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A method is presented for calculating the probability of error for
a digital signal contaminated by intersymbol interference and additive
Gaussian noise. The method constructs a close approximation to the
probability density function of the intersymbol interference, circum-
venting the heretofore formidable computational problems by decom-
posing the calculation into a sequence of simple calculations. This
method is applicable to binary transmissions, as well as 4-, 8-, 16-, . . .
level transmission. The method is rapid enough for use on time-sharing
facilities. As part of the method, a new and rather simple scheme is
presented for including the effects of partial response source coding.
Several interesting examples which use and give insight into the
method are ineluded.

I. INTRODUCTION

In a large class of digital transmission systems, a succession of
amplitude modulated pulses is sent over a channel to the receiver. The
signal suffers two main types of distortion: additive noise and inter-
symbol interference (ISI). The latter arises from dispersion in the
channel, and is a noise-like process due to the overlapping of many
neighboring pulses.t The number of these neighboring pulses, or “in-
terferers,” depends on the system impulse response, and can be rather
large for systems with restricted bandwidth.

To properly analyze a system one must compute its probability of
error due to the noise and intersymbol interference. The effect of the
additive noise is simple to analyze, but that of the ISI is extremely
difficult to find due to the complicated nature of its probability density
function (pdf). The complexity of the pdf grows exponentially with
the number of interferers, and for more than about 12 interferers the
computation of error probability has long seemed impossible.
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Until recently researchers have analyzed such systems by one of
three main routes: (i) they have used more tractable—although less
meaningful—performance measures such as peak distortion® or mean
squared error,** (i) they have found upper bounds on the probability
of error, or (ii) they have found the probability of error using a
truneated impulse response, for which only a few interferers were
assumed to be significant.”® Unfortunately, in many restricted-band-
width systems as many as 50 or 60 interferers can be important, so the
use of a truncated impulse response is inadequate for a large class of
systems. The goal is therefore to find methods which will treat large
numbers of interferers while avoiding the exponential growth of com-
putational complexity. This paper describes such a method.

Recently two other schemes have been presented which also provide
accurate estimates of the error probability for large numbers of inter-
ferers.® These methods do not provide the pdf of ISI, but caleulate
instead the terms in a series expansion of the expression for the error
probability. They were devised primarily for the binary transmission
case, and the extension to multilevel transmission would be rather
awkward.

The new technique presented here constructs a close approximation
to the pdf of intersymbol interference, and uses it to find the error
probability. Knowledge of the pdf can provide useful information
about the intersymbol interference process, illuminating for the sys-
tem designer the relationship between certain types of channel charac-
teristics and error performance. The technique is applicable to binary
transmission, as well as to 4-, 8-, 16-, --- level transmission. The
method also allows simple inclusion of certain kinds of source coding
such as partial response.” The ability to treat the multilevel case and
different kinds of source coding is very important. In feasibility studies
a system designer might know the general type of channel charac-
teristics the signal will encounter, but he does not know how sensitive
the signal will be to various combinations of numbers of source levels
and source coding. The method given here is envisioned as providing
a valuable tool in such studies.

In Section II the probability of error is related to a single random
variable, the error voltage z, which then characterizes system per-
formance. It is this random variable whose pdf is sought. Examples
taken from the applicable class of source coders are presented and it
is shown that the effects of coding can be transferred from the source
statistics to the channel deseription. Alternative performance measures
are noted for later use. In Section IIT the details of the method are
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described with the computer programmer in mind, and various em-
pirical rules-of-thumb are suggested. In Section IV several simple
examples are presented which illuminate some of the potential uses of
the method. In Section V the accuracy of the method is considered,
and guidelines for choosing some parameter values in the method are
given. The method presented here is an extended and refined version
of a technique developed by W. E. Norris.™

II. ANALYSIS

Figure 1 indicates the system under consideration. The source emits
a symbol every T seconds. The symbols are statistically independent,
and form the sequence {a,} where each a; takes on one of the N
equally likely values m (1)

m@E =2 —-N-1)V/(N-1), i=1,2,---,N. (1)

The outermost levels are =V wvolts. The sequence is then passed

through a coder to form the sequence {c;}. Only two kinds of coding

are treated in the main body of the paper, although the method is

extended to more general coders in the Appendix. The two special

types treated here are the uncoded case and the class IV partial re-

sponse case,” where
uncoded: ¢, = a, ,

partial response IV: ¢, = a; — a,_, . (2)

Partial response IV coding provides useful shaping of the signal spec-

trum, and precoding of the source sequence can be used to prevent

error propagation.® It is assumed that the sequence {a;} has already
been precoded appropriately.

