Copyright @ 1971 American Telephone and Telegraph Company
THE BELL Svsnm TECHNICAL JOURNAL
Vol. 50, No. 7, September, 1971
Prmrcd' in U.S.A4.

Time-Varying Spectra and Linear
Transformation
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(Manuseript received February 9, 1971)

One of the most important prerequisites for defining the spectrum of a
nonslationary process 1s that the spectrum should transform simply and
reasonably when the process is transformed linearly, and should lead to
information about the important response statistics. Presented in this paper
are some useful transform relationships for linear causal sysiems in lerms
of C. H. Page's time-varying specira. Expressions suitable for direct
analysis or numerical compulation of the time-history of the response
process and its bounds, the response power spectrum, the total energy of the
system, and the upper bounds on the response shock spectra are given.

I. INTRODUCTION

R. M. Loynes® recently established a list of desirable properties for
the spectrum of nonstationary processes. The elementary properties
include: (i) a nonstationary spectrum should be rigorously defined,
() it should describe in some sense the energy distribution over fre-
quency and time, and (177) it reduces to the ordinary spectrum when
the process is stationary (Loynes' properties Al, A2, and A5). Both
Page's instantaneous power spectrum? and M. B Priestley’s evolu-
tionary spectrum?® satisfy these basic requirements. Another spectrum
definition based on the notions of two-dimensional spectra arising in
the consideration of harmonizable processes*® also satisfy these basic
requirements with some qualifications. However, from the practical
point of view, especially when the filtering and convolution of a random
proeess is involved the most important requlrement is the existence
of simple transform relationships for linear systems. A spectrum should
transform simply and reasonably when the process is transformed
linearly (property A3, Loynes). In other words, input-output rela-
tionships are required so that a knowledge of the spectrum of a process
determines the spectrum of the traneformed process. In addition, these
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relationships must be suitable for numerical computations. This is
because most vibration data are available in the discrete form and
the analytical solution of most nonstationary problems is difficult to
obtain. Presented in this paper are some useful transform relationships
for nonstationary processes using Page’s time-varying spectra.

II. BACKGROUND

Consider a real function z(¢) in (—eo, e), which may be either a
sample function of a random process, or a shock function which is
zero outside the range t ¢ [a, b] for finite @ and b and is Riemann
integrable in this same range. The function z(¢) is assumed to have
finite energy. The running spectrum of x(t) is defined as®

X(t, @) = f_ ; () exp (—iwr) dr, )

where “" is the imaginary unit. The instantaneous power spectrum
is defined as

bty o) = 37| X(t,0) I

Il

22(f) Re [exp (i) X(t, w)] )

which is even in o. If z(f) is a random process having a time-
dependent autocorrelation function R,(t, 7) = E[z(t)z(t — )] where
E denotes expectation, the instantaneous power spectrum of the process
is understood to be the average of the spectra of all its sample fune-
tions. LetS,(t, o) = E[pz(f, »)] and take the expectation of both sides
of (2), we obtain

St w) = 2 f “R.t, 1) cos wr dr. 3)

The above relation shows that S,(f, o) is completely defined by
R.(t, 7). When z(t) is stationary, (3) reduces to the ordinary relation
as R,(t,v) = R,(+) and S;(t, w) = S(w), both independent of ¢.
Some important properties of X (¢, w) and p(t, ») as evident from their

definitions are in order.

(7) X(, ) is Hermitian, i.e., X({, —w) = X*(t, w). The symbol *
denotes the complex conjugate.

(i) Let E(t) be the energy of z(t) up to time ¢. The function p.(f, w)
can be regarded as the energy density in the (¢, w) plane as seen by
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E(1)

[l rar =0 [ X060 [ o

_ 2_17.rfw fi pu(r, ) de dr. @

(#21) Both X(f, w) and p.({, w) depend on the past history of (%),
but not on the future.

(fv) The function p,({, w) may take negative values (see Ref. 2, p. 106)
but the integral [*_ p.(r, w) dr, the energy spectral density of frequency
w, is always positive.

