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A transmission model of outside plant wire pair cable systems is given.
The model includes direct crosstalk within cable units and has been adapted
for computer manipulation in the form of a voice-frequency simulation
program. The program can simulate the terminal behavior of any coterm-
inous system composed of a cascade of mized gauges of pulp and PIC
cables, load coils, and bridged taps. There is evidence that the simulation
capabilily can provide useful estimates of direct, within unit, FEXT at
least up to the high kilohertz frequency region. Faclory data on capacitance
unbalance are the essential data source for the crosstalk portion of the
simulation program.

For many systems studies a nominally specified cable should be repre-
sented stochastically. In this development a Brownian motion process is
used to model the stochastic behavior of the capacitance unbalance. The
diffusion constants for the various pair-to-pair combinations of capacitance
unbalance can be expressed in terms of cable geometry. The development
of this expression using capacitance unbalance dala forms a basis for
selecting pair twist lengths.

I. INTRODUCTION

A transmission model of outside plant wire pair cable systems which
includes direct crosstalk is developed here. We begin by presenting a
deterministic model of outside plant systems by means of matrix repre-
sentations of the various elements. The perturbation technique for
handling pair-to-pair coupling is developed in detail. An adaptation
of the model in the form of a simulation program is discussed and
comparisons between simulations and experiments are made. A stochas-
tic treatment of pair-to-pair capacitive coupling is given which is
shown to lead to a method of optimal twist length selection.

We stress that the theory we present here has its origin in the work
of others (see, for example, Ref. 1 through 4). The ideas of direct cross-
talk and of treating capacitance unbalance as random functions with
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a delta function covariance are familiar to those who have worked on
crosstalk. We organize and extend available techniques in the direction
of furnishing a suitable systems engineering model of crosstalk. The
transformation of our model into a practical engineering tool extends
the use of routine data on pair-to-pair capacitance unbalance that
are taken at Western Electric’s eable manufacturing locations on a

daily basis.

II. OUTSIDE PLANT SYSTEMS—GENERAL

For simplicity we limit the discussion to an idealized version of the
outside plant. We assume that a plant system is comprised of a cas-
cade of passive n-port networks as depicted in Fig. 1.

These networks are primarily wire pair cables, although we include
load coils, splices, and open circuited bridged taps. The objective is to
be able to simulate the response of a broad class of outside plant sys-
tems to single-frequency excitations. We seek a programmed simula-
tion capability that will enable the evaluation of crosstalk perform-
ance, The crosstalk performance (near end or far end) is usually
expressed in the form of the cumulative distribution function of pair-
to-pair crosstalk values. These cumulative distributions form the basis
for answering a large class of systems engineering questions concerning
crosstalk.

At this point in the development of this work only the stochastic
nature of pair-to-pair capacitance unbalance is included. The effects
of moisture, temperature, aging, externally generated noise, or manu-
facturing variability of other cable parameters are not considered.
Active devices are also not included. For many problems involving
active devices it is important to characterize the behavior of the pas-
sive portions of the plant that interconnect these deviees. Furthermore,
the technique we present for handling crosstalk appears to be extend-
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Fig. 1—A cascade of passive n-port networks.
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ible to the problem of modeling variations in other cable parameters as
will be indicated in the next section. However, the available data on
the variability of other cable parameters is sparse and it is therefore
premature to attempt to include these at this time in a numerical
model.

The mathematical representation of the terminal behavior of these
systems is generated from the solutions to the differential equations that
characterize the physical laws that the constituent sybsystems obey,
and the boundary relations that characterize the interaction between
contiguous subsystems. In our model the system is characterized at
each point in space (x) and time () by the vector of pair voltages v(z, t)
and pair currents 1(x, t). Thus longitudinal symmetry is implicitly
assumed, that is, metallic mode propagation is not affected by any
series or shunt primary constant unbalance. Each of the networks is
described by a mathematically well behaved first-order homogeneous
system of linear differential equations. We make the standard simplifica-
tion of suppressing the time variable by restricting the excitations to
be of the same frequency and in phase. The solution matrices to these
differential equations with initial value equal to the identity matrix are
ideally suited to cascaded structures. Following the terminology in
2-port network theory, we call this solution the ABCD chain matrix
of the subsystem where

vea)| _ [4n Ba v(m)]_
L(mm) Co Dul Wa(wn-1)
It then follows that
() _ py |4 B] v(O)]
(D)) TG Dy W0)

where the order of multiplication is important.

Generally when a system is specified there is some degree of uncer-
tainty concerning its behavior. This uncertainty is modeled by assuming
any chain matrix to be of the form D + ¢S(w)* where D is deterministic
and S(w) is a matrix random process with zero mean. The parameter ¢,
which is called the perturbation coefficient, will be needed to facilitate
our analysis. Since different system elements have different physical
constants we unify the theory by treating these constants as parameters
in the chain matrices. Thus the chain matrices are indexed over a set of
parameter values and so they are stochastic processes.

* Here w is used to indicate a random sample point not an angular frequency.
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First we deal with the deterministic features of our systems. That is,
we discuss features that are common to all realizations of these stochastic
systems. Therefore, in the next section the fact that we are really
dealing with stochastic subsystems is unimportant and is neglected.

III. THE PERTURBATION COEFFICIENT—e

We express here the known fact that unwanted coupling between
wire pairs in a cable system produces low-level interference on all pairs
in proximity to an energized pair. The parameter ¢ > 0 can be thought
of as a secale to measure just how close a system is to an ideal one (e =
0) in which the pairs are uncoupled. We shall develop some simplifica-
tions that occur as e tends to zero.