The sequence {c;.} modulates the impulse response r(¢) of the chan-

nel. White Gaussian noise is added, and the received signal y(¢) is

sampled every T seconds. The decision device (typically an A/D con-
verter), determines which of the possible transmitted levels each
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Fig. 1—System configuration.
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sample is nearest, and outputs the sequence {di}. (The receiver can
bhase its decision simply on the present sample because of the pre-
coding.?) Ideally, each d; = ¢, , but because of the noise and ISI they
will occasionally differ, and an error is made. The method discussed
here calculates the probability of oceurence of such an event.

The sample at ¢ = 0 has the form

-]

y(©0) = 2. cr(—kT) +n, ®3)

k=—o0
where n is a realization of a zero mean Gaussian random variable
with variance o2. Because the sequence {a;} and the noise are sta-
tionary in a statistical sense, studying the error probability for the
single sample 4 (0) is equivalent to studying it for the entire ensemble
of samples y(mT).
Ideally y(0) will equal ¢, . The error voltage z is therefore given

by
z = ;;2 Ty + 1, 4)

where

x, = r(—kT) — o (5)*
are the “error samples” of the system. It is very convenient to in-
corporate the effects of any source coding in the error samples. In the
case of partial response coding:

@

z = E (ak — @)+ 1

[t
= ki:m ae. + n, (6)

where
6 = 2 — Town @

are the “coded error samples.” Thus z of (6) depends on the simple
statistics of the uncoded source symbols a; . (If no coding is used, then
er = Ty .)

The error voltage z is the sum of a large number of independent ran-
dom variables. Each a; has the same discrete probability density
function: A set of N equidistant Dirac delta-functions with weights

* 5, — Kronecker delta function: & = 1; & = 0, k £ 0.
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1/N. Each a, is scaled by the coded error sample e, . The n is Gaussian,
and assumed independent of the a,’s. The pdf p.(-) of z is found by
convolving the individual density functions of the constituent random
variables. Because each of these constituents has a symmetrieal pdf
about z = 0, p.(-) is also symmetrical. Once p.(-) has been found, the
error probability for the sample 3(0) is simply the probability that
¥(0) is further from ¢, than from some other level. When ¢, is an inner
level this is just the probability that |z| > V/(N — 1). When ¢, is an
outer level only one polarity of z causes an error, and an error oceurs
with the probability that z > V/(N — 1). For uncoded symbols outer
levels occur with probability 1/N, while for partial response IV coding
they occur with probability 1/N2 Hence the error probability is

0

Po=20-N" [ p
V/(.‘V*])

where & = 1 for an uncoded source, and h = 2 for a partial response
IV coded source,

Clearly, the real task in finding P, lies in computing p.(-), since so
many random variables are involved. The method used to achieve this
is described in the next section, after two simpler measures of system
distortion have been introduced. These measures have been widely used
in the past, and will provide useful definitions in the discussion to
follow. They are both defined in the noise-free case (ie., n = 0} here
in order to isolate the cffect of the intersymbol interference.

(e) de, )

2.1 Mean Squared Error'
The variance of the error voltage z is given by

Ely) — “30]2 = E[LZ akek]2 = E[az] ; ei, 9)

where E[a?| is the variance of the source. A simple ecaleulation based
on equation (1) shows that E[a®] = 1V*(N + 1)/N — 1). A nor-
malized version of the mean squared error then depends only on the
coded error samples, and will be called MSE:

MSE = Y ¢, (10)
k

2.2 Peak Distortion®
The maximum value that z of equation (6) can have when n = 0 is

maxz=V > |e |, (11)
a, k
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which occurs when all of the a; symbols have maximum amplitude V
and such signs that the interfering symbols add constructively. Such
a sequence occurs with very low probability. Peak distortion here is
defined as D:

D=2lel. 12)

III. THE COMPUTATIONAL METHOD

The starting point for computing p.(+) is the set of coded error
samples {e;}. The only other relevant parameters are V, N and o*.
Because each random variable a; has the same pdf, and this function
is symmetrical, one need only consider the magnitudes |e;|, and these
can be relabelled to rank order the samples for convenience.

