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In this paper we are concerned with the Holsinger-Gallager model for
the continuous-time Gaussian channel. Gallager' proved a coding theorem
for this channel, and Cordaro and Wagner® showed that the theorem remains
valid when the effect of intersymbol interference from previous channel
uses ts taken into account. We show here that the Cordaro—W agner result
holds under somewhat weaker hypotheses. Further, the proof here is more
elementary, since it does not depend on reproducing kernel Hilbert space
theory. Finally we pose what we feel is an important open problem con-
cerntng the stability of the model.

I. INTRODUCTION

In this paper we are concerned with the Holsinger-Gallager model
of the continuous-time Gaussian channel. Gallager® proved a coding
theorem for this channel, and Corado and Wagner? showed that this
theorem remains valid when the effect of intersymbol interference from
previous channel uses is taken into account. We show here that the
Cordaro-Wagner result holds under somewhat weaker hypotheses.
Further, our proof is more elementary, since it does not depend on
reproducing kernel Hilbert space theory. Finally, we pose what we
feel is an important open problem concerning the stability of the model.

In the Holsinger-Gallager’ model, the channel output is

w0 = [ = e dr 20, —w<i<w, O

where z(t) is the channel input, k,(t) is the impulse response of a causal
linear filter, and 2(f) is a sample from a stationary Gaussian process
with two-sided spectral density N(f). A code (M, T, S, \) for this
channel is a set of M functions {z,()}L, with support on the interval
[0, T'] which satisfy
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lzlf = [ a¥0ars st @

(thus 8 is the allowable average signal “power”), together with a set
of M disjoint Borel sets {B;}Y of functions defined on [0, T, such that
the error probabilities

P& Priy.¢gB} =\ 1Z2i=M. @3

The random funetion y;(f)(0 < t £ T) is given by (1) with z(t) = a.(f).
Gallager made the following assumptions

[ Npar< e,

[imora<=, [ LEBLlyca @

where H,(f) = [% hy()e **""" dt is the Fourier transform of h,(t). Subject
to these conditions, Gallager shows that the capacity of the channel
with allowable average signal power 8 is

C=04= ff max {log%}gilz , 0} df, (5a)
where the number By is defined (uniquely) by
_ [ __NG) }
s f_m max {BS GO (5b)

Equations (5) are justified by the following:

Theorem 1 (Gallager): Let E(R, S) be the error-exponent given by
Gallager (Ref. 1, Section 8.5). E(R, 8) > 0 and continuous, for 8 > 0,
and 0 = R < Cy. Then for arbitrary « > 0,8 > 0,0 = R <
Cg, there exist codes (M, T, S, ) where (as T — =)

Mz=e®" and A=Zexpi— (BER, S — T + o(T)}.

Now suppose that we wish to use the channel in successive T-second
intervals. If {z;({)}!L, are a set of M code functions with support on
[0, T, then the channel output for 0 = ¢ < T will be given by

80 = [ bt = 920 dr + 20
+ 5 [T - e —nDar, ©

n=—co

where 1 £ 4,7, = M (n = —1, —2, --+), The term
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=1 (n+1)T
=X [ h— Dauls —nD)dr
n=—cw YnT

represents intersymbol interference in the interval [0, T'] due to signals
corresponding to previous intervals. We use y*(f) instead of y.(t) to
indicate the presence of intersymbol interference. With the channel out-
put given by (6) we can redefine a code (M, T, S, \) as a set of M pairs
{(x:(t), B;)}™, exactly as above. Here, however, we require [instead
of (3)] that

Priyp*®)¢B.} =\, 1=i=M, )

for all possible #(t). The random function 3*(t) is given by (6).

Cordaro and Wagner? succeeded in establishing the validity of
Gallager’s Theorem for this modified model by making the following
additional assumptions. The first is that

[t NG) 170 + Pl df < =, ®)

so that N(f) = |G1(f)|* for some G,(f) with inverse Fourier trans-
form g, (t) = 0, t < 0. The second assumption is that k&, (), the inverse
Fourier transform of H,(f)/G:1(f), ig bounded by

| Bi(t) | = Ae™, &)

for some A, ¢ > 0.

In Section II we show that the Cordaro-Wagner result holds with
condition (9) replaced by the following essentially weaker condition:
By (8) we can find a G(f) such that N(f) = |G(f)|* and the linear
filters corresponding to G (f) and its inverse are causal.® Let k(t) be
the inverse Fourier transform of H; (f) /G (f). Then the new condition
is that for ¢ sufficiently large

k0 | < 55, @)

for some A, 8 > 0. Note that by (4)

[ umo N = [ Roa< =,

so that (9’) is not a very strong additional assumption.