We begin by showing the central role of the perturbation coefficient
in redueing the size of a cable crosstalk computation. An n-pair cable
of length L is a linear passive bilateral 2n-port network, and at any
frequency it has a chain matrix (ABCD) characterization which we

shall denote by 7'(L)
v(L) v(O)} M

(L) 1{0)

where the v’s and the .’s are the voltages and currents at the 2n ports
of the network. We assume that T'(z) is defined by the matrix initial
value problem

= T(L)

dT(z)

0 Z(x)
Y(z) O

where [ is the identity matrix. The matrix Z(z) is a symmetrical n X n
impedance matrix with entries that are continuous complex functions
of the real variable x and whose diagonal terms are all equal and are
denoted by 2, which is a constant. Similarly for the admittance matrix
Y(x). We write Z{x) = zI + {(x) and Y(z) = yI + en(X) where {(x)
and n(x) have zero diagonals and z and y are constants with positive
real and imaginary parts. Recall that e is the perturbation coefficient.

We shall be interested in making crosstalk computations of the type
where one pair in a cable is energized and the near-end voltages and
far-end voltages on the other pairs are to be solved for. Using 7T'(L),
the chain matrix characterization of the cable, and the boundary
conditions, we obtain 2n equations with 2r unknowns. If there are
100 pairs in the cable we must invert a 200 X 200 complex matrix to
solve for the crosstalk voltages. Practical considerations in inverting a

dx

JT(-.L-) and T(0) = I, @)
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matrix of this size places the problem out of reach of the computer.
We shall develop an approximation whereby the computation is de-
composed into the inversion of 99, 4 X 4 matrices. This enables the
calculation to be handled quite easily by the computer.

For simplicity in what follows we shall assume that at both ends the
cable pairs are terminated in their ‘‘characteristic impedance”
Z, = V/z/y. Also we shall normalize by assuming that the energized
pair is impressed with a voltage generator of voltage V (= 2 volts)
and an internal impedance Z, so that one volt is established across the
terminals of the energized pair. We shall follow the convention that
the near-end crosstalk NEXT(7, ) = [v;(0)/v:(0)] and the far-end
crosstalk FEXT (i, j) = [v;,(L)/v.(L)] denote the ratios of the voltage on
pair j due to the disturbing voltage on pair 7 at the cable terminals.

Using the boundary relations and substituting into equation (1) we
can obtain the equations for NEXT(3, j) and FEXT(3, j).

Consider the hypothetical cable containing only two pairs whose
defining equation is

0 0 2 i (x)
__ldg(a: = — 0 0 i) z T(z) and T(0) = I.

v Y () 0 0
enii(r) Y 0 0

If pair 7 is energized the equation for the crosstalk on pair j becomes

1 1
0.(L) FEXT(@, j) | _ L) NEXT(, 7) @)
I/Zn (V - 1)/Zn
FEXTG, j)/ Zs —NEXTG, )/ Zo

The hatted variables NEXT(, j) and FEXT(7, j) are called direct
crosstalks. The direct crosstalk which considers only the existence of
pairs 7 and j in the cable and the crosstalk which considers the existence
of all n-pairs in the cable are asymptotically equivalent as is shown in
the appendix. That is,

. NEXT(, j)

lim im0 =

o NEXT(, j)

There is strong experimental evidence that in the systems of interest

¢ is so small that for most practical purposes asymptotic equivalence
can be interpreted as equality.
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Next we decompose the problem of determining a 4 X 4 matrix T
into a problem of determining two 2 X 2 matrices. To accomplish this
we introduce some artificial voltages and currents V,(z), Vi(x), I.(x),
and I.(z), via the following transformation, which we shall call P

Vi) 1 1 0 0| |vi(x)
Valx) _ |1 1 0 0| |vaf)|
I(z) 0 0 1 1| |&(=)
I,(x) 0o 0 -1 1) ()

The above transformation maps the problem of two uniform coupled
pairs to that of determining the chain matrices for two nonuniform but
uncoupled pairs. The dependence of T on e will be important now. So,
since z is understood to be fixed at L > 0, we shall write T'(¢) instead
of T(L). Letting T(e) denote the chain matrix of the system of two
uncoupled pairs we have T(¢) = P~'T(e)P. As a consequence T'(e) has
the following form:

A& + Ae) Aile) — As() Bi()) + Bx(e) Bi(e) — Bao(e)
T() = 1 Ae) — Ax(e) Ai(e) + Axfe) Bi()) — Bi(e) Bi(e) + Bole) ,
Ci(e) + Ca(e) Cife) — Cu(9) Di(e) + D2(e) Dife) — Dufe)
Ci(9 — Ci(e) Ci(e) + Ca(e) Dife) — Da(e) Dufe) + Dafe)
where the matrices
A9 Bi(o
Ci(e Di(e)

are the ABCD matrices for the nonuniform lines without coupling.
Figures 2a and 2b portray the transformation in detail. So A,(e) =
Ai(—e€), Bo(e) = By(—e¢), Cz(e) = Ci(—e¢), and Dy(e) = D,(—e¢). Using
the definition of derivative we obtain that for e sufficiently small

=1,2

() ~ [A,(O)I B.OI] , [AO] BIO) J]J
C,(0)f D, (0)! cl(0)J DI0)J
where
J=° 1].
10

This formula is particularly useful for generating the linear approxi-
mation to the T'(e¢) matrix for the case of constant coupling, that is,
the case when #(z) and {(z) are constant functions. The matrix is as
follows, with ' = V/zy,



