,
the complex disturbance in the image plane becomes

Uix: , y)
= rre d, d,
= v wope+ G+ v )T, )

.exp{ BT (M, + @) + (My, + vy }dx., dy, dx; dy, , (6)

where

K = —exp [jk(d, + { 4+ d + n A,)] exp [12—’“& @ + yf)]-

Here we are assuming that the distances d, , d, and f obey the lens law,

P-4
] i + 5 qd- 0,
and we have denoted the magnification of the system, d/f, by M.
The integral in (6) is complicated by the coupling of the coordinates
x, , ¥y and y, , y; via the pupil function of the lens. This phenomenon,
known as the vignetting effect,” can be ignored if it is assumed that

the lens is large enough so that the sum of the squares of the argu-
ments of Py, is always less than the square of the radius of the lens
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for all values of x,, 2y, y,, and y, for which U, and T, are nonzero.
With this assumption P, may be taken as one.
To further simplify equation (6) we introduce the notation

T, = == . = o5 r=uzx,+ &, y=y + i .

Then, neglecting the vignetting effect,

K * -
Ui v) = 3o Il Ul =&,y — gIFIT,] dz dy
where

* j2eM
r) = [ 1 v e | 2 o, 4 w | dosdy, . @)
We observe that the disturbance in the image plane can be written
as a convolution of the disturbance in the object plane and the Fourier
transform of the transmission function of the phase plate evaluated
at the spatial frequencies Ma/xd, My/Ad.
Let us now examine the form of F'[T;] more carefully. The transmis-
sion function of the phase plate, from (4), is given by

T,(r;) = (ﬂeia — 1) cire (r,/R?) + cire (r,/R;,)

with

r, = (@7 + y)!
and
<
cire (ry/R) = {1 =R
0 ry > R.

It follows then that

2 MR ) (21rMR,,. )
lz_‘f lr( eia — 1) MR_? &_f‘ + zMRIa Jl M 4
ME |

FIT,] = A r A r

(®)
where
r= "+ )
and J, is the Bessel function of the first kind of order one.

T Recall Us = 0 for z,2 4+ %2 > R., and T; = 0 for 2,2 + y2 > Ryo.
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Now, at optical wavelengths, R,/ is exceedingly large, and for all
practical purposes, the second term in (8) can be approximated by a
two-dimensional delta function with little error.! On the other hand, Rj;
is typically of the order of the radius of the Airy disk of the diffraction
pattern of the entrance aperture so that the first term cannot be so
simplified. To emphasize this fact, R} will be written as

o M
RJ" =7 Ro
where v is a constant of the order of unity. (y &~ 0.61 if R} is the radius

of the Airy disk.)
With this notation and the definition of M, equation (8) becomes

2
JJI(%T ) + 06 | ©

?\2 dZ
a
Returning to the expression for the complex disturbance in the image
plane (7), we conclude that

FIT,] ~ (ae'® — 1) 1—%—

K io ” adl s
Uf(xfgyf)%ﬂ (ac' —1)%1‘[ Uu(x_-%'y_%)

2
JI[I? @+ yz)}] T Y
T Ex A dr dy + Un(_ﬂ—l ) "ﬂ) . (10)
Equation (10) is the fundamental result that will be employed through-
out the remainder of this paper.

III. SMALL PHASE OBJECTS—-THE PHASE CONTRAST MICROSCOPE

The form of equation (10) indicates that, in general, a complicated
relationship exists between the object and the image. We will now
demonstrate, however, that the simple theory, equations (2) and (3),
may be employed if the ratio of the area of the phase object to the
area of the entrance aperture is sufficiently small. This is usually the
case for a microscopic system.

