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The use of transversal filters for automatic equalization has made
possible high-speed data communication over voiceband telephone
channels. Recently much attention has been focused on the possible
use of the high-speed data sets in private line multiparty polling
systems. However, for such applications, it is necessary to reduce
the start-up time of the present automatic equalizer drastically. This
paper exvamines the start-up time (settling time) of the transversal
filter equalizer for two tmportant classes of data communication
systems: Class IV partial-response systems and single-sideband
Nyquist systems. (The latter represents the limiting case of vestigial-
sideband systems with small roll-off bandundth.) It is shown that in
single-sideband Nyquist systems the input signals to the gain controls
of the transversal equalizer may be nearly orthonormal. Consequently
the equalizers may have a short settling time. It is also shown that the
equalizer settling time s much longer in Class IV partial-response
systems, because such systems use controlled intersymbol interference
and the input signals to the gain controls are highly correlated.

The possibility of reducing the settling time of the automatic
equalizers 18 examined. A new equalizer structure is developed based
on the following principles: (i) Equalizer settling time can be mini-
mized by making the input signals to the gain controls orthonormal,
and (#) Such a minimization does not change the noise power, the
mean-square equalization error, the convexity of the gain control
adjustment, and the feedback control loops in the equalizer. These
principles are general in that they apply regardless of the type of
modulation—single- , vestigial- , or double-stdeband (8SB, VSB, or
DSB)—or the signaling scheme (Nyquist or partial-response). Appli-
cation of these principles to Class IV partial-response systems is con-
sidered. For private line systems and systems where amplitude
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distortions in the communication channels are not severe (delay
distortions can be arbitrary), the new equalizer can be implemented by
simply adding a prefived weighting matrixz to the conventional trans-
versal equalizer. Analysis and computer simulation show that the
use of such a new equalizer can result in a significant reduction in the
system’s start-up time.

I. INTRODUCTION

In order to meet the needs of the rapidly growing computer and
data processing industries, a number of high-speed data sets have been
developed in recent years for voiceband telephone channels. Most of
these data sets use transversal filters' for precise automatic equaliza-
tion. The transversal equalizer consists of a tapped delay line with
variable tap gains. During a start-up period prior to data transmis-
sion, the tap gains are adjusted automatically to minimize the peak
distortion® or the mean-square error>** of the received pulses. The
time required to adjust the tap gains to nearly their optimum settings
is usually ealled the settling time of the equalizer. Most automatie
equalizers have settling times of a few seconds. The start-up time of
the system can be longer because there are usually other operations to
be performed in the start-up period (operations such as synchroniza-
tion, earrier recovery, and so forth).

Recently, much attention has been focused on the possible use of
the high-speed data sets in private-line multiparty polling systems
(such as airline reservation systems, on-line banking systems, and so
forth). Such systems are generally real-time information retrieval
systems where the inquiry and response are short (the message lengths
are usually less than 1000 bits®). With a 4800 b/s data set, it takes
only 0.208 second to transmit a message of 1000 bits. Consequently
the actual transmission time can be much less than the start-up time
of the system (which can be five seconds). In order to allow addi-
tional stations to be served or to reduce the response time of the
system (response time is important in real-time systems), it is
necessary® to reduce the start-up time of the high-speed data sets
drastically. This means that the settling time of the automatic
equalizer must be reduced drastically (for example, from a few seconds
to tens of milliseconds).

Such a drastic reduction in the start-up time of the high-speed data
sets raises a number of theoretical questions. For example, it is no
longer sufficient to just prove the convergence of the equalizer adjust-
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ment; it must be shown that the convergence is sufficiently fast to
meet the requirement. It becomes necessary to examine the dependence
of equalizer settling time on modulation and signaling schemes. Instead
of considering synchronization, earrier recovery, and automatic equali-
zation separately, one has to consider the mutual dependence of these
adjustments and the possibility of minimizing the overall adjustment
time. The start-up time requirement also provides a strong motivation
to search for a new equalizer that has a settling time shorter than
that of the conventional transversal equalizer. Answers to some of
these problems are presented in this paper. Because the paper is
lengthy, the contents of each section are outlined here; the results
are summarized in Section VIIT (the reader may read Seetion VIII
first).

Section II includes a description of the mathematical model and
reviews some of the fundamental works on automatic equalization
(particularly those by Lucky and Gersho). Section IIT examines
the equalizer settling time for two important classes of digital com-
munication systems: the Class IV partial-response system and the SSB
Nyquist system. (The latter represents the limiting case of VSB
systems with small roll-off bandwidth.) Surprisingly, the results show
that the equalizer settling times of these two systems can be very
different. The reason for this difference (eigenvalue spread) is ex-
plained so that the method of analysis can be extended to other sys-
tems. Sections IV and V consider a general data communication
system and develop a new equalizer structure for fast start-up pur-
pose. These scetions stress the underlying principle (condition of
“orthogonality) and analyze the various properties of the new equalizer
(including convergence rate of equalizer adjustment, residual noise
power, minimum mean-square error, and convexity of the adjustment).
In Sections VI and VII, application of the new equalizer to the Class IV
partial-response system is considered. Most importantly, it is shown
that the new equalizer ean be implemented by simply adding a pre-
fixed weighting matrix to a conventional transversal equalizer. The
related analytical studies and computer simulation are deseribed;
fast convergence of the equalizer adjustments is demonstrated. Sec-
tion VIII is a summary of the results.

II. REVIEW OF FUNDAMENTALS

An amplitude modulation data communication system utilizing a
transversal equalizer is depicted in Fig. 1. The equalizer consists of
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Fig. 1—Block diagram of an amplitude modulation data communication sys-
tem with a conventional transversal equalizer.

a delay line tapped at T-second intervals, where T is the signaling
interval of the system. The ith tap, 7 = 1 to N, is connected through a
variable gain control ¢; to a summing bus. During data transmission,
the transmitter transmits the information digits sequentially at time-

instants ¢t = -+ , & — T, t,, ts + T, t4 + 2T, --- . The equalizer
output is sampled sequentially at time-instants ¢ = -+ , fs — T,
ta, ta + T, ts + 2T, --- , and the time-samples are used to recover

the information digits. To simplify the notations, we shall shift the
origin of the time-axis to make t, = 0.

When an impulse 8(¢ — ¢;) is applied at the transmitter input, the
equalizer input and output are, respectively, x(t) and y(t). Since we
consider only linear systems, ¥ (t) is the overall impulse response. The
desired overall impulse response of the system is d(t). In this study,
we adopt the familiar mean-square error criterion®*® and adjust the
gain controls of the equalizer to minimize the mean-square error

between % (¢) and d(t) at the receiver sampling instants ¢ = .-+,
—T. 0, T, 2T, -+ . The mean-square error can be written as
¢= 2 [yaT) — danr, o)

It can be seen from Fig. 1 that

J) = X aalt — (5 — DT, @

For the sake of simplicity, we shall use the abbreviations y; = y (i),
d; = d(iT), and ; = x(iT). It can be seen from (2) that (1) can be



NEW EQUALIZER FOR FAST START-UP

written in the following matrix form

e=cAc — 2¢'v+ D di,

i=—w
where
Cy
[
c=| "7,
Cy:.
Ay Az v Ohy
A= Ay Qyy " Qoy ,
Ayy  Qy2 " Gy

o
a;; = E Timin1i—jear , all ’i, j,

I=—00

Uy

Vv, = Z r;7k+1dl' y a.ll k'.

i=—o0

It can be shown that A is positive definite.

1973

3)

)

(®)

(6)

@

(8)

Let de/dc; be the partial derivative of e with respect to ¢;, 7 =1 to
N, and let de/dc represent an N X 1 column vector whose ith element

is de/dcy; 1.e.,

[ de |
de,
e
T = 662 ‘

de
Ldcy ]
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From (1), we obtain

de
dc
The measured de¢/dc in actual data sets will deviate* from that in (9)
due to noise in the receiver. However this deviation is negligible in
high signal-to-noise ratio systems. For example, it has been found
(Section 7.3) that at a 30-dB signal-to-noise ratio this deviation has
only a minor effect on the settling time of the equalizer. In this paper
we consider high signal-to-noise ratio systems and neglect such a
deviation.
The optimum value of ¢ that minimizes the mean-square error ¢ will
be called copt . It is clear that ¢ minimizes e if and only if de/dc = 0;
therefore, from (10) the optimum ¢ is

= 2Ac — 2v. (9

Cope = ATV, (10)

The difference between ¢ and c.pe is denoted by e: ie,

e=c— Alv. (11)

Let € be the minimum value of e when ¢ = ¢y . From (3) and (10)

€min = 2 di — VATV, (12)

Now consider the adjustment of the equalizer. As is well known,*’
the equalizer can be adjusted in the training period prior to data
transmission by transmitting either a succession of isolated test pulses
or a sequence of Pseudo-random numbers. Since these two methods
differ considerably, we shall consider only the first method (isolated
test pulses) in this paper.