2427

CROSSTALK MODEL

()
AL
us ————

?E R T(3.°Z — °z4) T

1.1 Yysod TJ quis S S 7.1 yuis Nl 7.1 Ysoo & aIle
T dlz + bg) T T2z +47)) 1
TJIE
urs —
A,E oz - T
uls lk E S09 S0D |m..|1].\ N E urs N.I
SR 10.°7 + L°%) 111 I T1(3.°7 + %Ev I EERL
1.1z
urs ————— —
Tﬁ S TG o — oz
J gquis 7 — mOoFc ] s S00 QE.FWI
LA T 1) 7 L TS G0z ¥ 0g)
TIG
S —— - — - —
AE T 1697 — z0)
S09 |m|1|1lvo 3 18 077 — urs ,|.|ml[FI 3 — 00

For the case when n(z) and {(z) are arbitrary continuous functions we

obtain the following linear approximation to T'(e)
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Substituting this evaluation of T'(¢) into equation (3) and solving for
the linear approximations to the crosstalks yields the classical formula

NEXTG, j) ~ —e [ " Gan@) = 23 H@) o g

&

FEXTG, j) ~ —e f " (Zim@) “;_Z; @) g,

In this section we have achieved a canonical representation of
coupled pairs in a cable. Our representation is complete enough to
permit pair-to-pair crosstalk caleulations to be made, but our repre-
sentations are approximate. We have not developed any analytical
relationships between the magnitude of errors involved and e Prag-
matically we have not had any need for such relationships as we have
been able to rely on experimental verification of our assumptions.

The structure of the cable chain matrix that we have developed
expedites the determination of the chain matrix experimentally using

Zo L (x) Zo

v v«x)] z,Y Zo v Z4g(@ Y40l S 7o
\ | , &
T U
is () ) $(o) wi) ) L
vilx)| _ 0 Z+ (x| [Vi(x)
NEXTT Vz(.'ﬂ]I Z,Y FEXT} Z, L[ |Y+a(@) o [{Lix
Vilo)+ Zgll0) =V
vy (L) =ZoI1(L)
: = Z
) L
v, ()| o o Z ™) [v(x) v Z-(x)y=ax) 2%
Va(x) o o {x Z Va(x) "
. == . 1 ]
L (x) Y g(x) o o Ly (x) 6 Il_
ta(x) 7Mx) Y o o Lzlx) Valz) r_, o Z-t)]|Vale)
L(z)]” | Y-ntz) o Ix(x)
vilol+ Zg L1 lo) =V Vi (L) =2Z Ly(L) Vz(0)+ZoIz(0) = V
V2(0)+ Zgizlo) = © Vz (L) =ZpL2(L) ValL)=Zo1,(L)
(a) (b)

Fig. 2a—Two identical coupled transmission lines and their characterizing
equations.

Fig. 2b—Two nonuniform uncoupled transmission lines and their characteriz-
ing equations.
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a generalized open circuit-short circuit technique. Specifically each of
the A, B, C, and D matrices has the form of a perturbation of some
nonzero multiple of the identity. A straightforward generalization of
the classical open ecircuit—short ecircuit technique, capitalizing on the
approximation that can be made in inverting a matrix of the afore-
mentioned form, makes for a simple determination of the A, B, C, and
D matrices. Since the experimental technique is straightforward we
shall not discuss it further.

In this section we have discussed crosstalk computations for a single
cable. The extension to a cascade of cables is straightforward. We need
only modify (3) by replacing T'(L) by the ordered product Hz_, Toisr
and Z, can be replaced by possibly distinet impedances at = 0 and
z = L. In the Appendix we have proven asymptotic equivalence in a
special case of a single cable. (We spare the reader the general proof for
cable systems.) We shall use asymptotic equivalence of crosstalk and
direct crosstalk for cable systems in the sections that follow. We note
that if bridged taps are excluded the extension of the asymptotic
equivalence to cable systems is immediate.

IV. SIMULATING THE PLANT AT VOICE FREQUENCIES

The first phase of the computer simulation of the outside plant has
been limited to voice frequencies. The program generates the subsys-
tem chain matrices and multiplies them together to get a realization of
the ABCD matrix for the system. The program can simulate an exten-
sive class of coterminous systems; specifically, the loop can be com-
prised of any cascade of PIC cables, pulp cables, load coils, and bridge
taps. Thus, given the termination impedances and excitations we can
solve for any of the terminal voltages and currents. The important
feature of the program is that it provides the capability to make cross-
talk computations.

There were a number of reasons why we began the simulation effort
with the voice plant. First the very vastness of the overall project of
outside plant cable simulation dictates that one should begin by
handling a somewhat self-contained portion of the project that could
form the basis for future effort. The simplification that arises in deal-
ing with voice plant makes it an attractive starting place as we now
show.

Ostensibly the basis for the simulation of individual cables is equa-
tion (5). The chain matrices for load coils and bridge taps can be
obtained from the matrix for the cable. We note that the entries of the
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ABCD matrix depicted in equation (5), that involve pair-to-pair un-
balances have the following form

[ 1., 920 + B0, 92" 1@) da,

where the H; are continuous complex hyperbolic funetions. For any
common set of cable parameters the Z(x) term is negligible at voice
frequencies (f < 4000 Hz). To help see why inductance unbalance can
be neglected at voice frequencies we first note that for any of the cable
pairs simulated, the absolute value of the characteristic impedance
decreases by an order of magnitude in changing from its de value to
its high-frequency asymptote. Then by looking at the manner in which
Z, appears in (5), or (4), we see that the capacitive coupling effect is
accentuated while the inductive coupling effect is de-emphasized at
voice frequencies. Hence in the voice band we need only consider

f., H,(f, ©)n(2) dr.