(v) The time derivative of X (¢, w) relates to the signal z(t) itself by

x(f) = exp (iwt) 0X(t, w)/0t

= exp (—iwl) dX*(t, w)/at. (5)

We will now proceed to derive from some input-output relations for
a simple causal linear system in terms of X (¢, ») and p,(t, o).

III. INPUT-OUTPUT RELATIONS

Consider a simple, second-order causal linear system whose equation
of motion is given by

7+ 2y + oy = z(f) (6)

with homogeneous initial conditions y(0) = #(0) = 0, where A < 1.0
and w, are positive constants representing respectively the damping and
natural frequency of the system. This system has a transfer function
between the output v and input z given by H(w) = (wj — «® + 20\ww,)”"
and a corresponding impulse response h(t) = [exp (—Aw,t) sin pt]/p for
t > 0, where p = (1 — \*)!w,. We obtain the following results for
different response parameters.

3.1 Time-Varying Spectra of Response Process

Using the convolution integral and the casual property of the sys-
tem, ie., h(t) = 0 for t < 0, and assuming the excitation begins at
t = 0, the response y(t) in (6) is given in terms of X (¢, ») by

y(l) = f "2t — ) dr

_ 51; f Z H@)X(1, w) exp (iwt) d. )

Following the definition of (1), the running spectrum of y(¢) is
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Y(t, w) = X(t, 0)H(w) — ex(t @), @

where

ert,) = [ ar) oxp (—ior) [ hr) exp (—ior) dradry @)

is the error involved in the approximation Y (¢, o) ~ X (¢, o)H (0).
Notice from (8) and (9) that Y (¢, ) is given by the double integral
in the =, — 72 plane of a function f(r1, 72) = @(r1)h(r2) exp (—tory
— iwry) over an area of an equal-sided triangle formed by the line
1 + 7o = t in the first quadrant. The value of X (¢, o) H («) is given
by the same integral over an extended area from 0 to ¢ along the
7 axis and from 0 to « along the 75 axis. The error ey is given by the
difference of these two integrals.

Let F{x;} be the Fourier transform of z;, the part of z(f) from
t on, and F{y,;} be the Fourier transform of y,, the part of % (¢) from
¢t on. It can be shown that the error ey (f, ») in (9) is also given by

ev(t, w) = H(w)F[:E,I - F{yr}- (10)

It follows from (8) that the instantaneous power spectrum of y ()
is

p(t, w) = (BX H— aey)(X*H* —e¥) + (XH - 6y)(— H* — aaLE')
= Pz(t:' “") I H(“’) l + eﬂ(t; L"’)J (11)
where
a X*
e,(t, w) = ) lev |* — H"Y—a? — H*ey aat (12)

is the error involved in the approximation p,(f, @) = p.(t, @) | H(w) |*

Some interesting remarks can now be made about ey, and subse-
quently about e, which is closely related to ey through (12). The energy
bound in w for ey(f, ) can be considered as follows. Let the norm of an
arbitrary function Q(w) be defined as || @ ||, = [/*. | Q) | *dw]}, then
from Parseval’s Theorem || F{z,} |lo = || 2. ||, = [J? | z(r) | *d 7]}, and
similarly || Fly.} [l = |1y [l. = [J5 ly(r) |* dr]*. Suppose h(f) is inte-
grable so that | H(w) | = A is bounded, then it follows from (10) that

[Tex(ty @) [lu = AU‘* | 2(r) |* df]* + [[” | y(n) [ d-r]*

which — 0 as { — oo, If furthermore x(¢) is integrable, from which
| Flz,} | £ [%|x(r) | dr which — 0 with ¢ and consequently | F{y,} |
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also — 0 with ¢, then (10) indicates | ey(t, w) | — 0 in ¢, uniformly in w.
This result can also be concluded from (9) because in which the function
f(ry, 7o) = x(r,)h(r2) exp (—iwr, — iwr,) is integrable in two dimensions.