An Open Problem: In order to achieve the error probability guaranteed
by Theorem 1 or in fact simply a vanishing error probability (as T — «)
for R < Cs, Gallager’s proof requires the receiver to make arbitrarily
precise measurements (see for example Lemma 8.5.1 in Ref. 2). A
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practical system, however, imposes certain limitations on the accuracy
with which we can make measurements. Therefore a reasonable require-
ment for the decoding regions {B,}{’ is the following:

weBowaeB, (%) op [0 - wOF >y, (0

for some » > 0. Thus » is a measure of the accuracy of the measure-
ments at the decoder. The channel capacity will therefore depend on »,
say Cs(v). A quantity of interest might be lim,_, C's(»). Whether or not
this quantity is the same as Cs in (5) is an open question.

II. PROOF OF THE MAIN RESULT

Let us consider first the problem with no interference from previous
channel uses when the ihput z(t) has support on the interval [0, T].
Gallager (Lemima 8.5.1, p. 413) shows that knowledge of the function
y(), 0 £t £ T, is equivalent to knowledge of a certain vector v =
(v, va, ---). This veetor v can be represented by

v=u+4z, (11)

where z is a sequence of statistically independent standard Gaussian
variates, and the vector u is defined as follows. Let

u(l) = f "kt = ey dr, £ 0, (12)

where k(t). is defined in Section I and z(¢) is the channel input. Let 8 be
the subspace of £,(— e, ) spanned by the orthonomal functions
{8:(1)}7% defined on p. 416 of Ref. 2. Let Ps(u) be the projection of u(t)
on the subspace 8. Then u = (u,, 2, *--), where u; is the coefficient
of 8;(t) in the expansion of Pg(u) in the basis {8,({)}% .

We will not need any properties of the 8,(f) exeept for the fact [which
follows from the causality of the filters corresponding to G(f) and
H,(f)/G(f)] that 6,(t) has support on the interval [0, T].

Let {x;({)}™ be a set of code signals with parameters S = 8, and
T = T, . Let u; be the u corresponding to z(f) = z(t), and let v; =
u; + z. Then if the minimum-distance decoder is used,

Poi=Priy¢B) =Pr Ulllvi—u || 2 [[v. —u []
=PrH[HzH z|lz— @ —u)l]l

=Pr Ulz,u;, —u) 2 3 [|u, —u [, (13)

i
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where || ||"’ denotes Euclidean norm and “( , )” denotes inner product.
In particular,

P,,=Pri{y,¢B;} = Pr{{z,u; —u;) = 3 Hui —u; ||2}
Qc(% H u; —u; “)s .7 = T:J (14)
where ®,(£) = [% (2r)%¢”"/* dn, the complementary error function.
Now, let us suppose that we are given a code (M, T,, S,, \),
{(z:(t), B)}™ for the no-interference model. We can assume that
the B, correspond to the minimum-distance decoder. We now form a
new code {(xz*(f), B*)}) with parameters T = T, = (1 + §)T, and
S = 8, = a8,/(1 + &) for use on the channel with intersymbol inter-
ference (6). We set

. <t <
2H) = {ax.(t), 0<t=<T, (15)
0, T, <t=Q+ 9T, =T,

where @« > 1 and & > 0 are arbitrary. Note that we have allowed a
guard band of width §7', between channel inputs. We will specify the
decoding sets B* below, mentioning here only that the decoder will
observe the received waveform y*(f) only for0 =t = T, .

We can discretize the channel exactly as above and consider the
channel output (when z*(¢) is the input) to be given by the vector

vi = ou; + z + 1, (16)

where u; and z are exactly as in (11) and @ (which represents the effect
of previous channel uses) is the vector whose coordinates are the coeffi-
cients in the expansion of Ps((t)) in the {8.(¢)} , and

=1 (n+1)T -1
)= X [ kt—datt —nDdr = T a0, (D)
n==w0 YnT n=—o0
where1 £ 1, = M.
The decoding regions B* will correspond to the minimum-distance
decoder, i.e., y* ¢ B¥ if the corresponding v is closer in Euclidean norm
to au; than to all eu; (j # 7). Thus for a given 1,

Pr {y*¢ B¥} = Pr y{l!vf —au, || Z || v* — au, |[}.

Now let ¢, S, > 0, and R(0 = R < C(Cg,) be given, and let
the (M, T, , 8, ,\,) code {(x,, B,)}}, discussed above, be a set of codes
which satisfy Theorem 1; that is,

M=e® and A Zexpl— (E(R,S) — T, + 0,(T))]}.