We will assume that the phase object is centered in the entrance

t We shall observe later that this approximation yields sharp jumps in intensity
when the phase object possesses phase discontinuities. In practice some smooth-
ing of the discontinuities in the intensity pattern will always result. (See Ref.
10 for example.) We are neglecting these lower order effects for simplicity.
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aperture and write U, (x,, ¥,) as

2 N
Uz, ,y.) = circ (@ + yo)! + (¢ — 1P, ,
RD

where P, has a value of one over the region covered by the phase
object and a value of zero eclsewhere. In the limit of a very small
phase object,! the contribution of the second term in U, to the integral
in (10) approaches zero, and the integral can be approximated by

2ry , » 2 5]
o - J [— x4 1
I= x ff cire [((1’ - j:-')g + (U — y")g)*] l, R" ( + ! ) dx dy
R, 1. R @+ T
The convolution is most easily evaluated by first taking the Fourier
transform of I and then taking the inverse transform of the results.
These two operations yield

2ry T“__
I = f .f,(t).I“(MRD z) dt (11)

where 7; is the radial coordinate in the image plane.

If we now restrict the eoordinates in the image plane to the region
corresponding to the image of the phase object, the ratio /MR, will
be small, and I can be approximated by

o

2xy
I zf T dt = 1 — Jy2my).

)

Finally, with an appropriate choice of the radius of the central spot
of the phase plate (and thus y), the contribution from the Bessel
function Jy(27y) can be made to vanish, and we conclude that, for a
sufficiently small phase object and a suitable y,

I( . ’ £y i
Udwi , u) = 3 [(ﬂe’ — 1)+ exp [J‘i’(_ﬁf ’ _Ilyf)ﬂ

The intensity of the image is then

(@™ = 1) + exp [jqb(—f,—} : —%)]

which agrees with equation (3). The simple theory of the phase con-
trast microscope is, therefore, a limiting case of the more general
approach.

2
a
e & G —

=~

I, y) = | U

t Consider a single cell under a microscope, for example.
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IV. MACROSCOPIC SYSTEMS

In many potential applications of phase contrast imaging the mag-
nification of the system may be of the order of unity, and the area of
the phase object may be comparable to the area of the entrance
aperture. In these cases, the approximations that were employed in the
last section cannot be used, and the complex disturbance in the image
plane can, in general, only be determined via a direct application
of equation (10). In order to provide some representative results, we
have chosen a few simple, yet important, examples for which the
integral in (10) can be easily evaluated.

41 Background

The purpose of any phase contrast system is to give a visual repre-
sentation of the phase distribution in the entrance aperture. If a system
is to yield meaningful results, therefore, the intensity of the image of
the aperture should be essentially constant when no phase objects are
present. In this case

2 2}
Ui, ,y0) = cire [(i—;?ﬂ]

and from (10) and (11) it follows that

(ae'™ — 1) f Jl(t)Jo(ﬁ}? t) dt + 1

2

(r; £ MR,)

I(r;) = ﬂ_,}z
(12)

where the notation z = 2wy has been introduced.

For our later purposes, it is convenient to define a normalized in-
tensity, I = M?I. Plots of this function are shown in Figs. 2-5 for
various values of z. Clearly, the response of the system to the illumi-
nating light is critically dependent upon the size of the central spot of
the phase plate. Where @ = 1 and a = /2, a typical case that is em-
ployed in phase contrast imaging, near uniform backgrounds result
for values of z corresponding to spot sizes on the order of one-half the
Airy disk or smaller." For larger z, the background varies considerably
until several rings in the diffraction pattern of the entrance aperture are
covered by the phase spot.! We shall see later that these variations
produce distortions in the intensity pattern of phase objects when they

t The task of making a phase plate with a spot size this small may be difficult.
t The phase contrast system will begin to behave like a direct imaging system
for spot sizes larger than those shown, and thus large 2 values are not practical.
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Tig. 2—Background intensity distributions for spot sizes less than or equal to
the Airy disk (a =1, a = n/2)

are placed in the aperture. The case a = 1, @ = 7/2, z = 1.5 will be of
special interest to us, since in this case the integral in (12) is approxi-
mately 1/2 except when r, is near the edge of the image of the aperture,
the background is essentially constant, and several interesting results
can be obtained.