In the training period, isolated impulses are applied to the trans-
mitter input. For instance, §(f — ;) in Fig. 1 may be the kth such
impulse. The transmission of 8(¢t — t;) produces the test pulse z(t) at
the equalizer input. From xz(¢) the partial derivatives de/dc;, 1 = 1
to N, are computed®*® and the gain control ¢; is changed by an amount
proportional to de/dc;. This process is then repeated for the next
test pulse.

The adjustment made after the kth test pulse, k = 1,2,3, -+, will
be referred to as the kth adjustment. The initial values of ¢, e, and e
(i.e., their values prior to the first adjustment) will be denoted,
respectively, by ¢, €, and . The values of ¢, e, and « after the
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kth adjustment are denoted, respectively, by ¢, ey, and ¢ . From
(11)

ek=ck'—A7|V k=0,1,2"‘. (13)
It can be easily shown from (3), (12), and (13) that
€ = €nin + eerk y k= 0, 1, 2, Tt (14)
The kth adjustment is made according to the equation
1 de
Cr = €y — 5“1[%1L , (15)
where o, k = 1,2, 3, -+ , are suitably chosen constants.*

The subseript k of d¢/dc indicates that the d¢/dc is computed from
the kth test pulse. It can be shown from (9), (15), and (13) that

e, = (I - akA)e;_._l, k = 1, 2, 3, e, (16)

We now proceed to study the convergence of the mean-square error
for several data communication systems.

IIT. A STUDY OF CONVERGENCE FOR PARTIAL-RESPONSE AND NYQUIST
SYSTEMS

We have defined e, as the value of € after the kth adjustment. Note
from (14) that e, consists of two terms. The first term ey;, is the ir-
reducible value of e. Only the second term e]Ae, depends on ¢ and the
adjustments. Thus, we shall study the convergence of the second
term in this section.

It can be seen from (6) that A is a symmetric matrix. Let the eigen-
values of A be denoted, in the order of increasing magnitude, by A; ,
1 = 1 to N, so that

MEXNE o =My, 17)

and let u;, 7 = 1 to N, be a set of orthonormal eigenvectors of A (u; is
the eigenvector corresponding to A;). It is well known that A can be
represented in the form

A = QDQ’, (18)
where D is an N X N diagonal matrix whose ith diagonal element is
M, and Q is an N X N matrix whose ith column is the eigenvector u; .
It is also well known that @ is an orthogonal matrix; i.e.,

Q' =Q" (19)
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From (18) and (19),

I-— akA = Q[I - O!kD]Qf. (20)
By repeated application of (16), one obtains

e, = (I — A (I — A) -+ (I — aA)(I — asA)e,

=J1(0-ade, k=123 . (21)

n=1

Substituting (20) into (21) and noting that Q’Q = I gives

e = Q[ﬁ (I- anD)]Q’ea y k=1,2,3, .. (22)

n=1

From (22) and (18),

e/Ae, = eéQI:fI I— a,.D)]DI:IkI (I - a,.D)]Q’e“ ,

k=123, ---. (23)

Using the properties of D and Q described one can carry out the
matrix multiplications in (23) and obtain

e/Ae, = i&;(k), E=1,2,3, . (24)
where
£i(k) = (e(’.u.)z?\.-[ﬁ 1- a,.)\.-){l , i=1to N. (2))

n=

In a similar manner, we find that

eihe, = 3£.0), (26)

where
£(0) = (efu)™,, i=1toN. (27)

Since A is positive definite, A, > 0 for all 7. Thus, £:(k) = 0 for all -
Consequently, e/Ae, converges to zero if and only if £:(k), 7 = 1 to N,
all converge to zero (see (24)). For this reason, ¢.(k) will be called the
ith error component. If the error components all converge rapidly
to zero as k increases, e,Ae, converges rapidly to zero.

Tt is clear from (25) that &;(k) converges to zero if and only if the
factor
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[fI (1— anx,)g:l

n=1

converges to zero. Thus, the convergence of & (k) to éy(k) depend
only on two sets of parameters: «;, **+ , ar and Ay, = -+, Ay . The first
set of parameters corresponds to the magnitudes of the gain-control
adjustments [As can be seen from (15), o determines the magnitude
of the kth adjustment.]. In the following subsections, we show that the
second set of parameters, A;, -+ , Ay, depend on the modulation
scheme and channel characteristics. In some systems, A;, - , Ay
differ only slightly in value. Consequently «; can be selected such
that each adjustment reduces each of the error components by a large
factor (such as 100). However, this is not possible in some other
systems.

3.1 Class IV Partial-Response System

There are several classes of partial-response systems.* We shall
consider the most important one: Class IV partial response sys-
tem. 210111213 The results can be easily extended to other classes.

As depicted in Fig. 1, the transfer functions of the transmitting
filter, transmission medium, and receiving filter are, respectively, F; (f),
F.(f), and Fa(f). The amplitude and phase characteristics of F;(f)
will be denoted, respectively, by |Fi(f)| and 8i(f), i.e.,

Ff) = |F(f) ™, i=1,23 (28)

Note that in this paper J will be used to denote the imaginary number
4/ —1 (j is used as an index).

In a Class IV partial-response system, the transmitting and the
receiving filters are band-limited; that is,

| FL(DFa(f) | =0,

when

[fl=f and [f]Zfo, (29)

where f; and f. are, respectively, the lower and the upper cutoff
frequencies. The demodulating carrier frequency, f. , is usually equal to
f». This implies that the system is SSB. According to the previous
definition, when an impulse §(f — ¢,) is applied at the transmitter
input, the equalizer input is x(¢). Let X (f) denote the Fourier trans-
form of x(¢). It can be shown from (28), (29), and the demodulation
process that
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X(f) = 3 |IFi(f — 1JF(f — fOFs(f — fo)l

cexp (JB:(f — 1) + Bo(f — 1) + Bolf — f) — 2n(f — fOt. + 61},
0 é f é fz - f:

VIR + fOF( + fF(f + 10|

cexp {J[B.(f + 1) + Bolf + fo) + Bs(f + fo) — 2w(f 4 f)ts — 6]},
—(f—f)=71=0

= 0, all other frequencies. (30)

Now we can determine the A matrix. From (6), the elements of A
are

-]
a;; = E Ti—iv1Tr—j+1 - (6)

l=—w

In a Class IV partial-response system the signaling interval is

1
T 2(fh — 1)
It is clear from (30) that (t) is band-limited from 0 to (f — f1) Hz.
Thus, the time-samples z(kT), & = -+, 0, 1,2, ---, are taken at
the Nyquist rate. Therefore, according to the sampling theorem

T (31)

fm 2lt — iT + Tt — §T + T dt = ﬁ S et -
-0 2 1) Il=—w0 (32)

Comparing (6) and (32) shows that

a, = 20 — 1) f_w 2t — T + Thlt — 7 + T)de.  (33)

From Parseval’s theorem and (30), one can rewrite (33) as

fa=r1
ay = (o= 1) [ leos 20 — 7]

(| = fIFf — fOFS(F — fo1° df. (34)
It can be seen from (34) that ay is independent of the following
parameters: demodulating carrier phase §, system timing t;, phase
characteristics of the transmitting and receiving filters, and phase
characteristic of the transmission medium. To evaluate a;, we need to
specify only the amplitude characteristics IFy(f — fo) |, [F2(f = fo)],
and |Fg(f — f.)|. In a Class IV partial-response system, the trans-
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mitting and receiving filters are designed such that

RO =sma L] psrs

. —%ﬁl _ _
= sin 1r|: =1, Lsfs—f. (35

Substituting (35) into (34) gives
fa=/a
ag = (= 1) [ leos 2ef = 7]
. o _ 2
-[(sm».rrf2 - fl) |Fa(f fs)l:l df. (36)

We first consider the case where the transmission medium has a
constant amplitude characteristic

{F2(f)l =1 (37)

in the pass band f; = f = f.. Substituting (37) into (36) and evaluat-
ing the integral, we obtain

(2 = 1) i
i = 1 , 1— ] 2 or 2
_GoI
= 0, all other ¢ — j. (38)

The constant term (f, — f,)°/2 in a,; may be dropped (this corresponds
to introducing a gain of v2/(f> — f,) in the channel). Then (38) becomes

a; = —3, i—j=—2 or 2
=1, i—7j=0
=0, all other 7 — j. (39)
Thus, the matrix A is of the following form
1 0 -2 0 -+ 0]
0 1 0 —13
_1
A— . 0 1 0 0 (40)
0 -3 0 1
0 0 0 0 1]
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In particular the main diagonal elements are 1, the second off-
diagonal elements are —1/2, and the other elements are all 0 (notice
that A belongs to a class of matrixes known as the “Toeplitz"**). We
have defined A; to Ay as the eigenvalues of A, and u; to uy as a set
of orthonormal eigenvectors of A. These eigenvalues and eigenvectors
are determined in Appendix A. Since transversal equalizers usually
have an odd number of taps, we shall assume that N is odd in the
following discussion. From Appendix A, the N eigenvalues of A are

—_ __ K _ N+1
1 €08 , E=1,2, SECE (41)
+ 1
2
and
I—COSN_ICI y k=1:2:”'7N;1‘ (42)
2 +1

Thus, the eigenvalues of A are points on the curve 1 — cos §, 0 < 6
< = (see Fig. 2). The minimum eigenvalue

1 — cos o
N +1
D) +1
2
“Awax
L=
8
8'r
L
7= Main
0 L l
0 w2 &
f —

NFig.lg-)—Dietribution of the eigenvalues of A(Amian and Amax shown are for
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and the maximum eigenvalue

N+1
2

N+1

D) +1

™
1 — cos

are also shown in Fig. 2. Other eigenvalues lie between these two
points, It can be seen from this figure that, for typical values of N
(13, 17, ete.), the minimum eigenvalue is very close to 0 and the
maximum eigenvalue is very close to 2. For example, consider a trans-
versal equalizer with 17 taps (N = 17). From (41) and (42), the 17
eigenvalues of A are 0,0489, 0.0603, 0.1910, 0.2340, 0.4122, 0.5, 0.6910,
0.8263, 1, 1.174, 1.309, 1.5, 1.588, 1.766, 1.809, 1.940, and 1.951.

