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Performance of a System of Mutually
Synchronized Clocks
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(Manuseript received March 18, 1971)

This paper is concerned with mulual sychronization—a scheme for
synchronizing a nationwide network of clocks for an integrated digital
transmission and switching communications system. Described is an
approach to the problem of determining values for the design parameters
of a one-sided, linear phase averaging scheme with no filters. Two different
sets of performance objectives are considered. The primary results concern
the bounds which the effects of delay change force on the paramelers which
describe the inherent clock stability. Specifically, if a performance objective
18 no slips, and a limil is imposed on the amount of buffer storage, then
an wpper bound is forced on the allowable random drift in the free-running
frequencies of the clocks. Alternatively, if an objective is that the slip rate
not evceed some specified rate, again with a limited buffer size, then an
upper bound is foreed on the rale of random drift. Both bounds depend
on the network configuration with the so called “dumbbell” configuration
representing the worst case. A numerical example is included.

I. INTRODUCTION

This paper is concerned with mutual synchronization—a scheme for
synchronizing a nationwide network of clocks for an integrated digital
transmission and switching communication system. The clock at a
switehing eenter in suech a system determines the rate of flow of data
bits through the switch and to the output links. Buffer stores ecan
make allowances for small, temporary differences in the received rate
(determined by a distant clock and delay change) and the local switch
clock rate. However, if a frequency difference persists then a buffer
will oceasionally overflow (or underflow) causing deletion (or repeti-
tion) of data bits from the output stream. Either such error is referred
to as a slip. In this paper a synehronous network is one in which there
are either no slips or, alternatively, in which the slip rate does not
exceed some given rate,

Mutual synchronization was conceived about 10 years ago® as an
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alternative to a master-slave synchronous timekeeping plan for large
telephone networks. This new plan aimed at eliminating the possible
need to reorganize a master-slave network in the event of failure of
a timing link or the master clock. Previous analyses have been largely
concerned with questions of stability,? equilibrium frequency,® dynamic
response,*® and control strategies.®

Questions relating to the system’s ability to meet specific perform-
ance objectives, e.g., no slips, have been largely ignored. It has been
noted that since changes in phase differences between clocks remain
finite, sufficiently large buffers could be placed in each communications
link to avoid such slips. However, the relationships between required
buffer size and clock stability, delay changes, network configuration,
and control parameters have not been established. It is to this question
that this paper is addressed. A simple control strategy is considered,
viz., one-sided, linear phase averaging with no filters. Two different
sets of performance objectives are considered and the results are ex-
pressed as bounds which are forced on parameters which describe the
inherent clock stability. A statement of these performance objectives
and a description of the network model follow.

II. ALTERNATIVE PERFORMANCE OBJECTIVES

2.1 Performance Objective #1

Let a performance objective be no slips. Assume, also, a given
amount of buffer storage (of sufficient size to account at least for
changes in link delay). As an additional objective, the variation of
system frequency (i.e., that common frequency at which all clocks
operate in equilibrium) must not exceed the bandwidth limitations of
transmission and switching equipment (which might typically be of
the order of one part in 10°). To meet the first objective, changes in
phase difference between any pair of clocks must not exceed a given
value. Due to the effect of delay change on clock phase and system
frequency, this requirement will be seen to force an upper bound on
the allowable random drift in a clock’s free-running frequency (i.e.,
that frequency at which it would operate in the absence of a control
input). The second objective forces an upper bound on the allowable
total drift of a clock’s free-running frequency.

2.2 Performance Objective #2
As an alternative, suppose slips are permitted to occur but at no
more than a given rate. In addition, assume the same objective, as in
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Section 2.1, on variations of system frequency. Again, a given amount
of buffer storage is assumed. In this case frequency differences between
pairs of clocks (that persist long enough for several slips to actually
oceur) must not exceed some preset value. This value will depend on
the slip rate requirement and the amount of buffer storage and might
typically be of the order of one part in 10°. Due to the effects of delay
change, this requirement will be seen to forece an upper bound on the
allowable rate of random drift of any clock’s free-running frequency.

Changes in equilibrium phase differences oceur as a result of changes
in the free-running frequencies of the clocks or the transmission delays
between clocks. Frequency differences between pairs of clocks are
nonequilibrium effects which occur while the free running frequencies
or the transmission delays are changing. The magnitude of both these
effects depends eritically upon the network configuration. The “dumb-
bell” configuration, consisting of two equal size groups of mutually
synchronized clocks with full interconnection within a group but only
a single intergroup link (Fig. 1), appears to represent the worst case.