For a more practical purpose, we now consider the familiar first- and
second-order simple linear systems. The running spectrum of the
response ¥ (t) and other pertinent quantities are given in Table I, in
which a* = r, = decay time of the impulse response k(t) of the first-
order system and 7, = (Aw,)™* decay time of A(t) of the second-order
system. From this table, it can be seen that for large ¢/r, ratio the
error ey(f, o) for both systems [given by the second term in the ex-
pression for Y (t, »)] will be small. In general at the same time ¢, the
error for a system having short decay time (broad bandwidth) is
smaller than that having long decay time (narrow bandwidth). There-
fore ey(t, w) for systems with a flat spectrum (high damping) is
smaller compared with that for high resonant systems (low damp-
ing). This observation is also evident from the damping term appear-
ing in the expression of Y (¢, ) for the second-order system in Table I.

In many cases the impulse responses and the input are both
bounded functions defined on positive t axis such that |h(t)| =
Ay exp(—a;t) and |z(t)| = As exp(—ast) for some positive 4;, 4s,
and a; > as. Then from (9) |ey(t, w)| = Ajds[exp (—ast) —
exp (—ait)]/a;(a; — a2). Therefore the error |ey(f, »)| approaches
zero as the time ¢ increases; and for a certain time £ > ¢, the error can
be regarded as negligibly small.

From (8) another useful pair of equations relating to the time
derivatives of the input and output running spectra can be obtained:

avY(t, o) X (1, w) . dey(l, w)

i~ o H@ at 13)
aY*(t,w)  X*(, @) 1y, 9e¥(t, w)

. - o e al

which in turn will lead to the following relationship between the input
and output time histories.

3.2 Response Time-History and Some Bounds
Using (13) and the analogous relation for y(¢) as x(¢) in (5), we
obtain

I

H(OH(@) — S ¢

¥ i

at ¢

y(t)

() H*(w) — (14)
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which relates the input and output time histories in terms of the
transfer function of the system and the error function in (9). The
time-history of the response function y(¢) can also be related to the
time-history of the input function x(¢) through the simple expression

2y = 1 [ Re (H@I0.00,0) do. (15)

Notice that the above relation is advantageous when the direct multi-
plication of input and output functions is involved. We prove (15) in
the following. Consider the integral

t -] t
[ eowm e = o= [ HE [ 20)X(r, o) exp ior) dr do.
0 T J—oo 0 -

It follows from the causal property of the system and Parseval’s

theorem that

[ eouedr = 3 [ @ | X0 [ o

Differentiating both sides with respect to ¢, (15) immediately follows.
We now establish the upper bound for |y(¢)| and |y () |* in terms of
transfer characteristics of the system and input spectrum. From (7),
Schwarz’s inequality yields
ly() | = EQ@)N, (16)
ly(t) | < E(t)'NY, 17
where E(t) is the total energy of the input function z(¢) up to the time ¢
and is given by (4), and N = [*_ | h(r) |* dr > 0. Equations (16) and
(17) are also valid if z(t) is a random process. In this case the left-hand
side quantities | y(#) |* and |y(f) | are replaced by E[|y(f) |] and
E[|y(t) | ] respectively. For our simple system, N = (4\?)”", and

N 2 1 fl fﬁ
E“ y(t) 1 1 é STACIﬁ I S:r(t! w) dﬂ.) dT. (18)
3.3 Total Energy of the System
The total energy E,(t) of the system described by (6) at time £ is
given by

E,() = 3| Z(t, p) | exp (2hw,1), (19)
where Z(¢t, p) is the running spectrum of 2(¢) = 2(¢) exp(Aw,t) at the
frequency p. The relation (19) can be proved as follows. Taking,
according to (1), the running Fourier transform of both sides of (6)
and integrating by parts, we have ’
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[ 4 (o + 2ha,)y] exp (—iwt) + (w2 + 200w, — &1V (A, w) = X(t, w)
in which the initial conditions have been used. The second term on the

left-hand side of the above equation vanishes when setting v = 6; =
Awe + P OT 0 = B3 = tAw, — p. Thus

[y + (16, + 2\w,)y] exp (—i6,8) = X(¢, 8;) = Z(i, p), (20)

[y + (36, + 2:.)y] exp (—i6,0) = X(t, 6:) = Z*(t,p).  (21)
Multiplying (20) and (21) and dividing the result by 2, we have