When the amplitude characteristic of the transmission medium is
not exactly a constant in the passband f; = f = f,, the calculations
from (38) to (42) will change slightly. Consequently the eigenvalues
will differ slightly from those above.

Having determined the distribution of the eigenvalues, we now
consider the convergence of the error components &(k), » = 1 to N.
Prior to the kth adjustment, the ith error component is

gk —1) = (e{,u,):')\,-[:li (1 — a,,?x,-)z]- (43)

After the kth adjustment, the ith error component is

£k = (e:,u.-)?x.[H - anx.f]-

Substituting (43} into the above equation gives

Ek) = (1 —ad) &k —1), k=1,23, - . (44)

It is easily seen from (44) that the kth adjustment will reduce each
of the error components by a large factor if

1 — ar)' 1, foralli

or if

1 .
ap = N for all 1. (45)
Unfortunately, «; cannot satisfy (45) because A,, -++ , Ay are very
different in value. Therefore, the kth adjustment cannot reduce each
of the error-components by a large factor. To illustrate this quantita-
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tively, consider again the 17-tap transversal equalizer (A, = 0.0489
and A;; = 1.951). In order to reduce the first error-component & (k),
we set (1 — ephy)? K 1 or o = 1/0 = 204 However, this a; will
cause a large increase in some other error-components. For example,
the 17th error-component will increase about 1505 times because
(1 — axhr)? = (1 — 204 x 1.951)* = 1505. On the other hand, if we
wish to reduce the 17th error-component, we should set (1 — arh7)?
&£ 1, or a; = 1/07 = 0.512. However, this a is too small to reduce
some other error-components rapidly. For instance, the first error-
component will reduce only five percent because (1 — axM)? =
(1 — 0512 x 0.0489)* = 0.95. These examples clearly demonstrate
that the kth adjustment cannot reduce each of the error-components
by a large factor.
We now summarize the results in this subsection:

(7) In a Class IV partial-response system, the eigenvalues A, to
Ay of the A matrix depend only on the amplitude characteristic
of the channel, but not on carrier phase, system timing, and
phase characteristic of the channel.

(77) These eigenvalues are very different in value. For typical values
of N (13, 17, ete.), the minimum eigenvalue )\, is very close
to 0, while the maximum eigenvalue Ay is very close to 2.

(¢i7) Because of the large differences in the eigenvalues, each adjust-
ment of the gain controls cannot reduce each of the error-
components by a large factor.

3.2 SSB Nyquist Systems

In this section, we study SSB data communication systems which
transmit at the Nyquist rate with sin z/x pulses (hereafter referred
to as SSB Nyquist systems). Such a system has the same configuration
as the Class IV partial-response system except that its transmitting
and receiving filters have constant amplitude characteristics in the
passband, The main advantage of an SSB Nyquist system is that it
transmits at the maximum possible bauds (Nyquist rate) without noise
penalty. Saltzberg!® has shown that this signaling method is not as
sensitive to timing error as is commonly believed. In fact we show
in this section that this scheme exhibits fast start-up advantages.

The transmitting and receiving filters are specified by

F.(D =1, hH=EIlfl=h
0, other f. (46)

1

I
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and
L fh=lfl£h
0, other f. (47)

The signaling interval T is again given by (31), and a;; by (34). Sub-
stituting (46) and (47) into (34), we have

IFa(

fa=/1
aw = (= 1) [ leos 2xf = DTV PG — 1P df.  (49)

Note again that a;; (and hence the eigenvalues A, to Ay) depends only
on the amplitude characteristics of the transmission medium and the
filters. When the transmission medium has a constant amplitude
characteristic

| F(f) | =1
in the passband f; = f = fo, (48) yields
a;=F—1), i—j=0
-0 i— 0. (49)

Neglecting the constant (fs — f1)* above, we see that A is simply the
identifying matrix and the eigenvalues of A are

Ao=1, i =1toN. (50)

Now consider the convergence of the error components &(k),t = 1 to
N. Prior to the first adjustment, the ith error component is

£:(0) = (efu)’\, . (51)
After the first adjustment, the ith error component is
£(L) = (eu)*\(1 — ‘11)\.')2- (52)
Substituting (50) and (51) into (52) yields
£(1) = A = a)’%:(0). (53)

If we set oy = 1, &(1) = 0 for all 1. In other words, when a; = 1, the
first adjustment reduces all the error-components to zero. Conse-
quently the mean-square error ¢ is reduced to its irreducible value
emin after only one adjustment. This fastest possible convergence is
obtained regardless of the initial equalizer settings, the carrier phase
and system timing, the phase characteristic of the transmission
medium, and the phase characteristics of the transmitting and receiv-
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ing filters (because the eigenvalues A; to Ay are independent of all
these parameters).

From (48), a;; can be computed for any given |F2(f)|. When
|F2(f)| is not exactly a constant in the passband, A will not be an
identity matrix and the eigenvalues will not be all equal. However,
fast convergence is obtainable as long as the differences between the
eigenvalues are small. For example, consider the case where the
minimum eigenvalue is 0.9 and the maximum eigenvalue is 1.1. If we
use a; = 1, the maximum value of (1 — a;A;)* will be (1 —0.9)* = 0.01.
Consequently the first adjustment will reduce each of the error com-
ponents by at least a factor of 100 (as will each following adjustment).
The equalizer adjustment therefore will be completed after only a
few adjustments.

IV. A NEW EQUALIZER STRUCTURE

In the preceding sections, we have clearly shown that, when the
eigenvalues of A have close magnitudes, each adjustment of the
equalizer reduces each of the error-components by a large factor (such
as 100). We have also shown that such a fast convergence is not pos-
sible when the eigenvalues are very different in magnitude (such as in
the case of a Class IV partial-response system). These results suggest
that in order to improve the convergence rate we should attempt to
reduce the differences between the eigenvalues.

Now we ask: What causes the eigenvalues to be different? Is it
possible to reduce such differences (and hence increase the con-
vergence rate) by changing the equalizer structure? Does the use of
the new equalizer structure alter the system’s performance otherwise?
We shall consider the first two questions in this section, and derive a
new equalizer structure. The last question will be considered in the
next section. Application of the results to a Class IV partial-response
system and the various related problems will be studied in Sections VI
and VII.

It may appear that the new equalizer structure derived in this
section requires complicated mathematical operations (computation
of eigenvalues and eigenvectors of a matrix). However, it will be
shown in Section VI that such mathematical operations can be com-
pletely eliminated for the systems of interest here.

Now consider the first question: What causes the eigenvalues to
be different? From the definition in (6)



NEW EQUALIZER FOR FAST START-UP 1985

o0

a; = !E z[(l — 7+ DT[(I — 7+ DT].

Sinee the input to the ith gain control is x[t — (i — 1)T], [ (I — @ +
1)T] are time-samples of the input to the ith gain control, while
x[(l — j + 1)T] are time-samples of the input to the jth gain control.
Therefore, a;; is simply the cross-correlation between the inputs to the
tth and the jth gain control, and A has the interpretation of a corre-
lation matrix. Therefore, we might state that it is the correlations
between the inputs to the gain controls that result in the differences
between the eigenvalues. When the inputs to the gain controls are
orthonormal, A is an identity matrix and the eigenvalues are equal.
When the inputs to the gain controls are correlated, the eigenvalues
are different.

The above discussion suggest that, if we could construct a new
equalizer such that the inputs to the gain controls are orthonormal,
the eigenvalues of the correlation matrix of the new equalizer might
be all equal and it might be possible to minimize the mean-square
error in a single adjustment. Following this line of thinking, we obtain
the generalized equalizer structure depicted in Fig. 3. As shown in
Fig. 3, the equalizer input x(¢) is connected to a bank of filters. The
output of the ith filter is connected through a variable gain control ¢;
to the summing bus. The equalizer output is

N
y(t) = Z: cizi(t), (54)
where z;(t) is the input to the ith gain control ¢;. These signals z;(¢),
t = 1to N, are orthonormal when

o0

E z:(ITz;(IT) = 6;; . (55)
l=—o0
In the following, we show that, for any given channel, the filters in
Fig, 3 can be designed to satisfy (55). We also show that, when (55)
is satisfied, the mean-square error can be minimized by a single
adjustment of the gain controls.