3.1 Obtaining the Error Samples

Channel characteristics are typically measured or calculated in the
frequency domain, although in some simple cases an analytical expres-
sion for the channel impulse response is available. If the impulse
response is indeed available, it is simply sampled as in equation (5)
to obtain the error samples. Otherwise the error samples are com-
puted from R(f) as follows.* Because by inspection

1/2T

) = [ RO = [ S RG - m/Ddf (13
—o0 -1/2T m=—00

the Fourier coefficients of R(f) = 2. R(f — m/T) are desired. A
Discrete Fourier Transform (DFT)—perhaps using a Fast Fourier
Transform algorithm—of N, samples of R(H/N,T, f. = (i — 1)/N.,T,
i=12 ---,N,, ylelds N, samples of the aliased version #({) =
Sarlt —mT), 4 = (k — DT,k =1,2 ---, N,." Although the
samples of #(t) are not identical to those of 7(t), for well-behaved channels
and sufficiently large N, the two are indistinguishable.

The error samples of equation (5) are formed by removing unity
from r, . The coded error samples (for the partial response IV case)
are then formed by subtracting from each sample the value of the
error sample two places to the right in accordance with (7). The last
two error samples, ey,_; and ey, are formed making use of the periodic
nature of »(f):'" e.g., because xy,,» = ¥, we have ey, = zy, — T» .
Finally, only the magnitudes are retained, and these are rank ordered.

* Upper and lower case letters indicate Fourier Transform pairs.
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The result is the vector e:
.= 0. (14)

v
D
=

e = (€| y €2y " Je.\'.)rel = e g e
(Any e, = 0 could be discarded.)

3.2 Formation of the Pdf for Binary Transmission

The number of levels N is normally a power of two. In such cases
the pdf p.(-) for N levels can be built up from the pdf for the binary
case as discussed below. Thus the binary case is of fundamental im-
portance. Ignoring the Gaussian noise for the moment, the error voltage
z of equation (6) is

Na
2= 2. e, (15)
k=1

where the e, are elements of e and for the binary case each a, takes
on the values =V with equal probability. There are 2"* possible realiza-
tions of the sequence (a, , s, -+ , ay,), each occuring with probability
27V Each realization yields a value for z, (not necessarily all different),
which contributes a delta function of weight 2™%* to the pdf of z. Since
N, can be 100 or more, an attempt to form z for each possible sequence
of a, would be futile (2' = 10*). Instead, decomposition and quan-
tization are used to reduce this formidable task to a sequence of rather
simple ones.

3.2.1 Decomposition

The solution used here to circumvent the overwhelming computa-
tional problem is to decompose the N, samples into blocks of K samples,
and to find the pdf of ISI due to the samples for each block.* The
resulting pdf’s are convolved together to form the final binary pdf
of z. Using specific numbers for concreteness, if N, = 54 and one chooses

K = 9, then z can be written as a sum of six random variables
A,, -+, Ay, where
i
Ai= > ae,, i=1,--+ 6. (16)
k=9i-8

Each A, is a discrete random variable, being the sum of nine discrete
random variables. As the pdf of each A, is formed, it is convolved
with previous ones until all 54 samples have been included.

* Assume for the moment that N, is an integer multiple of K. A rule-of-thumb
for discarding some of the small error samples in order to reduce the computation
time is described in the following text.
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Consider the formation of A, . Since a, can take on values £V,
there are 2° possible values for A, . The largest value, denoted as A%,
occurs when all @, = V, and has value A% = V(e, + e, + -+ + ey).
The 2° delta functions that make up the exact pdf of A, will therefore
lie in the interval [— A*, A*]. Since the pdf is symmetrical it is sufficient
to compute it for nonnegative values of A, only. Every combination
of &=V values for a, , - - - , a, is tried. For each the corresponding value
of A, is found according to equation (16), and is discarded if 4, < 0.

The following simple technique insures that all combinations are
included. A 9-digit binary number B is initialized to zero, and then
in turn incremented by one until all digits are one (2° iterations in all).
For each value of B, the value of a; is V if the kth digit of B is 1, and
—V otherwise.