U7 + 2wy + 0l = 3| Z(U, p) P exp (2hw,t).
But the left-hand side is the total energy of the system and therefore
(19) is proved.
Taking expectation of both sides of (19), we obtain the expected
energy of the system subjected to the random excitation z(¢)

gE® =5 [ [ Rin,n— )

-exp [Mw,(ry + ) — ip(ry — 7o) drid7Ts . (22)

For the undamped system, i.e., at the limit when A — 0, (19) reduces
to 2(y* + v*) = * which agrees with the principle of energy
conservation. It is also interesting to note that a simple manipulation
of (20) and (21) can lead to the familiar convolution relation between
input and output '

y(t) = ; f_; 2(1) exp [—Mw,(t — 7)]sinp(t — 7) dr

as given by (7).

3.4 Bounds on the Shock Spectrum

The shock spectrum of z(t), ¢ e [a, b] is the maximum absolute response
defined as Si(w,, \) = sup,|y| = the displacement spectrum or
S.(wo, \) = sup, |y | = the velocity spectrum. We establish the
following upper bounds to them:

i) S up [ L1 20, e (e | s swp L 120090 1, @9

S.w, , N) = sup [(1 %L | Z(t, p) | exp (— ?\w,,t)] sup | Z(t, p) |.

(24)
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The proof of these relations is straightforward. Write Z (¢, o) =
|Z(t, w)| exp [—i¢:(t, »)] in which the phase angle ¢.({, o) = tan™?
[—8:(t, ) /C.(t, )} ], S; and C, are the running sine and cosine trans-
form of z(¢) respectively. It follows from (20) or (21) that

¥+ Moy + ipy = [ Z(t, p) | exp { —hoot + i[pt — ¢.(1, p)]}.

The above relation leads to

¥+ Ay = | Z(t, p) | exp (—Mw,t) cos [pt — ¢.(t, p)),
py = | Z(t: P) ! exp (—)\w..t) sin [Pt - ¢z(t1 p)])

and (23) and (24) follow directly.
For the undamped system (A = 0), p = w,, Z(t, p) = X (¢, 0,);
therefore (23) and (24) reduce to

w,Si(w, ,0) S sup | X(t,w,) | and S,(w,,0) =< sup | X(t, w,)
t 3

y

respectively.

IV, ILLUSTRATIONS

We now consider the following nonstationary processes for their
time-varying spectra.

4.1 Multiplicative Process
x(t) = n(De(),

where n(t) is a stationary process with an autocorrelation function
R, (7) and spectral density S,(w), and ¢(f) is a causal deterministic
funection. The time dependent correlation function and power spectrum
are

R.(t, 7) = R.(n)e(t — 1),
S.(t, w) = 2¢(1) j; R.(n)¢(! — 1) cos wr dr.

When n(t) is a white noise with R,(z) = R,8(s), R, > 0, then
S.(t, ) = S(t) = 2R,$*(f) becomes frequency independent. When
¢(t) is slowly varying such that ¢(f — 7/2) ~ ¢(¢ + 7/2), then
R.(t, r) = ¢*(t)R,(z) and S.(¢, o) = ¢*(t)S,(w). This implies that
x(t) is locally stationary and its power spectrum changes with respect
to time not in the general shape but in its area covered with the
w-axis only.
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4.2 Periodic Nonstationary Process™’

In this class of processes, the time dependent autocorrelation fune-
tion is given as R.(t, r) = Zyi(s) exp (2xikt/T) for a constant T. It
can be readily shown that

S.(t, w) = 9_ E ¥, (w) exp (2mikt/T),

where ¥, (w) is the Fourier transform of ¥,(r) and has the property
that ¥,(w) = 0 and ¥, () = ¥;(27k/T — o). Moreover, it is easy to
show that the time-varying power spectral density of the response
process y(t) is also periodic with the same period T

S.(t @) = i 3 0:6) exp (2rikt/T)

in which gy (0) = ¥ (w)H (o) H (27k/T — o).

The application of the rest of the input-output relations of Section
III to these two types of nonstationary processes for either direct
analysis or numerical computation is a straightforward exercise.
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