2360 THR BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1971

We will show that for T sufficiently large, the derived code has
parameter A = X; . Thus we will have found a set of codes (M, T3,
8, , A) for the model with intersymbol interference with
_ '8, { R }
Sz_(1+5)’ M = exp (l-I—B)T”

and

(E(R, Sl) €) OI(TE)
"p{_ G+o I +(1+6)}

Since E(R, S) is continuous and « may be chosen arbitrarily close to 1
and 6 arbitrarily close to zero, we will have established Theorem 1 for
the intersymbol interference case which is our main result. Thus it
remains to establish that the error probability for the derived code < A, .
We will do this by showing that (for T', sufficiently large) for each
= 1,2, -+, M and all possible #(z),

Pr {y*(#) ¢ BY} < Pr {y() ¢ B.}. (18)
Inequality (18) will follow directly from the following lemmas (the

proofs of which conclude this section).
Lemma 1: Inequality (18) is satisfied, if

A

IIA

— 1 .
ol = @5 min (u, —u |1 (19)

Lemma 2: For the codes {(x:, B)I™,, a8 T, — =,
min ||u, —u; |* = OT)).

i
Lemma 3: As T, — =, ||a > < O(T}*).

From Lemmas 2 and 3, condition (19) in Lemma 1 will be satisfied
for T, sufficiently large. Thus so will (18) be satisfied for 7', sufficiently

large.
Proof of Lemma 1: Since B; and B% are the minimum-distance decoders,

the left member of (18) is

PI‘[!IT#B?‘I=PY_\#}_”|V?‘_““-‘ [l = || v¥ — ou, [[}. (20)
The right member of (18), Pr {y, ¢ B.} is given by (13). Consider the
event

(Hv*—ou || 2 [| vi*— o, [[}

{(z+ﬁu 2||u —u||} (21)
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But by the hypothesis of Lemma 1 (19),
—1
[y~ L ]y — s S e g
Thus the event in (21)
- {(Zrlui - ui) = % ”ur‘ — u; ”2 - (ff__gi) H“i —u “2}

= {(z,u; —u) = § [|u; —u ||},

b

Lemma 1 now follows from (20), (13) and the above.
Proof of Lemma 2: For the codes {(z,, B,)}},
Pr{y. ¢ B:} =exp |— (E(R, S) — T, + o(T))},
so that from (14)
& (2 ||u; —ui|]) Eexpl— (ER, S) — T, + o(Ty)}.
Since, as £ — o, &, (f) = ™ /P01 "ywe have
lu; — u [|* = 8(E(R, 8) — T + o(T),

which implies Lemma 2.

Proof of Lemma 3: Let 6(t) ¢ $ be the function colinear with P;(4(t)) with
unit length in £, norm. That is 6(f) = Ps(4)/|| Ps(4) || , where “|| |
applied to funetions is the £, norm. Then

&l =l Pst|l = ’f_i a(tyalt) dtl

But since all functions in 8§ and therefore #(¢) have support on [0, T],

<l [f 0 dt]’
_ [ f " dz]* < ijm [ f " a0 dt]’, 22)

where 1,(t) is defined in (17).
Consider first the n = —1 term in the above summation. For
0st=T,,

ai=| [ dwiwa

2

Iﬁ’—l(t) lz o’

f k(t — D (r + Ty) dr

I\

—-5T -7,
azf (- 1) dff 2 (r + Tp) dr

A

-5,
a’S,\T, f Bt — 7) dr.
-7,
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Changing the variable of integration to w = ¢ — r, we have

t+Ty

= o’8,T, k*(w) dw.

t+86T

From condition (¥), for sufficiently large T ,

t+Ta 42 =] 42
2 2 T
- < =
< o S,T, o dw = o°S,T, ];T’ T dw

2 2
— aliTéBA- (sqvl)—]—zﬂ =

and therefore

azAzsl T‘—'.'ﬂ
(1 + 28)(8)'***

a2A281 Tl -28 .
1+ 286"

Next consider —2 = n > —o. For 0 = t = T,, paralleling the
above steps we obtain

f T amadt < (23)

(n+1) Ta (n+1) Ty
a0 P sa [ B(o—ndr [ 2l —nTy)dr
nTsa nTa
t+(n'+1)Ta
< o*S,T, k*(w) dw,
t+n'Ta
where n* = —n. Again applying condition (9’), we have

N . (n"+1)Ta A2
| () [" = «"ST) f e W
n'Te w

=a*’S,T1A2[ 1 1 ]
1428 LeT)" [ + )T
_ o8, T, A [ 1 1 ]
(l + 216)(1 + 6)1+23T11+2ﬂ (n,)uzﬁ (,n; + 1)14—2,5
oS, A*
—3 b"' -
1+ 28)1 + 81y

The important fact here is that as n’ — o, b,. = O(n’~“**""). Therefore,
the integral

f " < o8, 4 126, (24)
0 Sa+200+ 8t

Substituting (23) and (24) into (22) we have,
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3 o0
ol s a(p S ) [+ a v 0 5w

Since the summation converges, we have || |]* < O(T}*%), which is
Lemma 3.
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