Because of the press toward digitalization and integrated cireuits,
we shall specify the filters in Fig. 3 directly in digital filter form
(instead of specifying them in analog filter form and then approxi-
mating them with digital filters). We shall use nonrecursive digital
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x(t) caneses 1

B

FILTER FILTER FILTER

Z,(t) z5(t) Z,(t)
Cy Cp CN

ylt)

Fig. 3—Generalized equalizer structure.

filters'® because they do not have stability problems and can be
implemented most easily.

A realization of the generalized equalizer using nonrecursive digital
filters is depicted in Fig. 4. The N digital filters share the same tapped
delay line. The ith digital filter, ¢ = 1 to N, consists of the tapped
delay line and the N coefficients P;; to P,y . Its output is

o) = SPuli— G-I, i=1t N. (6

i=1
The gain controls ¢; to Cy are again adjusted to minimize the mean-
square error ¢ defined in (1). From (54) and (56), we can rewrite (1)
into the following matrix form

e = ¢'PAP’c — 2¢'Pv + 2, d; (57)
k=—w
=) T 1 T —--= T
Pui (l) Pnz PN
Py g) Piz HN()
z,(t) . Zn(h)
c * Cn
yt)

Fig. 4—A new equalizer structure (a realization of the generalized equalizer
structure using nonrecursive digital filters).
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where ¢, A, and v have bheen defined previously [see (4), (5), and (7)].
The matrix P is defined by

Pn PIE e Pw
P= Pz] Pzz -Fti.v . (58)
P.\'l P,vz e PNN

As in Section II, we define de/dc as the N X 1 column vector whose
ith element is de/dc; . It can be shown from (57) that

de
e = ) ! — 9
9 = 2PAP’c — 2Pv. (59)

It can also be shown from (57) that ¢ minimizes ¢ if and only if
de/dc = 0; therefore, from (59) the optimum value of ¢, ¢y, is
Coe = (P)7'A7y. (60)
We again define e as the difference between ¢ and ¢y ; hence, from
(60)
e=c¢c— (P)'A7y. (61)

As in Section II, the initial values of c, e, and e are denoted, respec-
tively, by ¢i, ey, and & . The values of ¢, e, and ¢ after the kth adjust-
ment are denoted, respectively, by ¢, €., and ¢ . From (61)

e, =c¢ — (P) Ay, £F=012 ---. (62)
It can be shown from (57) and (62) that
&= 2. di—VvVA'v+ePAPe, £=0,1,2 ---. (63
k=—w
The kth adjustment, & = 1, 2, 3, --+ | of the gain control is again

made according to (15). From (62), (15), and (59),
€, = Cp1 — %akl:aa;{lk - (P)'ATy
= Cp—1 — (P’)_JA_IV - ﬂk[PAP’ckﬂl —_ P'V]. (64)
From (62), we have
€1 = ¢y — (P)7'A7. (65)

Using (65), we can rewrite (64) as
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e, = €., — ak[PAPfC;;f] - PV}

= €1 — a’,kPAP’[Ck41 - (P’)_IA_IV]
[I — a,PAP’]e;, ,

I

k=1,2 . (66

Now we can prove the first statement after (55) [that is, for any
given channel, P can be chosen to satisfy (55)]. It is easily shown
from (58), (5), (6), and (56) that PAP” can be written in the form

bu bw e blN
PAP, = b-21 b-zz ... b'zN . (67)
bm sz e bNN
where
b = 2 z(D)z(T). (68)
I1=—c
Equation (55) is therefore equivalent to bij = &;,or
PAP' = 1. (69)
Erom (18},
A = QDQ'. (18)

Let H be an N X N diagonal matrix whose ith diagonal element is

vV, , that is,
VA, 0 0

0 0 oo A\
Then D = HH’ and (18) becomes

A = QHH'Q'. (71)
Substituting (71) into (69) yields
PQH(PQH) = L (72)

Equation (72) holds if and only if PQH is an orthogonal matrix G.
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From Q’Q = I, we can rewrite

PQH = G (73)
as

P = GH Q. (74)

For any given channel [i.e., for any given x(t)], we can compute a;
from (6) and determine the eigenvalues A; to Ay and the eigenvectors
u; to uy . This determines D, Q, and H. There are an infinite number
of N X N orthogonal matrices. Any of them can be used as G (the
choice of G will be discussed later). Then from (74) P can be deter-
mined, and this P satisfies (72), (69), and (55). This proves that, for
any given channel, the digital filters in Fig. 4 can be designed to
satisfy (55).

Next we prove the second statement after (55). As in Section II,
we use e,n to denote the minimum value of « when ¢ = ¢, . Substitut-
ing cope in (60) into (57) yields

€min = 2 di — VA7V, (75)

k=—on

Combining (63) and (75) gives
€& = €min + €/PAP’e, k=012 ---. (76)
From (76), the initial value of ¢ is
€ = €nia + €/PAP'e,, (77)
and the value of ¢ after the first adjustment is
€ = €nin + ¢[PAPe, . (78)
From (66), e; = [I — «;PAP’|e, . Substituting this into (78), we have
€ = €nin + €[ — a,PAP'|[PAP'[I — o,PAP']e, . (79)

when P satisfies (74), (69) holds; i.e., PAP’ = 1. If we set &y = 1,
I — &yPAP’ = 0. Then from (79) ¢, = eum . This proves that, when P
satisfies (74) and «; = 1, the mean-square error e reduces to its
minimum value e, after only one adjustment of the gain controls.

In general it ean be seen from (66) that, when P satisfies (74) and
ap = 1, e, = [I — o;PAP’]e,_y = 0, regardless of the value of
e;_1 . Consequently e, = enin, regardless of the value of e . This
means that each of the adjustments is capable of reducing the mean-
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square error to its minimum value ey , regardless of what is the value
of e prior to that adjustment.

Now we summarize this section. It is emphasized at the beginning of
this section that it is the correlations between the inputs to the gain
controls that determine the differences between the eigenvalues and
consequently the rate of convergence of e When the inputs to the
gain controls are orthonormal, ¢ can be minimized in one adjustment.
The inputs to the gain controls can be made orthonormal by using the
generalized equalizer structure depicted in Fig. 3. The generalized
equalizer can be realized with digital or analog filters. A realization
using nonrecursive digital filters is depicted in Fig. 4, and is analyzed
in detail. It is shown that, for any given channel, one can design the
digital filters from the simple equation (74) to orthonormalize the
inputs to the gain controls. When the digital filters are so designed,
each adjustment of the gain controls can reduce e to its minimum value,
regardless of the value of e prior to that adjustment. Therefore, e
can be minimized by only one adjustment of the gain controls.

V. FURTHER PROPERTIES OF THE NEW EQUALIZER

We have seen in the preceding section that it is possible to minimize
¢ in one adjustment. In this section we show that such an improvement
in convergence rate is obtained without changing the residue noise
power, the minimum mean-square error, and the convexity of the
adjustments, and without complicating the gain-control adjustment
loop.

5.1 Residual Noise Power and Minimum Mean-Square Error

As deseribed in Section II, during data transmission the equalizer
output is sampled sequentially at time-instants ¢t = -+, f2 — T, ts,
te + T, ty + 2T, -+ , and the time-samples are used to recover the
transmitted information digits. Each of these time-samples consists of
a signal and a noise component. The variance of this noise component
(that is, the residue noise power) can be determined for both the new
and the conventional equalizer.

Consider first the new equalizer (Fig. 4). Let the noise at the input
of the equalizer be denoted by n(t). The resulting noise at the
input of ¢; is denoted by (i), while the resulting noise at the
equalizer output is denoted by »(t). Clearly

W) = SPalt— G-I, i=1t N (80
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and

W(i) = E cann(l). (81)

We assume that the noise n(t) is a zero-mean stationary Gaussian
process. Then p;(¢),7 = 1to N, and v(#) are also zero-mean stationary
Gaussian processes. Consequently, the variance of v(#;) is the same for
all ¢ . Tt is therefore sufficient to consider a single ¢, (for example,
ty = 0). From (80) and (81)

v(0) = ;ci ; Pinl(1 — §)T1. (82)

Let n be an N X 1 vector whose ith element is n[(1 — ¢)T']. It can
be easily shown from (82) that

»(0) = ¢'Pn. (83)

The noise vector n is distributed normally with zero mean. Let the
covariance matrix of n be denoted by A. Then »(0) is distributed as
the normal distribution with zero mean and variance ¢’PAP’c. Since ¢
can be optimized in the training period, we assume that during data
transmission ¢ = ¢, . Thus, during data transmission the variance
of »(0) is Var [»(0)] = ¢,,PAP’c,,. . Substituting (60) into above gives

Var [»(0)] = vA'AA V. (84)

Note from (84) that Var[+(0)] is independent of P.