It is assumed that performance objectives must be met without
knowledge of network configuration; specifically, all elocks and timing
links are to be considered “equal,” regardless of their location in the
network. Design parameters are determined, then, so that objectives
are met in the dumbbell configuration.

III. CONTROL MODEL

In one-sided phase averaging the frequency of each office clock is
controlled by an average of the observed phases of signals received
from distant clocks, as measured with reference to the phase of the
local clock. The frequeney of each clock responds then to both a change

REGION L REGION R

Fig. 1—Dumbbell configuration.
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in the phase of a distant clock and to a change in the transmission
delay from a distant clock. (Two-sided controls, in which the results
of phase comparisons are transmitted back, on a special data link, to
control the distant clocks, can eliminate the effect of delay on fre-
quency.®®) The general control equation is

N
f:() = F(t) + K Z aii{plt — (0] — pi(t) + ¢} (1)
i=1
In this equation: N is the number of clocks; f; is the frequency of the
ith clock; F; is the free-running frequency of the same clock (fre-
quency in the absence of a control input); K; is a control gain with
the dimensions of reciprocal time; ay; are averaging coefficients such
that

N
al-,-;o, Za,-,-=1 1:=1,2,“',N;
i=1
p; is the phase of the ith clock, related to frequency by
api _ ¢ .
a =T

7y 18 the transmission delay encountered by a pulse arriving at the ith
office, from the jth, at time t; and ¢;, is a reference phase whose value
depends upon initial conditions.

IV. SYSTEM FREQUENCY

Previous studies® have shown that if the system parameters remain
constant and there exists at least one clock which distributes timing
control to every other clock (either directly or indirectly via some
intermediate clocks) then the system will asymptotically approach an
equilibrium state in which all clocks run at a common frequency—
called the system frequency. Under these conditions the system equa-
tions ean be solved algebraically for the system frequency; the re-
sult is?

N N
2 b‘.(F‘- + K. 2 a,.,.¢,.,.)
Z b.-(1 + K; E a-‘i"-‘i)

i=1

f 2)

where the weighting coefficients b; depend upon the gains and the
averaging coefficients. In the general case b; is the cofactor of any
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element in the ith row of the matrix K(I-4), where K is the diagonal
matrix with diagonal elements K; | I is the identity matrix, and A is the
matrix of the averaging coefficients a;; . The proof of these results is
found in Ref. 3.

The effects of delay change and free-running frequency drift on
the system frequency will be considered separately, allotting to each
one-half the maximum-allowable variation.

V. EFFECTS OF DELAY CHANGE ON SYSTEM FREQUENCY (BOUND
ON GAIN)

To obtain some feel for the effects of delay change on the system
frequency consider first a network of two clocks with equal control
gains and suppose that the transmission delay between them increases
by an amount Ar. By symmetry each clock is subjected to the same
influence and, hence, signals will arrive Ar seconds later at both
clocks. The corresponding change in both observed phases is, then,
fr — (f + af) (= + ar) = —(fAr + 7Af), where Af is the (as yet
undetermined) change in the system frequency. But this change is
equal to the gain K times change in observed phase; hence,

—KfAr
1+ Kr

To estimate the effects of delay changes in a more general network
suppose that all gains K; are equal and that identical delay changes
Az occur on all links at the same time. The above reasoning, with the
identical conclusion, applies also to this case as may be verified from
equation (2). That is, with K; = K and ;; = 7,

Af =

. > 0P + K9)
I+ A =17 K+ an _}Eb; '
ifrom which
~ —Kjar _ Kr A7
MR R, 1+Krf

Since the fractional change in delay, Ar/7, is typically several orders
of magnitude greater than the allowable fractional change in f, it
follows that K must be chosen so that K+ is much less than unity;
hence, neglecting the sign of the change,
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Af =~ KfAr. (3)

If the maximum allowable variation of system frequency (due to delay
change) is $Af, , then K must satisfy the upper bound

1 AL
KgK.=2ATaI—, )

where Ar, is the maximum delay change (assumed to occur at the
same time on all links) and f, is the nominal system frequency. This
is one of two upper bounds on the gain which will lead to an upper
bound on either the total random drift or rate of random drift in a
clock’s free-running frequency.