Replace the continuous function H,(f,x) by its average value
L' [% H,(f, ) dz in the integral. By continuity we shall lose negligible
accuracy so long as L is sufficiently small. For values of f in the voice
band the actual cable section lengths between splices are sufficiently
small. Hence the integral becomes

[ mo 0 a]w i =L [ @] [ 5060w

So in effect we have replaced »(z) by its average value. That is to say
we can treat »(r) as if it were a constant function. So equation (4)
with £(x) = 0 becomes the basic representation of cables in the voice
band.

The function 5 (x) has the form

7(x) = V' —1 2xfe(x),
where c(z) is the distributed capacitance unbalance. In an idealized
situation where only two pairs are present, let 1/, 1” and 2’, 2” denote
the wires in the first and second pairs, respectively; then we have from
Ref. 1,

e(@) & tevo (@) — o (1) + €002 () — €20y ()]

At voice frequencies the numerical values of a cable chain matrix can
be obtained if the values of T, Z, , and [% ¢(x) dr are known. For quality
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assurance, Western Electric undertakes a bridge measurement of
| /% ¢(z) dz | for various pair combinations in the cables that it manu-
factures. Thus we have the data necessary to compute these chain
matrices at voice frequencies.

Another important reason for beginning with the simulation of voice
plant is that there are several systems engineering studies for which
voice plant crosstalk data is an essential ingredient. For example, the
comparison of unigauge plant with existing plant, determining gain
limitations for station sets, and evaluating the performance of PBX
trunk ecircuits are some of the topics of interest where crosstalk per-
formance, particularly near-end crosstalk performance, is important.

To test the program two 3000-foot sections of cable and a bank of
load coils were measured for unbalance of capacitance and inductance
respectively. The cables were spliced together first with and then with-
out the load coils at the splice. The near-end crosstalk distributions
were measured in both cases. The unbalance data along with the nomi-
nal values of primary constants for the cables and coils were fed to
the program. Figures 3 and 4 depict the success of the simulation.

In most systems engineering studies, a cable’s behavior is evaluated

60
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Fig. 3—Comparison of measured and computed distributions of 1-kHz within
unit (25 pair) near-end crosstalk on 6065 feet of 26-gauge polyethylene cable
(loaded, 600 © termination). (On normal probability paper.)
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Fig. 4—Comparison of measured and computed distributions of 1-kHz within
unit (25 pair) near-end crosstalk on 6065 feet of 26-gauge polyethylene cable
(non-loaded, 600 @ termination). (On normal probability paper.)

from a combination of nominally specified transmission constants and
empirically derived crosstalk estimates, We are striving to utilize more
of a cable’s inherent communication eapacity and so a more detailed
description of cable crosstalk behavior is needed. By modeling the
stochastic nature of cable crosstalk we get a pertinent refinement of
the crosstalk evaluation capability. In this section we indicate the
reason why crosstalk should be treated stochastically. We give a
heuristic technique for simulating this stochastic behavior at voice
frequencies.

For convenience we order the array of pair-to-pair capacitance
unbalances | [% ¢;;(x) dv;7 = 2,3, -+, n, 1 < j} to form a vector C(L).
We have limited ¢ < j sinece ¢,;(x) = ¢;.(z). Ample Western Electric
quality assurance data on capacitance unbalance are on file. Data are
available on all types of cables from all Western cable manufacturing
plants going back many years.

To provide a voice plant crosstalk simulation eapability we need
data on C(L) for all the kinds of cable involved in the outside plant.
The information concerning a cable that is usually available to the
systems engineer is the pair size, gauge, mutual capacitance, insulation,
and length. A review of quality assurance capacitance unbalance data
shows that the values of C(L) for cables meeting the same nominal
specification are not identical. Thus we see the need to treat C(L) as a
stochastic process C(L, w) where w indexes the sample space Q.
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Next we discuss how representative quality assurance data were
selected for simulation purposes.

The vector C(L, «) has signs associated with its components as will
be explained in the next section. The quality assurance samples of
C(L, w) are unsigned. Some special measurements on signed values
of C(I,, w) were made and it was concluded that C(L, w) could be as-
sumed to have mean 0. For simulation purposes the quality assurance
data were randomly signed with equal probability of being positive or
negative. (Thus we are implicitly assuming that the components of
C(L, w) are symmetrically distributed. This assumption is consistent
with the detailed model of capacitance unbalance in the sequel. Of
course the accuracy of the simulation ultimately tests our assumptions.)

Another shortcoming of the quality assurance data is that for cable
units in excess of 25 pairs a biased sampling of the capacitance un-
balance values is taken. Only certain pair combinations that are prone
to high capacitance unbalance are measured. So the data needed for
simulation are incomplete. Techniques ean be developed for determin-
ing the parameters of the true distributions from the biased samples.
Because of the difficulty involved with such techniques it was decided
to approximate units of 50 and 100 pairs as combinations of 25-pair
units. Because of this approximation the pair combinations prone to
high crosstalk loss are not correctly modeled. This is of no conse-
quence since it is the distribution of the values of low crosstalk loss
that we seek. The degree of success of a simulation of one of the field
experiments on in-place cables in Seranton, Pennsylvania, is depicted
by Fig. 5. Finally, to use the data, the individual capacitance values
are adjusted for length according to a square-root correction factor.
The square-root correction factor is well known; it has been verified
experimentally and will be discussed further in the next section.