Next consider the conventional equalizer. It can be easily seen that
when P = I the new equalizer in Fig. 4 is reduced to the conventional
equalizer in Fig. 1. Since Var[+(0}] in (84) remains unchanged when
P is set to I, Var[+(0)] of the new equalizer is equal to Var[»(0)] of
the conventional equalizer. In other words, the use of the new equalizer
does not change the residue noise power of the system.

The minimum mean-square error, eu, , has already been determined
in the preceding sections. Comparing (12) with (75) shows that the
minimum mean-square error does not change when the new equalizer
is used instead of the conventional equalizer.

5.2 Convexity of the Adjustment

It has been shown®* that, when the conventional equalizer is used,
e is a strict convex function of the gain controls ¢. This ensures that e
converges for all initial settings of ¢, and that e converges when the
gradient method [equation (15)] is approximated by certain other



1992  THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1971

iterative techniques. In this subsection we show that e remains as a
strict convex function of ¢ when the new equalizer is used.

Let % denote the open convex set {c: —w < ¢; < ©,7 = 1to N}.
Let h be an N X 1 vector whose ith element is , . Clearly,"” € is a
function of class ¢'*’ on the set X. If we can show that

> S bk -2 >0 (85)

i
i=1 i=1 de; dc;

for every ¢ ¢ X and every h 7 0, then ' ¢ is strictly convex on X.
It ean be shown from (57) that
9%

ac, dc, = 2b;, all ¢ and j (86)

where b,; has been specified in (68). From (86) and (67), we have

N N aze
S, = = ’ 4
Z_; 2 hih; 3. o, 2h’PAP'h. (87)
It can be seen from (87) that (85) holds for every ¢ ¢ X and every
h 5 0 if and only if PAP’ is positive definite. Since P is a nonsingular
matrix [see (74)], and A is positive definite, PAP’ is positive definite.
Therefore, (85) holds for every ¢ ¢ & and every h # 0, and consequently
¢ is strictly convex on X. This proves that e remains as a striet convex
function of ¢ when the new equalizer is used.

5.3 Gain-Conitrol Adjustment Loop

In the case of the conventional equalizer, the gain controls ¢ are
adjusted according to (15). The partial derivative de/dc; used in (15)
is obtained® by correlating the time-samples of the tap signal and
the time-samples of the error signal y () — d(¢).

In the case of the new equalizer, the gain controls ¢ are again
adjusted according to (15). Since

y() = gc;z,-(t),
s _ 2 {3 yan - aenr)

=2 3 EGDIYGRT) — dET)],

k=—0

i=1 to N. (88)



NEW EQUALIZER FOR FAST START-UP 1993

It is seen from (88) that de¢/dc; can be obtained similarly by correlat-
ing the time-samples of z;(¢) and the time-samples of y(¢) — d(¢).
Therefore, the gain-control adjustment loop of the new equalizer is
essentially the same as that of the conventional equalizer.

VI. APPLICATION OF THE NEW EQUALIZER STRUCTURE

In this and the next sections, we consider how to use the new
equalizer structure for a Class IV partial-response system. It will be
shown, both analytically and by computer simulation, that when the
amplitude characteristic of the transmission medium does not vary
appreciably from channel to channel (such as in the case of multiparty
private line polling systems), we can use a fixed P matrix for the new
equalizer (that is, Pj; need not be adjusted in each training period).
Such a simplification is possible even though the system timing, the
demodulating carrier phase, and the phase characteristic of the trans-
mission medium change from channel to channel.

It has been shown in Section IV that ¢ can be minimized in one
adjustment if or = 1 and P satisfies the equation

PAP' = I. (69)

As pointed out in Section 3.1, the elements a;; of the A matrix are
independent of the demodulating carrier phase, the system timing, the
phase characteristics of the transmitting and receiving filters, and the
phase characteristic of the transmission medium. Therefore, from (69),
P is independent of all these parameters. It can also be seen from
(36) in Section 3.1 that a; depends only on the amplitude charac-
teristic |Fa(f)| of the transmission medium (amplitude distortions of
the transmitting and receiving filters are usually negligible). In some
systems, such as private-line polling systems, |F.(f)| does not vary
appreciably from channel to channel. For such systems, a fixed P
matrix may approximately satisfy (69) for all channels. Therefore, in
designing such systems, we may estimate |Fy(f)| and compute from
this an estimate of A (this estimate of A will be denoted by S). We
can then estimate P from the equation

PSP’ = 1. (89)

and use this estimated P for all channels. When the estimated [Fa(f)]
agrees with the actual |F.(f)|, S agrees with A. Consequently the
estimated P satisfies (69), and e is minimized in one adjustment. When
the estimated |F;(f)| differs from the actual |Fa(f)|, the estimated P
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will not satisfy (69) and the convergence rate of e will be reduced.
In order to see whether the reduced convergence rate is satisfactory,
we need formulas to relate the convergence rate to |Fa(f)|. Such
formulas will be derived in this section, and will be used in the next
section for a hypothetical data communication system.

Let the difference between the estimate of A and A be denoted by

R, that is,
R=S-— A (90)
Since S is an correlation matrix, it is symmetric. Therefore, R is also

a symmetric matrix,
From (66) and (90), we have

e, = [I - akPSP' + akPRP']e,,_l 3 k = 1, 2, AR (91)
As in Section IV, we set
o = 1, all k. (92)

Since the estimated P is computed from (89), we can substitute (89)
and (92) into (91) to obtain

e, = PRP'e;_,, k=1,2 ---. (93)

It can be easily seen from the recursive equation (93) that
e. = (PRP)*e,, k=12 ---. (94)

From (76), the mean-square error after the kth adjustment is
€ = €nmin + e;PAP’ek . (76)

We now evaluate the last term e/PAP’e, in the equation above. Tt
can be shown from (89) that

PP =8 (95)
From (95), (94) can be rewritten as
e, = PR(S"'R)* 'Ple,, E=1,2---, (96)
From (96) and (95), we obtain
e/PAP’e, = e/P(RS V*AS'R)'Pey, k=1,2,---. (97)

Using A = S — R and (89), we can rearrange (97) into the following
form
e/PAP’e, = e/P(RS")**(I — RS")P'e,,

Ek=1,2---. (98)



NEW EQUALIZER FOR FAST START-UP 1995

From (77), the initial value of mean-square error is

€) = €min + e{,PAP’eu . (77)
It can be easily shown from (90) and (89) that

e/PAP’e, = e/P[I — RS'[P e, . (99)
Since A is symmetric, PAP’ is symmetric. Let &, , &, + -+, &y be the
eigenvalues of PAP’, and let w;, w., *-- wy be a set of orthonormal

eigenvectors of PAP’ (w; corresponds to ¢). From

PAP'w, = {w, (100)
and [see (99) ]
PAP' = P[I — RS'|P! (101)
we have
RSP 'w, = (1 — )P 'w, . (102)

It is seen from (102) that the 7th eigenvalue of RS™'is (1 — ¢,), and
the 7th eigenvector of RS™" is P™'w, . We shall denote the ith eigenvalue
of RS™' by A, so

Now consider the matrix product P(RS™")**(I — RS™")P™" in (98).
To facilitate writing, we shall denote this product by @, that is
® = P(RSTH*"(I — RS™HP". (104)

From the eigenvalue and eigenvectors of RS™', we see that the ¢th
eigenvalue of @ is A7*(1 — X,), and the ith eigenvector of @ is w, .
We shall denote the 7th eigenvalue of @ by &, , so

6 = A1 —X). (105)

We have shown in the above that the orthonormal eigenvectors
w, to wy of PAP’ are also eigenvectors of ®. Hence, PAP’ and @ can
be simultaneously diagonalized by w, to wy . By such diagonalizations
we can reduce (99) to the form

e/PAP'e, = Z\ (1 — A)(eiw,)? (106)

and reduce (98) to the form

N

e/PAP’e, = > A1 — A)(elw)?, k=1,2, ---. (107

i=1
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It can be seen from (106) and (107) that the convergence rate of e
depends on A, to Ay . Let | A; | m. denote the largest | A; | among |}, |
to | Ay |, that is,

A |we =X, i=1toN. (108)

Since PAP’ is positive definite, its eigenvalues must all be positive.
Hence,

ti=1—X7>0, i=1toN. (109)
From (106) to (109), the following bound is obtained
e/PAP'e, = [ |\ | mul’‘e;PAPe,, k =1,2,---. (110)

Based on (110), we have the first method of estimating the con-
vergence rate of e;PAP’e, :

First Method. Trom each | Fo(f) |, compute A, to Ay . This gives
| A, [mex . According to (110), e;PAP’e, reduces by at least a factor of
[A: | me)™® after each adjustment. This completes the estimation.