3.2.2 Quantization

Decomposition alone would not significantly reduce the size of the
computation, since the total number of delta functions in the final
binary pdf of z would still be on the order of 2°*. Quantization of the
voltage axis is used to keep the number of possible levels of z within
reasonable bounds."

The interval [0, A%*] is marked off with 2N, 4+ 1 “location” points
t;,1=0,1, -+, 2N, . Associated with each ¢; is a probability p, .
Instead of recording the exact value of A, , it is tested to see which ¢,
it is nearest, and the corresponding p; is incremented by 27°. There
are many roughly equivalent ways of assigning the values ¢; . The
following scheme was adopted for its computational simplicity. The
interval [0, A*] is broken into two parts at some level kA*, and then
each part is uniformly quantized into N, levels. Hence, the {; are
given by

kA% + (1 — B)A%(E/N, — 1), i=N +1,---,2N,.
For k = 1/2, the quantizing is therefore uniform over the whole

interval. For k > 1/2 the quantizing is finer for larger values of 4, ,
so that the most important levels of error voltage are most accurately
represented. An efficient choice for k is 0.6, as shown in Section V.
(However, uniform quantizing may have other advantages since con-
volution could be performed using a Fast Fourier Transform
algorithm.*

The pdf’s of A2, --- , Ag are computed in the same way. After
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each has been found, it is convolved with the resultant pdf for the
previous ones. Quantization is also used in the econvolution process.

3.3 Formation of the N-Level Pdf

Once the binary pdf for z has been obtained, it is a straightforward
matter to find the pdf for 4-, 8-, 16-, - - - level sources. The key to this
is to envision N level transmission as the sum of logs N independent
binary transmission systems.?® For instance, an 8-level source with
voltage range from —V to V can be decomposed into three binary
sources with symbols fi, gi, and h; having only values =V. Each
8-level symbol a; can be written as:

a. = 4fﬁ + 279h + hk (18)
and the error voltage for eight levels can be written in the noise-free
case as

z = Aszek-i-%ngek-i-% thek
=%‘E1+%E2+%El; (19)

where E,, E;, and E; are independent random variables, all having
the same pdf as z in the binary case. (The generalization to any power
of 2 is straightforward.) Since z is the sum of three random variables,
and the pdf of each is known, it is a simple matter to convolve scaled
versions of the binary pdf to obtain the 8-level pdf. Quantization is
used here also, employing the scheme described above. The final pdf is
thus approximated over the interval [0, D-V] by a set of 2N; + 1
delta-functions having locations #; similar to those in equation (17),
and probabilities p; . By symmetry there is the same pattern of delta-
functions at location —¢; with probabilities p; .

=

3.4 Calculation of the Error Probability
The Gaussian random variable n of equation (6) is reinserted by
convolving its pdf with that found above. The result is simply

2N,

P,('L) — ];_ Z p[[e—(.r—t.)‘/mr’ + e—(:+h)"‘l?v’}- (20)
2rg i=0
From equation (8) the error probability is then
iy V—tl) (V—i—t-)]
= 2(1 — k LA L L B
P =201 -N") 2p [Q (J(N —n)te,w-p (21)

i=0
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where @ (x) is the normal probability integral

— 1 ® Bwﬂf?
W = f dt. 22)

The accuracy of the method is examined in Section V, following a
set of examples of the method applied to typical channel distortions.

3.5 Reducing the Computation Time by Discarding Samples

In the preceding discussion all N, error samples of equation (14)
were involved in the computation of the pdf of ISI. In most practical
cases, however, a sizable number of the error samples are very small,
and consequently their effect on the nature of the pdf as calculated
is negligible. In order to save some computation time it behooves one
to truncate the rank-ordered vector e of (14) at some index M, and to
lump the other samples together in some fashion. This is an optional
procedure, since the computation time grows only approximately
linearly with the number of blocks of K samples processed, but it can
indeed improve the efficiency of the method.

One way to approximate the effect of the remaining samples is to
treat the random variable

Na

A, = E @x; (23)

K=M+1
as a Gaussian random variable with variance*

Na

o = Bla’] > (24)
K=M+1
The effect of these samples is thus a contribution to the Gaussian
noise n, replacing the previous variance ¢” in equation (21) with ¢} =
ot + ot

The question of choosing M still remains. One rule of thumb is that
the sum of the samples lumped together should not exceed 1 percent of
the total sum D. This was found to be very useful empirically: for all
choices of channel studied P, was the same whether all N, samples
were used, or only M of them, while if only M were used the saving
in computation time was significant.