For each type of cable seveial capacitance unbalance matrices are
necessary since several sections of a single type of cable may be used
in one system. Capacitance unbalance data on 19-, 22-) 24-, and 26-
gauge pulp insulated cable and 22-, 24-, and 26-gauge PIC cable were
obtained. The data spanned a l-year period at the Western Electric
Plant in Hawthorne, Illinois, and at least 25 reels of each type of cable
were represented in the data. The annual interval is particularly sig-
nificant for pulp data since the eapacitance unbalance is sensitive to
the humidity at the time of manufacture. An analysis of the data
substantiated the view that the pulp capacitance unbalance is not a
funetion of gauge.

To use a square-root length correction on the data means that, given
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Fig. 5—Comparison of measured and computed 1-kHz within unit (50 pair)
near-end crosstalk on 2800 feet of 22-gauge pulp cable (600 Q termination). Two
19-gauge, 25-pair pulp units were used in the computer simulation of the 50-pair
unit. (On normal probability paper.)

a sample C(L, w), to get a sample of C(/, w) we multiply C(L, w) by
V'l/L. As we mentioned, the data was randomly signed and a pulp,
PIC distinction was maintained while a gauge distinction within pulp
was not acknowledged. The problem remained of providing separate
sequences of capacitance tables for pulp and for PIC cables. The
problem was resolved differently for pulp than for PIC. In both cases
a distribution, called a universal distribution, was constructed by pooling
accumulated data from over 25 cables. For pulp a typical cable was
modeled by using a set of 300 pair-to-pair capacitance unbalance values
whose distribution matched the universal distribution. Numerous
shuffled copies of the list of 300 values were prepared to enable modeling
of randomly spliced pulp sections. Since PIC is spliced color to color
the procedure used to represent pulp was not valid for PIC. For each
PIC gauge the tables were sequenced to give the most representative
distributions priority in selecting tables for a simulation study. In
comparing the individual distributions to the universal distribution
particular emphasis was given to the fit of the high capacitance tail.
The simulation scheme provides for placing the most representative
distributions at the near end in order to assure the most representative
estimates of near-end crosstallk.
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The formulas used for NEXT and FEXT were obtained as follows.
Let {T:)}i=1,2, --- , k represent the chain matrices of k subsystems
ordered so that Ty is at what we shall arbitrarily call the near end
and T} is at the far end. Thus the terminal behavior of the system is
described by T = TyTiy -+ Ty . Letn = (n, 2, -+, n) bea
veetor such that »; is the coupling in the ith subsystem. Recall that the
A, B, C, and D submatrices of T; contain 7; in the off-diagonal posi-
tions only. Neglecting quadratic terms and higher in the »; variables
we obtain

a, a b, b,
T~ a. a, by b A
C1 Ca dl dz
C: Co d? dl
i [r v
i=1 Ci')I dﬁ')I
k i—-1 (m) (m) (i) (i) k (m) (m)
a™l ™I |a:"d BT a,™ I ™I
+Em[H i | -
i=1 m=1 CEm)I d{m)I C;”J dél’)J m=1+] c:mlI d](_m)I

Let us assume that the near end is terminated in an impedance zg and
that the far end is terminated in an impedance zg . Using the boundary
conditions we obtain

r 1 N r 1 3
FEXT NEXT
1 V-1
(L) Z_n =T 2
FEXT —NEXT
L. 2 L 25 J

Solving and neglecting quadratic terms in the variable with a subscript 2
we obtain

~ by — zgds _ RsQy — bs — cazs?p + dzzn]
NEXT ~ [bl — zady  2s5@; — b, — €252 + dize

and

XT% 7 — — byt — _zsag_ bg —'szszn—f—dzz‘?]
FE [(ald sz] b.c blcz) 250; — bl — C2s2R + dlzR .
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If the system does not contain bridged taps then the parenthetic term in
the expression for FEXT can be neglected. Since we have neglected
higher order terms both NEXT and FEXT are linear in n. We are led
to introduce N and F such that

NEXT = (n, N) and
FEXT = (n, F).

In our simulation studies the system deseription yields the information
necessary to determine N and F and the sample space of n. We randomly
select enough n vectors and form the scalar products to determine the
statistics of NEXT and FEXT.

V. THE STOCHASTIC NATURE OF A CABLE AND OPTIMAL TWIST
LENGTH SELECTION

In the previous section it was mentioned that the nominal specifica-
tion of a cable leaves its behavior somewhat uncertain. It followed
that the class of eables that meet a nominal specification has different
chain matrix representations. Here we present a model for this stochas-
tic behavior of the chain matrices. Specifically we deal only with the
coupling terms in these matrices and the other terms are assumed to
be constants.*

A Gaussian process X (t, o) with zero mean and covariance k* X
min (¢, , £2) is called a Brownian Motion or Wiener Process. If X (0,
) = 0 with probability one the process is said to be centered.

The process was first used to model the motion of a particle in a
fluid where X (¢, ») is one of the displacement coordinates after time ¢
and o indexes over all particles. The number k is called the diffusion
constant. This constant is a measure of the tendency of a particle to
stray from its initial position.

In what follows we shall coneentrate on capacitance but analogous
statements are to be applied to inductance as well. Let ¢;;(x, ») represent
the capacitance coupling function between pair ¢ and pair j. Let C;;(z, »)
represent the accumulated capacitance, that is, let

Cii(r,w) = j: ¢;;(§, w) dE.