This method will be illustrated in the next section. In certain ap-
plications, measurements of | Fo(f) | may not be available. It may
only be specified that | F,(f) | varies within certain bounds. In such
cases, |A: |mw cannot be determined. However, it can be bounded
from the bounds of | F»(f) | . It is shown in Appendix B that

1 — () SN =1 = [1Dlain, 7=1toN. (111)
where
_ [Fzg — jc) uet]2 _
ﬂ(f) - [le(f — fc)len]z ] 0 é f g fz fl . (112)
As explained in Appendix B, |F2(f — fo)|act is the actual value of
|Po(f — fo)|, |Fa(f — fo)|est is the estimated value of |Fa(f — fo)|,
[7(f) Jmax 1s the maximum value of 5(f) in the frequency range 0 =
f=1fo — fi, and [9(f) Jmw is the minimum value of »(f) in the
frequency range of 0 = f = fo — fi.
Based on (110) to (112), we have the second method of estimating
the convergence rate of e/PAP’e, :

Second Method. From the bounds of | Fu(f) |, determine [n(f)]mus
and [7(f)]mia from (112). If

l 1 - [W(f)]minl > | 1 - [n(f)]Mux |:
use | 1 — [7()]min | as the upper bound of | X; [max . If

|1 — [(D]aax | > 11 = [0(D]unin | 5
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use |1 — [9(f)]mex | as the upper bound of |A; |... . Use the upper
bound of | A; |max 88 | A; |mex to obtain from (110) an estimate of the
minimum convergence rate of e/PAP’e; .

As illustrated in the next section, the second method requires only
some simple hand-calculations, and hence may be applied first even
if measurements of | F,(f) | are available. However, it should be warned
that the second method is usually too pessimistic because the upper
bound of | A; | , obtained in the above fashion, can be several times
larger than the actual |}, [... . (Consequently, the convergence rate
may appear to be unsatisfactory when it is actually satisfactory.)
Therefore, for borderline cases, the first method should be used.

We illustrate these two methods in the next section.

VII. NUMERICAL EXAMPLES AND COMPUTER SIMULATION

In order to illustrate the methods we consider a hypothetical private-
line data communication system (hereafter referred to as the
hypothetical system). We assume that the system uses a Class IV
partial-response signal and transmits over voiceband at a baud rate
of 4800 bauds. The cutoff frequencies f; and f, defined in Section 3.1
will be 400 and 2800 Hz respectively. The demodulating carrier fre-
quency f. is equal to f; . It is assumed that the new equalizer in Iig. 4
is used with N = 13 and a prefixed P matrix computed from (89)
(see footnote in Section 7.1). The two methods will be used in Sections
7.1 and 7.2, which follow, to estimate the convergence rate of e;PAP’e,
{the convergence rate of the mean-square error e is identical to the
convergence rate of e/PAP’e, [see (76) in Section IV]|. A third and
very elaborate method, computer simulation of the data communication
system, will be used in Section 7.3 to demonstrate the convergence
rate.

7.1 Estimation by the First Method

Since | F.(f) | of private lines does not deviate considerably from
a constant in the frequency band 400 to 2800 Hz, we shall simply use
a constant as the estimate of | F.(f) | in this frequency band, and
compute a P matrix accordingly from (89). This prefixed P matrix
will be used for all lines.

Now consider what happens to the convergence rate when the private
line has a | F,(f) | as depicted in Fig. 5. It can be seen that this | F.(f) |
varies from —4.8 dB to 0.4 dB, and then to —6.3 dB in the frequency
band 400 to 2800 Hz. Such a variation is large for private lines. How-
ever, we show that even for this large variation the prefixed P matrix
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|Fo(F)| IN DECIBELS
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Fig. 5—~The |Fx(f)| used in Section 7.1.

can be used and the convergence rate of the mean-square error is

satisfactory.
In order to use (110), we compute the eigenvalues A, to Ay in the

following steps:

Step 1. Compute the elements a;; of the A matrix from (36) and
the | Fo(f) | in Fig. 5. Tt is sufficient to compute only the first row of A.
To see this, note from (6) that a,; satisfies the condition

Ay; = @y (113)
and the condition
Ai; = Qish) Gi+h) - (114)
From (113) and (114), we see that A can be written in the form

@y Q2 a3 A1y e (179
a2 (1381 (LA Q13 vt G-
a @ (158} a e @y (v—
A — 13 2 12 ( 2) , (115)
@y Q13 Q12 a1y Tt Gy v-3)
L&y Qiv-1y  Giev-2y Giv-3y """ (2.

where the elements on the diagonal line are all equal to a;;, and the
elements on each off-diagonal line are equal (for example, the ele-
ments on the second off-diagonal line are all equal to a;3). Thus, it is
sufficient to compute only the first row of A.
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Step 2. Compute the S matrix. It can be seen from Section 3.1
(from (37) to (40)) that, when

| Fo(f) | = aconstant, f, = f </, (116)
we have
A = a“A, (117)
where
1 0 -1 o 0
0 1 0 —% 0
-1 0 1 0 0
A = 2 .
0 -2 0 1 0 (118)
0 0 0 o -+ 1]

Since we have used a constant as the estimate of |F2(f)|, we have
S - aUA. (119)*

Step 3. Compute R = S — A, and compute the eigenvalues },
to Ay of RS™".

The computations in the above three steps can best be carried out
by a computer program. Such a program has been written. For the
| Fof) | in Fig. 5, the eigenvalues of RS™" are found to be: —0.1573,
—0.1434, —0.0902, —0.0615, —0.0034, 0.0242, 0.0716, 0.1084, 0.1834,
0.1945, 0.2954, 0.3797, and 0.4651. The largest magnitude of these
eigenvalues is 0.4651; therefore,

[ As [mee = 0.4651. (120)
Substituting (120) into (110) gives

,
e[PAP’e, < [ 1 ]e{,PAP’e,. . (121)

= 14.62
It can be seen from (121) that e/PAP’e, reduces at least 4.62 times

* From (119) and (89), we may determine the P matrix. Since P is not needed
for the following computation, we do not carry out such calculations here. How-
ever, it should be pointed out that the method from (69) to (74) may be used
for such calculations. It should also be noted that by setting the G matrix in
(74) to I, we can reduce most of the elements in P to zero. For example, when
N is a multiple of four, it is sufficient to implement only N2/8 of the Pi; s in
Fig. 4. This greatly simplifies the implementation.
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after each adjustment. In other words, each adjustment reduces the
mean-square error by at least 6.65 dB. This convergence rate is satis-
factory. For example, let e, be 0.01 and let the initial mean-square
error ¢, be as large as 4 (see computer simulation in Section 7.3). From
(76), (77), and (121), we see that after four adjustments (approximately
16 milliseconds) the mean-square error e reduces to less than 0.0187.
Clearly, this convergence rate is satisfactory.

7.2 Estimation by the Second M ethod

When measurements of | F,(F) | are not available, we may estimate
the convergence rate from the bounds of | Fy(f) | . For illustrative
purposes, let us assume that | Fa(f) | does not deviate from unity by
more than —2.5 dB or 1.5 dB, that is,

—2.5 < 20 log,, | Fo(f) | £ 1.5, 400 = { £ 2800.

Notice that | Fo(f) | can vary in any manner within these bounds.
We simply use unity as the estimate of | Fo(f) | . Then from (112),
1)luee = 1414 and [9(N]mia = 0.562. Since [1 — [7(Dlmia | >
|1 — [9(F)]max |, we use | 1 — [49(f)]mia | 28 the upper bound of | A; max »
that is, | A, [mee = 0.438. Using | A; |max = 0.438, we obtain from (110)

k
e/PAP’e, < [ﬁ] elPAP’e, .

Thus, e/PAP’e, reduces at least 5.2 times after each adjustment (n7.16
dB reduction per adjustment). Notice that since the actual value of
| A; |max may be much less than 0.438, the actual convergence rate can
be much faster.

7.3 Computer Simulation of the Hypothetical System

The analytical methods in the preceding subsections yield bounds
of the convergence rate. In order to demonstrate the actual con-
vergence rate, we simulate the hypothetical system on the computer,
using a number of private-line characteristics obtained from field
measurement. In order to conserve space we describe here only the most
important results. Fig. 6 shows the convergence of the mean-square
error for a private line which has severe amplitude and phase dis-
tortions (see Table I). Other lines simulated have less severe distor-
tions and hence faster convergence rates. A 30-dB signal-to-noise
ratio is assumed at the equalizer input. The bottom curve shows the
convergence of ¢ when the new equalizer is used (with a prefixed P
matrix computed from (119) and (89)). It can be seen that, when the
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Fig. 6—Convergence of the mean-square error.

TABLE [ —RELATIVE ENVELOPE DELAY AND RELATIVE Loss CHARAcC-
TERISTICS OF PRIVATE LINE USED IN SECTION 7.3.

Relative Envelope
Frequency Delay Relative Loss
(Hz) (us) (dB)
300 5500 6.3
500 2830 2.4
600 2060 1.9
800 1040 0.6
1000 590 0
1200 390 —-0.9
1400 280 —1.3
1600 150 —0.8
1800 0 0
2000 —100 0.7
2200 — 80 1.0
2400 15 2.2
2600 270 2.7
2800 260 4.5
3000 1500 7.1
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new equalizer is used, e converges rapidly to its minimum value, and
the training period may be terminated after the third adjustment
(three adjustments require approximately 12 milliseconds). These
simulation results are in full agreement with the theoretical results
in the preceding subsections.