There are some pathological cases of mainly academic interest where
D is theoretically infinite. This is true, for instance, for an ideal band-
limited signal with a timing error. Saltzberg has shown, using an
upper bound method, that the error probability can still be small in
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such cases.* The present method will not work, however, since the
value of D is a crucial landmark in the computational procedure, and
it must be finite. Such a restriction does not significantly reduce the
power of the method.

IV. EXAMPLES OF ERROR RATE CALCULATION

In each of the examples the following definitions are used:

Error Rate = —
log, N (25)
_E[l’] _ hRVN +1)
SNR = c® 3N -=1)

P, is normalized by the number of information bits in each symbol
so that comparisons between different values of N will be more mean-
ingful. Signal-to-noise ratio is given by the ratio of the variance
E[c®] of transmitted levels to average noise power. Since twice as
much power is transmitted (if V is unchanged) when partial response
IV coding is used, h, = 1 for uncoded sources, and h, = 2 for partial
response 1V sources.

(¢) Error in Sampling Time:
A convenient example of an ideal signal shaping characteristic
S(f) is shown in Fig. 2. S(f) satisfies the Nyquist criterion
and consequently if R(f) of Fig. 1 were equal to S(f) no inter-
symbol interference would be present at the receiver. Instead
it is assumed that the sampling time is in error by pT seconds,
so that R(f) is given by

R(f) = S(Pe™ 7", (26)

Figure 3 shows the vector of error samples e of equation (14)

T

S(t)=sthetyt/T) stne(t/T)

Y=0.1

S(f) =

|
1 1+

2T 2
FREQUENCY, f m=im

[~

-

Fig. 2—Ideal signal shaping characteristic.
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for p = 0.02 and p = 0.1, and for coded and uncoded sources.
The samples fall off rapidly in each case, and the significant
samples are somewhat larger for partial response IV coding.
In order to include 99 percent of D, six blocks of nine samples
must be used in the partial response IV case, and eight blocks
of nine in the uncoded case. Figure 4 shows the resulting prob-
ability density funections for an uncoded source with timing
error p = 0.1. (In the quantization process N, = 40 so that
81 locations were used in the interval [0, V- D].) The binary and
8-level pdf’s are shown along with a Gaussian pdf having the
same value of MSE. The Gaussian function is a reasonably
good approximation to the binary case near the origin, but
is of course very poor near z = DV, since the pdf’s of inter-
symbol interference are strictly zero beyond this point. Figures 5
and 6 show curves of error-rate versus SNR for several values
of timing error. An 8-level source is of course much more sen-
sitive to timing error than is a binary source. In the absence
of intersymbol interference a partial response IV signal requires
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about 3 dB more signal-to-noise ratio than an uncoded signal
to achieve the same error-rate, under a constraint of equal
average signal power. It is clear from the figures that this
“SNR cost” need not be maintained when intersymbol inter-
ference is present. The partial response IV signal is more sen-
sitive to timing error than is the uncoded signal, such that at
p = 0.15 the cost is around 9 dB. However, for types of dis-
tortion other than timing error, this situation can be markedly
reversed, since a partial response IV signal is rather impervious
to distortions near de or the Nyquist frequency.’

(i7) Single Echo in the Channel:

Ichoes frequently occur in transmission channels, generated for
instance by mismatched terminations. A sizable amount of
analysis has been done on echo theory in relation to system

distortion.""'* Here a single echo of amplitude ¢ and relative
delay BT is assumed to occur in the ideal channel of Fig. 2,
so that
—i2xfBT
R(f) = S(H(QA + ge 7). (27)
1072
L UNCODED SOURCE ]
S~ BINARY B
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Because s(f) is symmetrical and introduces no intersymbol
interference, an echo at 87T is identical in its effeet to an echo at
(+ B = n)T for any integer n. For instance, echoes at g8 =
+ 0.4, + 3.4 &+ 0.6 all have identical error sample vectors.
Consequently one need only consider values of 8 between 0
and 0.5.