Frequently, a phase contrast system will employ a partially absorbing
phase plate (a < 1) to improve the contrast between the image of the
phase object and the background [see equation (3)]. Background in-
tensities for a = 0.1, « = 7/2 and various values of z are shown in
Figs. 4 and 5. There it may be observed that, in general, the back-
ground intensity is reduced, although a bright ring appears in the
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Fig. 3—Background intensity distributions for spot sizes larger than the Airy
disk (a = 1, a = 7/2).

region close to the edge of the image of the aperture. (This ring has been
observed experimentally by Kolettis.) If this edge effect is ignored, near
uniform backgrounds are obtained for values of z that include five or
six Airy rings.

Taken together, the above results indicate that care must be exercised
in designing a phase contrast system if near uniform backgrounds are
to be achieved.

4.2 Phase Disk
Consider the “phase disk” defined by
) 2 N 2 2v%
Uz, ,y) = ('* — 1) cire [QE;*(—T,&L] + cire [ﬁ&_";lil,]
R, R,

O0=R" =R) (13
where ¢ is a constant. The geometry corresponds to a disk with radius
R™ centered in the entrance aperture which introduces a constant
phase shift ¢ in the incident wave. Substituting in equation (10) and

using the technique that was employed to derive equation (11), we
obtain the intensity distribution
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[ (@' — D[ — DIVE) + 10)] + € [,
ri < MR

[ (@ — D[E* — DIV @) + 10)] + 1 [,
MR” <r, £ MR, .

Itry) = (14)

In this expression I(r;) is the integral given in (11) and

[ (%G
(1) — [] —0 3
I (7",-) = R,, , J[ Ru JD ﬂ/[R., t dt (15)
Note that the integral I only takes into account the finite extent of the
entrance aperture, while I’ includes the size of the phase object as well.

Plots of (14) are shown in Figs. 6-8 fora = 1, @ = 7/2 and z = 1.5.
The value of z has been chosen to correspond to a near uniform back-

0.6 Z=1.0

0.5%

__ AIRY DISK
~=72=3.831T1

0.2

0 0.2 0.4 0.6 0.8 1.0
T s MRy

Fig. 4—Background intensity distributions for spot sizes less than or equal to
the Airy disk (¢ = 0.1, & = =/2).
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Fig. 5—Background intensity distributions for spot sizes larger than the Airy
disk (@ = 0.1, « = 7/2).
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Tig. 6—Response to a phase disk (p = 0.1, R.() /R, = 0.1).
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Fig. 7—Response to a phase disk (¢ = 0.1, R,(1) /R, = 05).

ground when R!"” = R, or when R;"’ = 0. It is clear from the figures
that, for the small value of ¢ chosen, the qualitative behavior of the
phase distribution in the entrance aperture is reproduced quite nicely.
The phase disk ean be readily observed and the magnitude of the dis-
continuity in 7 is on the order of ¢.!

In Fig. 9 we have indicated the response of the same system with
the exception that ¢ has now been assigned a value of =. Note that in
this case, the jump in I depends critically upon the size of the phase
object. Moreover, it appears that a value of R{" exists for which no
contrast results and beyond which the contrast is reversed. This sug-
gests that for larger ¢ values, the system performs quite poorly.

To explain this behavior, we need only to return to equation (14)
from which it immediately follows that the magnitude of the dis-
continuity in 7 is

2 Re {(ae’* — D(* — D[('* — DI'(MR.") + I(MR;")]}
2a cosa — 1)(1 — cos )21 — I) + 2alsinasing. (16)

Al

For small ¢,
Al =~ (2al sin a)¢,

while for larger ¢, the full equation (16) must be employed. Recalling,
that for z = 1.5, I =~ 0.5 for most values of r, , we conclude that, for

t The increase in intensity in the outer portion of the image is due to the slight
nonuniformity of the background in this region.
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Fig. 8—Response to a phase disk (¢ = 0.1, R.,(}/R, = 08).
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Fig. 9—Response to phase disks of various sizes (¢ = ).
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a=1a=mx/2,2z= 15, and ¢ small,
Al ~ ¢

as observed.
When ¢ = m, however, equation (16) reduces to

AT = 4(acos a — D21 (MRV) — I(MR")].