* The model we present is intended for standard PIC and pulp cable designs
and should not be applied to highly precision engineered cables wherein de-
terminism would play a more significant role than we allow here.
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Here w indexes over all realizations of a cable of a particular type. We
shall model the accumulated capacitance unbalance C;;(z, w) by treating
it as a sample function of a Brownian Motion process. This is an approxi-
mation that was reached after considering the manufacturing process
and after reviewing quality assurance records on accumulated capaci-
tance unbalance data. The model is in agreement with the empirically
established correction of a 10-dB translation of FEXT distributions for
a tenfold increase in cable length.

In our application, distance plays the role of time. Therefore, the
coupling terms in the cable matrix can be viewed as stochastic integrals
of the form [% H(z) dC(x, w). When [} ¢(z, ») dx is a Brownian Motion
process the stochastic integral* is called a linearly conditioned Brownian
Motion process. The matrix of stochastic integrals is a multivariate,
centered, linearly eonditioned Brownian Motion process.

The capacitance unbalance function ¢;;(z, w) represents an effective
distributed capacitance. It is a mathematically simple idealization
which attempts to include the effects of all the capacitive coupling
between pair ¢ and pair j. The strongest contribution to this coupling
funetion is believed to arise from the capacitances between each wire of
pair 7 and each wire of pair j. The net effect of these four capacitances
is expressed as a difference of nearly equal quantities. This difference
can be positive or negative at z depending on the geometric relationship
of the pairs at x. The pairs are twisted with different twist lengths in an
attempt to cause the coupling capacitance to be positive as much as it
is negative.

Presently available data is in the form of samples of | [§ e(x, w) dz |
where only one value of L is associated with each w. This provides no
information pertaining to the covariance of c(z, w) and so we make an
assumption. Pair twist lengths are short (a few inches long) in compari-
son with the cable lengths of interest (thousands of feet). Thus in the
light of our previous statements, it is reasonable to suggest that ¢(z, )
be modeled as having a delta function covariance and this assumption
is consistent with the Brownian motion model. From equation (5) we
see that the coupling interacts with hyperbolic funetions of I'r so that
the assumption of a delta function covariance is most reasonable at
voice frequencies where for the cables of interest the wavelengths are
of the order of at least tens of miles.

There are many reasons to suspect that the capacitance unbalance
function is an extremely irregular function when considered over thou-

R*fFor a treatment of Brownian Motion and the stochastic integral concept see
ef. 5.
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sands of feet. There are random disturbances that can change the
function drastically over inches. For example, the vibrations of the cable
manufacturing machinery, impurities or eccentricities in the insulation,
tertiary coupling paths, slipping of the twist, etc. Furthermore the twist
lengths are not precisely maintained. Thus, for eable lengths of interest
(a thousand feet or so), it is quite reasonable to treat [§ c:;(¢, w) df
stochastically.

We are assuming that Var C;;(r, ©) = k},z, where k,; is a constant
and z is the cable length. If we let C(x, w) denote the random variable
whose sample space is all pairs in cables of a particular type then
Var C(z, ») is simply the average of the individual variances, that is,

;
Var C(z, w) = W QEEC n)/2§k

So by pooling data on accumulated capacitance for all the different ¢, j

combinations the data should still exhibit a variance which is linear

with length.

Following the work reported here W. N. Bell has explored the accuracy
and effectiveness of this Brownian motion model utilizing factory data.
His conclusions (unpublished) are positive. Extensive data at two
different lengths verified the linear dependence of Var C(z, ) with
length [Var C(0, w) = 0 at the third point]. Thus the use of the /L
correction of the data that was mentioned previously is indicated.
The C(x, w) are shown to be normal in the tails while in the neighborhood
of the mean (0) the density is lower than normal and this is compensated
for by an excess at zero. The departure from normality may be due to
the measurement technique but the departure is unimportant since
tail behavior is what concerns us. Furthermore if there really is an
excess of zero capitances unbalances then the Brownian motion model
is a slightly pessimistic one and hence useful in bounding system
performance.

The diffusion constant k;; appears to be an excellent way to express
the capacitance unbalance of the pair combination. Furthermore, maxi-
mum;; ki; is a good measure of the capacitance unbalance of a cable.
A statistical analysis of the quality assurance data reveals the rela-
tionship between ky; and the twist lengths of pair ¢ and pair j (¢; and
t;). The uncovering of this relationship provides a basis for optimal
twist length selection. To demonstrate this idea W. N. Bell used
quality assurance data on 145 25-pair PIC cable units to estimate the
diffusion constants for the neighboring pair combinations. As sus-
pected, the data revealed a strong relationship between the diffusion
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constants and eable geometry. An extensive statistical analysis of this
relationship was undertaken by A. K. Jain who determined that the
formula

R tﬂ.ﬁzt(?.(52 2
ki;L = [0.090 X ﬁ“lﬁa:l L (t: = 1)

(ki; has dimensions of pf/(ft)*.)
explained 79 percent of the total variation in the data. Besides estab-
lishing the relationship between the cable geometry and crosstalk
performance, statistical analysis also provides an alternate means for
simulating eapacitance unbalance distributions for standard PIC and
pulp cable designs.

Ag in the motion of particles in a liquid the mathematical model of
Brownian motion is an approximation of the physical situation that
must be applied diseriminately. We stress this point since the con-
tinuity of c;(r, ») was used to solve the differential equations that
lead to the chain matrix while the mathematical model of Brownian
motion does not account for this continuity. Thus while ¢;; (z, ») is suf-
ficiently irregular so as to model its integral as Brownian Motion, it
is smooth enough to be called continuous when expressing the physieal
laws that a eable must obey.