Figure 7 shows curves of error rate versus SNR for echoes
of various strengths, and for an 8-level partial response IV
coded source. Direet calculation shows that, because of the
narrow excess bandwidth ¥ of S(f) in Fig. 2, the sample error
variance MSE of equation (10) is essentially independent of
echo position. Echo strengths were chosen to yield convenient
values of MSE = 0, 0.001, 0.003, and 0.005. It is clear that
echo location has a strong effect on the error rate curves. Echoes
at 8 = .5 yield the largest error rates. The error rate does not
necessarily vanish as SNR — <, as indicated by the asymptote
labelled “isi alone.”
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(177) Equal Error Samples:

1074

Consider the error sample vector e consisting of n identical
elements, e, = u, 7 = 1, --- , n. A considerable amount of
insight is gained by examining this case, although it is unlikely
that any physical system would give rise to such a vector of
error samples. In addition, one can derive the pdf analytically
for the binary ease providing a useful check on the computer
method.

The error voltage z of equation (15) clearly has the value
uV(n — 2r) if and only if » of the symbols a, equal —V, and
the rest equal V. Such an event occurs with probability (}) 2™
so that z has the pdf

P = 3 (”’;) 27" o — uVn — 21), (28)

r=0

and the error probability follows immediately using the method

\
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Fig. 6—LError rate vs SNR for timing error.,
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Fig. 7—Error rate vs SNR for single echo.
of Section 3.4:

P, =3 (t) 27"Q[V/SNR [1 — uln — 20)]]. (29)

r=0
The case n = 1 is the same as an echo positioned at T = 0.
Figure 8 shows curves of error rate versus SNR as a function
of n. (Curves formed using equation (29) and the method just
given were indistinguishable.) The samples have size u =
0.5/n so that d = 0.5 for all n, while MSE = 0.25/n. From
the curves it is clear that a few large error samples are more
degrading than many small ones for the same value of D. This
is intuitively reasonable since only very special source sequences
{a,} will cause the error voltage z to be large when e consists
of many small error samples, and such sequences occur with
very small probability. Figure 9 shows similar curves, where
now the samples have sizes 0.1/ v/n or 0.2/4/n, so that MSE
is econstant at 0.01 or 0.04. For MSE = 0.01 error rate is some-
what insensitive to the number of error samples, because the
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increasing value of D = 0.1 4/n with 7 is offset by the decreasing
probability that sequences |a,} yielding large errors will oceur.
However, as n increases for MSE = 0.04, D approaches 1, the
value at which errors occur due to intersymbol interference
alone, (D = 1 for n = 25). The offset in probability is not
strong enough here, and error rate is very sensitive to n.

V. ACCURACY OF THE METHOD AND THE SALTZBERG BOUND

The applications of quantization at various steps in the computa-
tion shift the locations of some of the delta-functions slightly in one
direction or the other, introducing some error in the ¢; locations of
equation (17). It would be extremely difficult to estimate analytically
the error resulting in the value of P, . Instead an empirical check was
made over several channel characteristics. Figure 10 shows how error
rate converges with increasing N; for a typical example of channel
distortion. Convergence was typically most rapid for & = 0.6. For
high values of SNR uniform quantization (kK = 0.5) was noticeably
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inferior. Because computation time grows rapidly with Ny, values of
N; = 40 and &k = 0.6 were used in the examples of Section IV. With
these values the algorithm is acceptably rapid, even on time-sharing
facilities.

A much faster and simpler scheme was proposed by Saltzberg.*
This technique found an upper bound for the error probability, but it
was not clear from the theory how tight a bound was being computed.
Figures 11 and 12 compare the error rate using the method given
above with the upper bound found using this technique. For binary
transmission the bound is between one and three orders of magnitude
above the true value. For 8-level transmission the bound is less tight.
The discontinuities in the bound versus signal-to-noise ratio occur
due to the optimum partitioning of the error samples into two sets in
the upper-bound method.