From the definitions of the integrals (11) and (15), it is clear that for
¢ = = there exists a value of R," for which AT = 0 and beyond which
the contrast is reversed.

In the preceding section, we observed that nonuniform backgrounds
can result when the size of the central spot of the phase plate is not
carefully chosen. Figure 10 demonstrates the response of a phase con-
trast system to a phase disk when this is the case. The value of z has
been chosen so that the spot size corresponds to the Airy disk of the
diffraction pattern of the entrance aperture. The background corre-
sponding to this value of z is shown in Fig. 2. Note that the phase
disk simply perturbs the background pattern yielding an intensity pro-
file that does not have the desired step function shape.

4.3 Phase Rings

The analytical results presented in Section 4.2 indicate that a dis-
continuity in the radial coordinate of the phase distribution of the en-
trance aperture can be qualitatively reproduced in the intensity pattern
providing a sufficiently uniform background is chosen and the maghni-
tude of the discontinuity is small. In other cases, such as a large dis-
continuity or a nonuniform background, rather poor results are obtained.
We will now generalize these results to a more complicated radial phase
distribution.

Suppose the phase distribution in the entrance aperture consists of a
central disk and a sequence of annular rings in each of which the phase
is some constant ¢, . Let the radii defining the location of the phase
discontinuities be R\, k = 1, --- ;n — 1, and let R = R, . Then U,
can be written as

" 2 243
U, , y.) = 20 UP ecire l:(t!;%LL:I (17)

k=1

where
U® = {exp [qu*} — €xp [j‘i’kﬂ] k = 1, - yn—1
exp [je, ] k= n.
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TFig. 10—Response to a phase disk when the phase plate spot size equals the Airy
disk of the entrance aperture (¢ = 0.1, R.(V/R, = 02).

The normalized intensity distribution immediately follows as

-

2

(@' — 1) ;Z; UPT® (@) + exp [jg]

T = 0 Z2r, £ MR)" (18)

! ) n 2
} (g™ — 1) ; U1V () + exp [joiea]
|l MR <r. £ MRS, l=1,---,n— 1.

In this expression 1 (r,) is the generalization of (15) which is given by

R(k) z (R(k} ) ( 7. )
(k) _ o o i
I (T") - Ra 0 J; Ra t Ju MRU t dt. (19)

Plots of (18) are shown in Figs. 11-13 fora = 1, « = w/2,and z = L.5.
The assumed phase distributions in the entrance aperture are given at
the top of the figures and the resulting intensity profiles are shown
below. A qualitative reproduction of the phase distributions results in
each case.

The behavior of (18) in the limit of small phases, ¢, , explains some of
the success that was achieved in the figures. From the definition of the
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coefficients U;" it follows that, if all the ¢, are small and, in particular,
if ¢, =0,

U(H%{j(q&k_qskﬂ) k=1--+ ,n—1
1 k=n.

Therefore, the jumps in intensity at the points 7, = MR", to first order
in the phase jumps, is just

AI(MR") = 2 Re {(ae’* — 1)j(¢es1 — o)1 (MRP))
= 2asin alg, — ¢r) I (MR, (20)

Now, in the cases shown in the figures, a = 1, & = #/2, and z = 1.5.
Recalling that for z = 1.5, I’ & 0.5 we conclude that

AT([WRZ”’) o — Pryir -
Thus, if the ¢; are sufficiently small, and an appropriate value of z

0.4
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Tig. 11—Response to phase rings with decreasing phase.
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Fig. 12—Response to phase rings with increasing phase.

is chosen, the jumps in intensity are of the order of the jumps in phase.

Figures 11-13 also indicate that, for the values of the parameters
chosen, the piecewise constant behavior of the phase distributions is
essentially reproduced in the intensity profile. The success here is
mainly due to the fact that not only was z chosen to yield a nearly
uniform background, but also the z value selected was relatively small.
Under these conditions the dependence of the integrals I® (ry) is
suppressed,! and the effect of the phase object is to introduce essen-
tially piecewise constant perturbations to a nearly uniform background.