The inductance unbalance process ([% [;;(x, ») dx) has not been
studied. A small appreeciation for how the inductance unbalance relates
to the capacitance unbalance enables us to speculate that it is also a
Brownian Motion process that is correlated with the capacitance
process. Since both forms of unbalance derive from the cable geometry,
it is reasonable to attempt to relate these unbalances. In our simulation
program we neglect induetance unbalance since this neglect causes
negligible error at voice frequencies. The frequency at which inductance
unbalanee causes an appreciable contribution to crosstalk remains to be
determined.

A computer simulation of Seranton, Pennsylvania, field measure-
ments of far-end crosstalk was made. In this case the distribution tails
were nearly reproduced up to 775 kHz. At the higher frequencies it
appears that the inductance unbalance is the cause of the departure
between the measured and computed tails (see Fig. 6). Another simula-
tion was made of three sets of factory far-end crosstalk measurements
(3.15 MHz). In each case the computed tails were about 5 dB different
from the measured tails due to inductance unbalance (see Fig. 7 where
one of these eases is depicted). Figures 6 and 7 do indicate a significant
correlation between 1 kHz capacitance unbalance and the erosstalk at
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Fig. 6—Comparison of measured and computed distribution tails of within
unit (50 pair) far-end crosstalk. The system is 2702 feet long, it has 4 splices, and
is composed of 22-gauge pulp cable. The measured tails are based on measure-
ments of in-place cable in Scranton, Pennsylvania. The computed tails are based
on a random selection of 1-kHz factory capacitance unbalance data. (On normal
probability paper.)

higher frequencies. In conclusion it seems that voice-frequency capac-
itance data ecan be used as a basis for simulating the erosstalk perform-
ance of a system up to at least the high kHz frequency range.

We are now in a position to give an abstract definition of the outside
plant. Let L index over [0, ). Let (2, @, p) be a probability space.
By an outside plant subsystem we mean any 2n X 2n complex matrix
stochastic process X () of the form

< 7
0 /
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J
a5 /
m
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4 2+
I
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g /
il 0.1 /
o 1 1 ]
30 40 50 60 70
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Fig. 7—Comparison of measured and computed distribution tails of 3.15-MHz
within unit (50 pair) far-end crosstalk on 1000 feet of 22-gauge pulp cable. The
computed distribution is based on 1-kHz capacitance unbalance data. (On normal
probability paper.)
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a(L)I b(L)
(L)l a(L)]

where (2'2) 2®)) is the chain matrix characterization of a physically
realizable, linear, passive, bilateral, symmetric two port and Y (L, w)
has a multivariate Gaussian distribution with mean 0. Let x denote an
independent set of all such X,(w). Let X° and X" belong to x. By
X*-X* we mean the ordinary matrix produet with the ¢ term neglected.
Since the product of 2 X 2 symmetric matrices with determinant one
is again a symmetric matrix with determinant one and sinee the sum of
independent Gaussian matrices with mean zero is again a Gaussian
matrix with mean zero it follows that x is closed under this multiplica-
tion. We note that x clearly contains the identity matrix and that the
multiplication we have defined is associative. A collection of elements
closed under an associative multiplication rule and containing the
multiplicative identity element is ealled a semigroup. Our definition of x
is a bit too general so we present the characters of interest: the cables,

the bridged taps, and the load coils.

Xi(w) = (I + eY(L, w)),

Cable Representation

Equation (5) defines the cable. The integrals involving capacitance
and inductance unbalance are to be considered as stochastic integrals
with respect to the Brownian motion process. The statistics of the
capacitance portion of the cable process are known if the statistics of
the matrix (J% ¢.;(z, ») dx) are known. Recall the way the stochastie
integral was defined. The cable matrix has mean

{ cosh TLI —z,sinh T'LI
—z5'sinh TLI  cosh TLI

The dispersion matrix involves terms of the form

[} @) +3@IED 4y
o B Im,ra »

-

where ¢(r) and (x) are deterministic hyperbolic functions of the
primary constants and

- E{[f: dCn(z, @) fOL dC.(z, w)}}

which can be determined from capacitance unbalance data.
Given T, Zy, f, and capacitance unbalance data the chain matrix
can be sampled. For example, to get a sample of
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L
—eZ, f sinh 2Tz 7., (z, @) dz
0

merely multiply the sample of [} ¢;;(z, @) dz by

2| 9, 2 L T o
o - %[ sinh 2Tz sinh 2Tz dz.
0

This follows from the fact that if X(w) is normally distributed with
mean zero and variance V and © is a constant then 86X (w) is normally
distributed with mean zero and variance | © |V and from the definition
of stochastic integral.

The Representation of a Cable in the
Open Bridged Tap Arrangement

Let (4 5) be a cable matrix. By the representation of an open-
circuited bridged tap we mean the first two terms in the power series
in e for (45 9.

The Representation of a Load Coil

By the representation of a load coil we mean the random matrix

[14+(R+i2rf L)(G+2xfCY T —(R+22xfL)I
— (G427 fC)R—i2xf L) (G+2rfC)+2]I [14 (R+22xfL)(G4127fC)] 1
r O ']
Mii(‘”)
o 0
M)
—V —1 2xnf 0 1
0
0 M ;i(w)
) O
LM n(“’) ' 0

where M ,; is Gaussian with mean zero.
Let X(w) = (¢ 2) (I + €Y {w)) be a system. Let Vs and V, denote
voltage stimuli and let vg and vy denote voltage responses. Let

(ySI ] ySZJ Tty ySn)‘ = YS ﬂ.nd (le ] yRZ y T an)l = YR denOte t'he
vector terminal admittances. The basic relation is

Vr

(Ve — Vi)', ¥&)

Vs

(Vs — Vs)‘, ¥s)

= X(w)[
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For e sufficiently small we can solve for the random variables v, and vs .
It is easy to show that these random variables are asymptotic to a
multivariate normal distribution as e tends to zero.