(©) Choice of the Block Size in the Method:

Given M error samples (the M ‘‘significant” samples from the
original set of N,), it was desired to find the binary pdf of z in
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equation (15). To do this, the M samples were partitioned into
M /K blocks of K samples each. Consequently one must compute
M /K pdf’s based on sets of K samples, and perform M/K — 1
convolutions of these pdf’s to obtain the binary pdf of z. The
speed of the convolution process depends on 2N, + 1, the number
of quantization levels., By direct examination of the algorithm
one finds: (i) that to form a pdf trying all combinations of K
samples requires 2° multiplications; (i7) that each convolution
requires 5(2N, + 1)° multiplications. The total number of
multiplications is therefore

Nuaie, = 2°M/K + (M/K — 1)5(2N, + 1) (30)

For example, if N, = 40 and M = 50, a search shows that N,
has a minimum with respect to K of 1.2 X 10° at K = 12. The
saving in computation effort is dramatic: if no decomposition
were used (K = M), N,..,. would be 1.1 X 10'°. More generally,
examination of equation (30) reveals that if M/K > 1 then
N, varies linearly with M, Therefore N,,.. has a minimum
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with respect to K that depends only on N, . This minimum is
K = 12 for N, = 40, and K = 13 for N, = 60, although N ...
is rather insensitive to K for Ke (8, 15).

VI. CONCLUSIONS

A method has been developed that accurately computes the prob-
ability of error for a multilevel digital signal contaminated by intersym-
bol interference and noise. The method construets a close approximation
to the probability density function for the intersymbol interference,
which can provide useful insight into the nature of the interference.
The method is rapid enough for use on time-sharing facilities, and can
provide a useful tool to aid the analysis and design of digital communi-
cation systems.

Starting with the transfer function or impulse response of the
channel, a set of error samples is found, and the method operates on
these to form the probability density function of intersymbol inter-
ference. Partial response coding of the source is easily included if
desired. The formidable size of the computation that has heretofore
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blocked direct calculation of this probability density function is eir-
cumvented by partitioning the problem into a sequence of easily
handled computations. Quantization keeps the total number of ele-
ments in the probability density function within reasonable limits,
and the density funetion for binary transmission is used repeatedly
to form the density function for 4-, 8-, 16-, ++ - level transmission,
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APPENDIX

Extension to Other Coding Types

The method described above considers only two coding types: the
uncoded and partial response IV cases. With slight adjustments in the
method one can also treat other interesting cases. The class of coders
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considered is that of Kretzmer®*: each symbol ¢ is related to the
input symbols {ax} by

Cr = b"ak + bla'k—l + bzak—z + tet + bua‘k—u ) ) (31)

where the elements b; of the vector b are integers. (The uncoded case
is then b, = 1, all other b; = 0). Kretzmer tabulates five partial response
classes which have proven most interesting: (I) b = (1, 1); (II) b =
(1,2, 1); (IlI) b = (2,1, —1); AV) b = (1,0, —1); and (V) b =
(—1, 0, 2, 0, —1). Other simple types exist as well, such as b =
(1,0,0,0,0,0,0,0,0, —1), a generalization of class IV partial response
that has five “lobes” in the signal spectrum.’

To see how codes of the type in equation (31) could be included in
the method, note that there are only three places where the coding
scheme used makes a difference: () in forming the coded error samples,
as in equation (7), (i7) in finding P, from the pdf, as in equation (8),
and (#i7) in evaluating signal-to-noise ratio, as in equation (25).

(i) The coded error samples are easily found for any vector b.
Using equation (30) in equation (4), and manipulating

Z Z bma'k—mxk + n
k  m=0

> b, 2 axmtn
m=0 T

I

z

Il

- Sae +n,
where
e = 2 bulism (32)
m=0

are the coded error samples.

(77) Onee the pdf of isi has been found from the coded error samples,
the error probability follows as in equation (8). To use signal
power efficiently a coder will be chosen so that the transmitted
voltage levels are equally spaced. Thus one need only evaluate
the probability of an outer level in order to adapt equation (8)
to this larger class of coders. An outer level of ¢, oceurs only
if all relevant a, have their maximum size and correct polarity.
For N-level a, symbols then, if M of the coefficients b, in equa-
tion (31) are nonzero, each outer level has probability N ™.
Thus M replaces h in equation (8).
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(477) Finally, since the symbols a, are statistically independent and
have mean square value E[a’] as in equation (25), it is a simple
matter to show that the symbols ¢, have mean square value
E[¢°] = h, E[a*], where

h, = Z by . (32)

m=0

Therefore h, replaces k, in equation (25) in the evaluation of
signal-to-noise ratio.
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