To demonstrate what effects can occur for a larger z value, we have
plotted in Fig. 14 the response of a phase contrast system to a
sequence of phase rings when @ = 0.1, a = =/2, and z = 21.21163.}
This is a practical case to consider since small values of a are fre-

+ Consider equation (19) in the limit of small 2.
+ This value of z corresponds to a phase plate spot size that includes about
five and one-half Airy rings.
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quently employed in phase constant microscopy to improve the con-
trast between the phase object and the background. (For our purposes,
large z values are needed to give a fairly uniform background over a
large portion of the image of the entrance aperture when a is small.)
Unfortunately, the results that are observed are then quite poor. The
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=
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0 0.2 0.4 0.6 0.8 1.0
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Fig. 13—Response to phase rings with alternating phase.

problem here is that the integrals I'® (r;) are now highly nonlinear
functions of 7;, and, therefore, nonlinear perturbations of the order of
the background are introduced.

4.4 Semi-circular Phase Disks

The results of the last section demonstrate that with an appro-
priate choice of the parameters a, @, and z, circularly symmetriec phase

t Figure 5 demonstrates that for the values of the parameters chosen, the back-
ground is of the order of a* = 0.01. However, from equation (20), we observe that
the jumps in 7, which we may take as indications of the magnitudes of the perturba-
tions of the background, are of the same order when ¢r — ¢4y is small.
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Fig. 14—Response to phase rings (a = 0.1, z = 21.21163).

distributions possessing discontinuities in the radial coordinate can be
qualitatively reproduced in the intensity patterns. As a final example,
we now examine the response of a phase contrast system to a simple
angular discontinuity.

Let the coordinates in the object plane be 7, and 6, and consider the

complex disturbance
U.(r. , 0,) = cire (r,/R,) exp [j6(6,)], (21)
where

<6, =
e(eu) = {'Yl 0 = Ba =T
T2 <6, <2r
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with y; and y, assumed constant. With this phase object, the entrance
aperture is divided into two semi-circular regions in each of which
the phase is constant.
In order to calculate the intensity pattern that is produced by (21),
we must compute the convolution integral (see equation (10)):
v Ji@2myr/R,),

L=Uxpg =7 (22)

As in our previous analysis, we will accomplish this task by first taking
the Fourier transform of I, and then taking the inverse transform of
the result.

Now, it is a well-known result in the theory of Fourier transforms®
that if a funetion ¢(r, 6) is separable in » and 6, ie., g(r, ) =
gr(r)ge(6), then the Fourier transform of g can be expressed by the
following infinite series of Hankel transforms:

Flgl = 3 a(=i)'e™“Hlg.0)]
where
cp = ;l; f-x g0(8)e " do
and o

H,lg,0)] = 2r f " g () (2rp) dr.

In these expressions p and ¢ are the coordinates in the transform
space, and Ji is the Bessel function of the first kind of order k.
Applying this result to (22) yields

o R,
F[I,] = cire (ﬂq{iﬂ)Qr > ck(—j)ke‘k"f rd o (27rp) dr (23)"

k=—w=

where
J Hexp [fni] + exp [fr.]), k=0

0 k even.
Ck =

(24)
1?1&: (exp [fy:] — exp [fr.]), &k odd

f Here we have used the easily established result that

F[j%ngwwyng] = cire (pRy/v).
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The appropriately normalized inverse transform of (23) is

= [ [ Ly exp 2 o 0, — 9] do e

oo

Y/Ro Ra
—4r* 3 o exp [jk0,] f b f v (2mrp) drd (2nFep) dp.
0 0

k=—o0
Here 8, is the angular coordinate in the image plane, and we have already
introduced 7; = r;/M for later simplicity. Now, letting ¢ = 27K,p,
s = r/R, , and substituting expressions (24) for the coefficients c,
finally gives

—(eXP (7v.] + exp [FyDh() + = (em [Fy=] — exp [7n1])

E () S E0s sm Icﬂ (25)

k odd

where

helr) = f ¢ f) s u(st) dsJ,,(MR)dt (26)

Note that the integral h,(r;) is just the integral given in (11), and that
the integrals k. (r;) are higher order generalizations of it.