The top curve in Fig. 6 shows the convergence of ¢ when the con-
ventional equalizer in Fig. 1 is used (also with N' = 13). It can be
seen that the convergence of ¢ is rather slow, and that it takes more
than 11 adjustments (approximately 44 milliseconds) to reduce e to
close to its minimum value.

Figure 6 is obtained with a specific setting of system timing and
demodulating carrier phase. The computer program has also been
executed for a sufficiently large number of other timing and carrier
phase settings. Curves similar to those in Fig. 6 have been obtained.
The results may be summarized in Fig. 7. The horizontal axis in Fig. 7

20

CONVENTIONAL
~—" EQUALIZER

/zNEW EQUALIZER

NUMBER OF EQUALIZER ADJUSTMENTS FOR € < 0.05

7
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oL v Loy b o by b b by 1y |
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TMINGS S 5 5 RmamwmawnagRtirr22a2
o 0O 6 0 O o0 0O OO OO0 0O 0O 0 o0 0 0 0o
-]
ase® 288 °288°938°988°%288

Fig. 7—Number of equalizer adjustments required to reduce the mean-square
error to less than 0.05 for different timing and carrier-phase settings.
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shows the setting of the timing and the carrier phase, while the
vertical axis shows the number of adjustments required to reduce
the mean-square error e to less than 0.05. For example, when timing
is set to 0.17 and the carrier phase is set to 90 degrees, three adjust-
ments are required to reduce e to less than 0.05 when the new equalizer
is used, while 11 adjustments are required when the conventional
equalizer is used. It can be seen from the top curve in Fig. 7 that when
the conventional equalizer is used, the number of required adjustments
varies a great deal with timing and carrier phase, and as many as 19
adjustments can be required. On the other hand, when the new equalizer
is used (bottom curve), the number of required adjustments remains
small for all time and carrier-phase settings. (This is due to the first
convergence of the new equalizer.) Thus, when the new equalizer is used,
it is not necessary to make fine adjustments of timing and carrier
phase at the beginning of the training period. We may simply set these
parameters to some reasonable values, and then use the new equalizer
to quickly reduce the mean-square error. It is possible that the whole
process of adjusting the timing, the carrier phase, and the equalizer
can be completed in a brief training period.

VIII. SUMMARY AND CONCLUSIONS

Section 11 considers amplitude modulation data communication sys-
tems that use transversal filters for automatic equalization. The gain
controls of the transversal filters are adjusted by the gradient method
[equation (15)] to minimize the mean-square error between the
received and the desired pulses. After the fundamentals are reviewed,
the mean-square error is decomposed into N error-components (N is
the number of taps on the transversal filter). The error-components
depend on the eigenvalues Ay, , -+ , Ay of the correlation matrix A.
These eigenvalues and the convergence of the error-components
depend on the signaling scheme and the channel characteristies. Two
important classes of digital communication systems are examined: the
class IV partial-response system and the SSB Nyquist system. It is
shown that for both systems, the engenvalues Ay, <+ , Ay are inde-
pendent of the demodulation earrier phase, the system timing, the
phase characteristic of the transmission medium, and the phase
characteristics of the transmitting and receiving filters. Consequently,
the eigenvalues depend on only the amplitude characteristies of the
transmission medium and the filters. Sinee amplitude characteristics of
the filters depend on the signaling scheme, it might be said that the
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eigenvalues depend on only the signaling scheme and the amplitude
characteristic |Fa(f)| of the transmission medium. For applications
where |Fa(f)| does not vary considerably from channel to channel
(such as private-line systems), the eigenvalues depend primarily on
the signaling scheme. For the SSB Nyquist system, the eigenvalues
A1, **+ , Ay are nearly equal. Consequently, as shown in Section 3.2,
each adjustment reduces each of the error-components by a large
factor, and the mean-square error can be minimized after only a few
adjustments (for example, two adjustments). For the class IV partial-
response system, the eigenvalues A;, --+ , Ay are very different in
magnitude. (The ratio of the maximum eigenvalue to the minimum
eigenvalue is very large; e.g., 40 or larger.) Therefore, each adjustment
cannot reduce each error-component by a large factor, and, as can be
seen from Figs. 6 and 7, the convergence rate may not be satisfactory
for fast start-up purposes.

The results in Section ITT suggest that in order to improve the con-
vergence rate an attempt should be made to reduce the differences
between the eignevalues. As emphasized in Section IV, differences in
eigenvalues are caused by the correlation between the inputs to the
gain controls. When the inputs to the gain controls are orthonormal,
the eigenvalues are all equal and the mean-square error can be min-
imized in only one adjustment. The inputs to the gain controls can be
made orthonormal by using the generalized equalizer structure in Fig.
3. The generalized equalizer can be realized with digital or analog
filters. Because of the press toward digitalization and integrated cir-
cuits, digital filters are used. A realization using nonrecursive digital
filters is depicted in Fig. 4. This equalizer structure, referred to as
the new equalizer structure, is analyzed in detail. It is shown that for
any given channel the coefficients of the digital filters can be set
according to (69) or (74) to make the inputs to the gain controls
orthonormal. Then each adjustment of the gain controls can reduce
the mean-square error e to its minimum value, regardless of the mag-
nitude of e prior to that adjustment. In Section V it is shown that such
a fast convergence (one-step econvergence) is obtained without chang-
ing the residual noise power, the minimum mean-square error, and the
convexity of the adjustments, and without complicating the gain-
control adjustment loops.

The theory in Sections IV and V is general in that it applies regard-
less of the type of modulation (SSB, VSB, or DSB) or the signaling
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scheme (partial-response or Nyquist). Sections VI and VII consider
the application of the theory to a Class IV partial-response system.
Most importantly, it is shown that the coefficients P;; of the digital
filters in the new equalizer can be prefixed. It is first observed that
for Class IV partial-response systems the coefficients P;; in the new
equalizer depend only on the amplitude characteristic [F.(f)| of the
transmission medium. Consequently, for private-line systems and sys-
tems where |F.(f)| does not vary considerably from channel to channel
(delay distortion can vary arbitrarily), we may compute the co-
efficients P;; from an estimated (typical) |F.(f)| and use these pre-
fixed P;; for all channels, One-step convergence is obtained when actual
\F5(f)| agrees with the estimated |Fi(f)|. When actual [F2(f)| differs
from the estimated |Fa(f)|, the convergence rate of the mean-square
error is reduced. In order to determine if the reduced convergence rate
is satisfactory, two analytical methods are developed to relate the
convergence rate to |[Fa(f)|. These methods are first presented in
Section VI, and are used in Section VII for a hypothetical data com-
munication system. This hypothetical system uses a Class IV partial-
response signal and transmits over private voice lines at a data rate
of 4800 bauds. For private lines, |[F.(f)| does not vary considerably in
the passband 400 to 2800 Hz; therefore, a constant is used as
the estimate of |F.(f)| and the prefixed Pj; are computed from
(89) and (119). It is shown analytically in Section 7.1 that the
use of the prefixed P;; yields a satisfactory convergence rate even
when the line has severe amplitude distortion. To further demon-
strate the convergence rate, the hypothetical system is simulated on a
digital computer, using the prefixed P; and a number of private-line
charaecteristics obtained from field measurements. A 30-dB signal-to-
noise ratio at the equalizer input is assumed. Figs. 6 and 7 illustrate
the convergence of the mean-square error for a private line that has
severe amplitude and phase distortion. (The convergence is faster
for other lines.) It ean be seen from these figures that, when the new
equalizer is used, the equalizer settles after three adjustments (ap-
proximately 12 milliseconds). Furthermore, because of the fast con-
vergence, the settling time remains small for all settings of timing and
demodulating earrier phase, Thus, when the new equalizer is used, it is
not recessary to make fine adjustments of timing and demodulating
carrier phase in the start-up period. These parameters can simply be
set to some reasonable values at the beginning of the start-up period.
This can further reduce the overall start-up time of the system.
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APPENDIX A

A.1 Determination of Eigenvalues and Eigenvectors

In this appendix we determine the eigenvalues and eigenvectors of
the N X N matrix A in equation (40). The two cases of odd N and
even N are considered separately.