Consider the problem of characterizing the near-end crosstalk per-
formance of a certain loop. Here Vi, = 0, Vg = (0,0, --- 0,2,0, --- 0)'
where the 2 is in the 7th position. v, , Vg2, === , Vri—1) s VRGi+n) 5 " ** » URn
are the far-end crosstalks and vg,, vs2, *** , Usciot) » Uscisty » " * 5 Usn
are the near-end crosstalks. There is a set of these random variables
for each 7. For each wef) there corresponds a distribution of near-end and
far-end crosstalk. The set of all these distributions characterize the
crosstalk behavior of the system. We illustrate the stochastic nature of
systems. To accomplish this, capacitance unbalance data on nine
22-ganuge PIC cables was selected at random from Western Electric’s
cable manufacturing plant at Hawthorne, Illinois. In an unbiased
manner, this data was used to simulate three 9-kft systems having
two splices each. The three far-end crosstalk distributions are shown in
Fig. 8. There were only twenty-five pairs in this system. Apparently,
as the number of splices and/or the number of pairs is increased the
distributions of different realizations of the same system tend to look
more and more alike. Further study of the implication of the stochastic
nature of outside plant systems is needed.

VI. CONCLUSIONS

A mathematical model of outside plant wire pair cable systems that
includes crosstalk is given. The voice-frequency version of the model
has been used to develop a computer simulation eapability. It appears
that this simulation capability can be extended to at least high kHz
frequencies. Quality assurance data is the key to this simulation effort.
This same data can be used to provide the basis for optimal twist
length selection.
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Tig. 8—Three separate realizations of the 1-kHz near-end crosstalk distribu-
tion of a nominally specified system. The nominal specification is a 25-pair, 22-
gauge PIC system which is composed of three 3000-foot sections. The termina-
tions are 600 ©. (On normal probability paper.)
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APPENDIX

We shall give a detailed proof that NEXT(i, j) and NEXT(i, j) are
asymptotically equivalent. In what follows we shall lose no generality
by assuming that ¢ = 1 and j = 2. The solution to equation (2) is
given by

T('E) = exp li“— [0 ZI] ,1',:}-
yl 0

T
¢ exp [+[0 ZI]g
yl 0

0 =@
c® 0

Q2 exp

0 2|, |
yl 0] J] (6)

L
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(See Ref. 7 for the definition and basic properties of Q5(-) and the
proof that (6) is the solution. Equation (6) offers another method from
which equations (4) and (5) can be obtained.) Because of the way e
appears in Q5(-) and because Q7(-) converges we can view 25(-) and
hence T'(z) as a convergent power series in e, From elementary con-
siderations it can be shown that

0 sl cosh TLT —2zpsinh QLI
yl[ 0 - sinh LI cosh T'LT
0

For the manipulations we shall do here it will be convenient to partition
T'(e) into square matrices, namely,

A 4B) . (AL 2B
T(e) = g D’ = ; E' g D’ .
2 2 !

We are now prepared to determine the relation between NEXT(1, 2)
and NEXT(1, 2). Note we have

( (0]
v(L) vo)) |o
2o 2o 2

y L0 J

It will suffice to deal with (7) which we can rewrite as
V
(A" + D' — (B + Cw©) = (' — B)| Y-
0
Since lim,,, (D' — B’) = e¢""I is nonsingular, we conclude that for e

sufficiently small, say ¢ < ¢, , the matrix (D’ — B’) is nonsingular.
Thus for € < ¢ , we can write
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I+ D = B) (A" = C")(0) =
0
Now lim,, (I + (D' — B’)™'(4" — (")) = 2I thus for e sufficiently

small, say ¢ < min (¢ , &) Wwe can write

Vv
’ n-1 7 ny—1 0
00 = [+ (D' —B)Y (A" =) | |
0
Since D’ and B’ are convergent power series, we can write

D' — B’ =" [I 4 e ""[(Di — B}) + (D — B:) + ---])].

Thus for e sufficiently small, say ¢ < min(e; , e, es) the inversion of
D’ — B’ is essentially the inversion of the identity plus an operator
small enough to permit the Neumann inversion, see Ref. 8. Hence

(I + (D' = B (A" =€)
=T+ " — e (DI —B) + )
+ (D= B)+ )+ )
" (I 4 ee TH(AL — O + €T (AL —C) + --0)
= 2] — e "5(D — Bl + Al — C) + 0().

Once again if we assume that e is sufficiently small, say ¢ <
min (e, , €, € , &) we can use the Neumann inversion to obtain

Vv

§O) = 3T + 2L+ DL~ B - C) 0@ 0 ®

0
Now we note that (8) can be viewed as a 2n X 2n system resulting
from (7) or a 2 X 2 system corresponding to (6), in the latter case, all
quantities needed to be hatted. Evidently lim.., V(e) = 2. Since

A7, Dy, By, and (] are merely the 2 X 2 upper right-hand corner
submatrices in A/, D!, B!, and C} it follows from (8) that the power
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series expressions for NEXT(i, j) and NEXT(i, j) have identical
coefficients of ¢, (but not of €', n = 2). Thus NEXT(7, j) and NEXT(i, j)

are asymptotically equivalent.
An analogous proof goes through for FEXT(i, j) and FEXT(, 7).
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