The intensity in the image plane is obtained from equations (10)
and (25) as

[IA
=
1A
3

| (ae’* — DI, + exp [pv=] |1, O
I(r; , 8) = 0=r, = MR,.
| (ae’* — DI, + exp [fr] %, r< 8, <2r (27)

Clearly I depends upon both the radial and the angular coordinates in
the image plane while the phase distribution over the entrance aperture
depends only upon 8. Therefore, one would not expect, in general, that
the semicireles would be visible in the intensity pattern. We will now
demonstrate, however, that if a small value of z = 2ry is used for
which the background is essentially uniform, and if v, — 7, 1s small,
the semicircles can be reproduced, and the jump in the normalized
intensity will be proportional to y» — 7. , at least to first order. More-
over, as in our previous analysis, if @ = 1, « = /2, and z = 1.5, the
first condition will be satisfied, and the proportionality factor will be
approximately unity.

To observe these facts we need only to substitute the first term of the
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power series for the Bessel functions in (26) and conclude that for z
sufficiently small

he(r) ~ (_,r'))’“ Ca .
)~ ik, @G+ ek + D)

Thus for small z, the coeflicients h.(r,) are small, and they decrease
extremely rapidly as k increases. Hence, if v, — v, is sufficiently small,
the first term in (25) will dominate the second and I, can be approxi-
mated by

I, & §(exp [j:] + exp [jy.Dh.(r:).
With this approximation the normalized intensity is approximately
[ 3@’ — 1(exp [jv] + exp [v:Dh(r) + exp liv.] I,
06, =
Itr: | 0,) ~ 1 0=r. £ MR, .
| $(ae’"* — D(exp [fri] + exp [fr2Dh.() + exp [iv.] [,
L r< 0, <2m.

Now, if the background is essentially uniform, the integral h,(r,) in
the above expression is essentially constant, and we observe that, for all
practical purposes, I is constant in each of the semicircular regions
0 =0 =mm< 6 < 2r Furthermore, the jump in I between these
two regions is just

AT ~ 2 Re {§(ae’* — 1)(exp [—jyz] — exp [—jvi])(exp [v]
+ exp [fv2Dh.(r)}
= 2asin e b)) sin (v, — 71)
X 2asina b))y — 7).
From our previous work, we may recall that, for z = 1.5, h,(r;) = 0.5,
and thus, fora = 1, e = /2, and z = 1.5,
Al =~ (y2 — 7).

The same conditions that permitted radial discontinuities in the phase
distribution to be qualitatively ohserved in the intensity pattern
appear to permit a simple angular discontinuity such as (21) also to
be observed. The representative results of numerical computations of
the exact expressions (25), (26), (27) shown in Fig. 15 bear this out.
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Fig. 15—Response to a semi-circular phase disk.

V. CONCLUSIONS

A general expression for the intensity distribution that is produced
by a phase contrast imaging system with a circular phase plate was
derived. It was shown that the results reduced to the well known
expression for the phase contrast microscope when the size of the phase
object is small compared to the area of the entrance aperture of the
system. To obtain the intensity distribution for larger phase objects,
a convolution integral must be evaluated by analytical and/or nu-
merical techniques.

The intensity patterns that are produced by phase disks, phase
rings, and semicircular phase distributions were derived, and the re-
sults of numerical computations that were based on these derivations
were studied. In general, it appeared that qualitative reproductions
of these simple phase distributions could be observed in the intensity
patterns if the size of the phase spot on the phase plate was chosen
to yield a uniform background, if the resulting parameter, z, was
small, and if the magnitudes of the phase perturbations were small
enough so that the approximation e =~ 1 + j¢ held. Moreover, it
appeared that, if these conditions were not met, rather poor reproduc-
tions of even these simple phase distributions could result.
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