Case 1. Odd N.
Let A be an eigenvalue of A, and let

Uy

u=|" (122)

Un.

be the corresponding eigenvector. We can rewrite the equation A u =
Au as

N
Z a;u; = 'A’ui f ’l: = 1 tO N. (123)

i=1

Equation (123) can be split into the following two equations:

N
E a;;u; = )\u,— y 'l': = Odd (124)
i=1
and
N
> agu; = M, i = even. (125)
i=1

From (39), a;; = 0 when 7 — j is odd. Thus (124) can be reduced to

a;,-u,-=7\u,-, T:=1,3,"‘,N.

i=1,3,- - - .N

Using (39), we can write the above equation as
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i 1 -1 0 0 e 0 _ul_ —ul_

-1 1 -3 0 0| us Us
0 -3 1 —3% Ol us| _ o %s (126)
0 0 —3 1 01| uy Ug

L0 0 0 0 - 1] Luy| LUy

The first matrix on the left-hand side of (126) is an (N + 1)/2 x
(N + 1)/2 tridiagonal matrix. In addition to the trivial solution

Uy = Ug = Uy = - = uy = 0,

there are (N + 1)/2 nonzero solutions to (126). The kth such solu-
tion, k =1,2, --- (N +1)/2,is™

e
A=1-— Cos (127)
— t1
and
I—u | _sin L |
N+l
sin k2x
s TN 1
2 —+1
D) +1
k N ;_ 1 T
Uy sin A'-T‘l‘—l_i__l
. L 2 i
From (39), (125) can be written as
(1 -1 0 - 0] u | [y ]
_% 1 _% O u.; U4
0 -1 1 0 ug | =M us | (129)
0 0 0 s 1L Lugy-n LUv-1)]
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where the first matrix on the left-hand side is an (N — 1)/2 X
(N — 1)/2 tridiagonal matrix. In addition to the trivial solution
Uy = Ug = Ug = " = Un-1) = 0;

there are (N — 1)/2 nonzero solutions to (129). The kth such solu-
tion, k =1,2,---, (N —1)/2,1s

A=1-— cos—r—kTL— (130)
N -1 11
2
and
[ u ] Asin fem ]
2 N-1
2 +1
i sin k2m
4 j—
s 3 Y=l
=\N=1 2 . (131)
_4.2.__+ 1 .
N -1
. SiniLi
(N-1) —
Aot

It can be shown that the A given by (127) is not equal to that given
by (130). Therefore, (126) and (129) do not have the same nonzero
solution.

We have split (123) into (124) and (125), and rewritten (124) and
(125), respectively, as (126) and (129). Thus, A and u satisfy (123)
if and only if they satisfy both (126) and (129). Since (126) and
(129) do not have the same nonzero solution, A and u are given either
by the nonzero solution of (126) plus the trivial solution of (129), or
by the nonzero solution of (129) plus the trivial solution of (126).

The above may be summarized in the form of a lemma:

Lemma A-1: For odd N, the eigenvalues and eigenvectors of A may be
divided into two groups. The kth eigenvalue and eigenvector, k = 1,2, -+,
(N + 1)/2, in the first group are given by (127), (128), and

Uy = Uy = Ug = *** = Un-1) = (.
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The kth eigenvalue and eigenvector, k = 1,2, --- , (N — 1)/2, in the
second group are given by (130), (131), and

Uy = Uy = Us = -+ = uy = 0.
It can be shown that the eigenvectors specified in Lemma A-1 form

a set of N orthonormal eigenvectors.

Case 2. Even N

Using the same method as in Case 1, one can verify the following
lemma:

Lemma A-2: For even N, the eigenvalues and eigenvectors of A may
be divided into two groups. The kth eigenvalue and eigenvector in the first

group, k = 1,2, --- | N/2, are given by
A=1-— costr (132)
PR
and
I u | ’_sin hr_|
1
S+
u sin k2x
a 3 N
- |5 2 211 (133)
2t :
k %w
Uv-1) sin
N
PR
and
Up = Uy = Ug = -+ = Uy = 0. (134)
The kth eigenvalue and eigenvector in the second group, k = 1,2, -+ , N/2,
are given by
ke

AN=1— cos (135)
1
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and
7 M kr |
Ua sin
N
2 +1
U sin k2w
4
i N
- N2 5 T1 (136)
211 j
U sin k%W
N
N
o 2t
and
Uy = U3 = U5 = " = Un-1) = 0. (137)

The eigenvectors given by (133) and (134) together with the
eigenvectors given by (136) and (137) form a set of N orthonormal
eigenvectors.

APPENDIX B

B.1 Bounds on Eigenvalues

It has been defined in Section VI that A, , 7 = 1 to N, are the eigen-
values of RS™". In this appendix we study the relation between A,
and the amplitude characteristic | F>(f) | of the transmission medium.
It is easier to first study the relation between | F,(f) | and the eigen-
values of AS™'. Let X denote the eigenvalue of AS™". Since AS™" and
S™'A have the same eigenvalues, X is also the eigenvalue of S™'A. Thus

ST'A% = 1%, (138)
where % is the eigenvector of S™'A. Premultiplying both sides of (138)
with 'S gives

%'Ax = NZ'S%. (139)
Since S is a correlation matrix like A, 8 is positive definite. Consequently

#'Sg > 0 for every £ except £ = 0. Since X is an eigenvector, £ # 0.
Therefore

'Sz > 0.
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From (139), we have

X'A%
N = 2Sa (140)
In this appendix, ¢ is the vector defined in (4) for the conventional
equalizer. Let [(¢’Ac)/(c'Sc)]min denote the minimum value of (¢’'Ac)/
(c’Sc) over all ¢ # 0, and let [(c’Ac)/(c’Sc)]|n.« denote the maximum
value of (¢’Ac)/(c’Sc) over all ¢ # 0. Then since the eigenvectors %
are elements of the set {c¢ | ¢ ¥ 0}, we have

c’Ac % A%’ c’Ac
<
[C'Sc]m;n = X Si = [C’Sc]m“ ' (141)

Now we evaluate the two bounds in (141). Using the notations in
Section I, we can easily show that

c’Ac = . . (142)

i=—om

Since y; are time samples of y(#) taken at the Nyquist rate, we have
by sampling theorem

> =201 [ wor (143)

i=—0

According to Parseval’s theorem

[ wora= [ voraa, (144)

where Y(f) is the Fourier transform of y(#), and Y*(f) is the com-
plex conjugate of Y (f). From (2), we obtain

Y(f) = X(f)en:rfr icke—nﬁkr‘ (145)

Substituting (145) into (144) gives

[ wora= [ 1xor [ZC* ][Zce] af.  (146)

One can rearrange (146) into the following form

[ wora =2 [T ixoF ) a, (147)

where
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N 2 N 2
q(f) = [E ¢, €OS 21rﬂcT:| + [Z ¢ sin 21rfkT:| .

k=1 k=1

Since we are considering a Class IV partial-response system, we can
use (30) in Section 3.1 to determine |X(f)|, and use (35) for the
produet |Fy(f — fo)Fs(f — f.)| in | X (f}]. From these equations, (147)
can be reduced to the following form

[ wora=5[" g - pr [sin — fl]zq(f) af.  (149)

Combining (142), (143), and (149) gives

(148)

fa=fa

cAc= (=1 [ IRG—1F [sin ,ﬁ fl] af) df.  (150)

In the following discussion, we have to distinguish between the actual
IFo(f — fo)| (denoted |F2(f — fe)|act) and the estimated [F2(f — f)|
(denoted |Fa(f — f)|wst). In order to emphasize that the |Fa(f — f.)|
in (150) is the actual |Fo(f — f.)|, we rewrite (150) as

cho = (= 1) [ 000 — Dl sin | a0 sy

When the actual |[Fo(f — f.)| is replaced by the estimated [Fo(f — f.) ],
A is replaced by S, and (151) becomes

fa—/1 2
C'S(.‘. = (f2 - fl) '/:) [IFﬂ(f - fc)leat]2[5in fz’i fl} q(f) df- (152)
Let n(f) be defined as

p— [ F2(f - fc) Inct.]z _
"W = (7= Ly 0Sfsk—1. (153)

From (151), (152), and (153), we obtain

fa=Fs
vae | mea af
7S¢ = Sy (154)
[ ema

where

of) = [|Ff — fc)lm]z[sin h“_f fl]z-q(f). (155)
It can be easily seen from (155) and (148) that
Q) 2 0, 0=sf=sfh—-"1. (156)



NEW EQUALIZER FOR FAST START-UP 2013

Furthermore, for ¢ #= 0, Q(f) cannot be identically 0 in the frequency
range 0 = f = f, — fi (for if so ¢’Sc would be 0, contradicting the
fact that S is positive definite). It can be seen from (153) that

20 z0, O0=2f=f.—1. (157)

From these properties of Q(f) and 4(f), one can see that
fa—1a

[ e a
fa=1a

[" e

where [7(f) |max is the maximum value of 5 (f) in the frequency range
0=f=fs— fi.Itcan alse be seen that

= [0 ]mne (158)

[ aman o
[77 e ar

where [%(f) Jmin 18 the minimum value of 5(f) in the frequeney range
0=f=/f— fi. Now we tie the results together. From (140), (141),
(154), and (158), we have

. XAx c’Ac
= — <
A ilSi é [C’SC],,,M = [ﬂ(f)]mux - (160)

Similarly, from (140), (141), (154), and (159),

; [n(f)]min ’ (159)

. XAx c’Ac
A=72gz 2 [@]mm Z [7(D]min - (161)

We may combine (160) and (161) as
[n(f)]min g X g [n(.f)]mnx . (162)

It can be easily shown that the eigenvalue A; of RS™! is related to the
eigenvalue A of AS™' by

From (163) and (162), we obtain the final result

L= [a()we S XA =1 = )]uin, =1 to N. (164)
(1

Equations (164) and (153) are, respectively, (111) and (112) in
Section VI.
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