VI. EFFECT OF CLOCK DRIFT ON SYSTEM FREQUENCY

With K+ < 1, the change in the system frequency is, approximately,

h,AF,
Af = ST
Thus, if the drifts are systematic, i.e., all in the same direction, then
(assuming a simple average over N clocks) each clock must have the
property that its total free-running frequency drift does not exceed
the allotted variation in the system frequency (i.e., 3Af,). If, however,
the drifts are not correlated then the standard deviation of the system
frequency is (again assuming a simple average over N clocks) in-
versely proportional to the square root of the number of elocks. In this
case the allowed drift can, for large networks, be somewhat greater
than 1Af, .

VII. DUMBBELL CONFIGURATION

The magnitude of the effects of delay and clock drift on the phase
and frequency differences between pairs of clocks, unlike their effects
on system frequency, depends critically upon the network configura-
tion. The “dumbbell” configuration, illustrated in Fig. 1, appears to
represent the worst case. In this configuration the N offices are divided
into two equal groups, with a direct timing link from every clock to
every other clock in the same group, but only one timing link (the
bar of the dumbbell) connecting one group to the other. In this con-
figuration changes in the free-running frequencies or the delays can
force a relatively large change in the phase difference between clocks
in opposite halves. An intuitive feeling for such an effect may be
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obtained by supposing that each bar cloeck has but one “vote” out
of N/2 in determining the common frequency of the clocks in its half
of the dumbbell, while signals on the bar link have but one of N/2
votes in determining the frequency of a bar clock. On this basis one
might guess then that a given change A¢ in the phase difference be-
tween the bar clocks would tend to produce a change of magnitude
K/(N/2)* |A¢| in the common frequency of the clocks in each half
(one half up, the other down). Assuming this to be true, suppose then
that all the delays in one half should inerease by an amount Ar, thus
tending to decrease the frequency of the clocks in that half by Kfar
[equation (3)], while the opposite occurs in the other half. By sym-
metry the system frequency will not change. Hence, to compensate
for the tendency of each half to change frequency by an amount
=KfAr, the phase change A¢ must be such that

K .
(N/‘Z)g | ¢ | = Kfar, or

N*®
1 I Ar].

| A¢ | =

This result will be formally verified below. The dumbbell is not the
only configuration which ean give rise to the factor N*. For example,
the phase difference between the end clocks in a bilateral chain also
grows, under similar conditions, as the square of the number of elocks.
However, the dumbbell is worse in the sense that this dependence on
network size holds for any two clocks in opposite halves.

The conclusions pertaining to the dumbbell configuration are based
on the following assumptions:

(7)) The gain K, at each clock has the same value K.

(77) Bach control link (shown in Fig. 1) is assigned the same weight;
hence, for N/2 > 1, all (nonzero) a,, are approximately equal
to 2/N.

(7i7) The delays on all links within region R and within region L
(see I'ig. 1) are approximately equal, respectively, to 7 and 7,
and the difference | 7, — 7, | changes at a constant rate 7, for
{; seconds. The maximum change Ar, persists for {,, seconds
at which point the difference returns to its original value (Fig. 2).
Such a situation might reflect an effect of a cold front moving
successively through the two regions.

(fv) The free-running frequency of each clock drifts at a constant
rate of +=F for {; seconds, with the maximum drift +AF per-
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Fig. 2—Response of dumbell to delay change.

sisting for {5 » seconds. The drifts are uncorrelated and hence the
standard deviation of the difference | Fr — F, | of the numerical
averages of the free-running frequencies in each half grows at a
rate 2F/4/N up to maximum change of 2AF/ V/'N.

To gain some insight into the results to be presented, the effects of
a step change in delay will be considered first. Thus, suppose that the
delay on each link within region B suddenly increases by an amount
Ar, while the opposite occurs on each link within region L—with no
change in the bar-link delay. By symmetry there will be no change in
the system frequency nor in the phase differences betwden any pair
of clocks both within region R or both within region L (Note: R and L
excludes the bar clock). Consider then, any one of the clocks within

region R; the following statements apply:

(1) Signals from each of the other (N/2 — 2) clocks within R arrive
later by an amount Ar, thus tending to make this clock run
slower.

(i7) To balance this tendeney, signals from bar clock #2 must arrive
earlier by an amount (N/2 — 2)Ar; i.e., the phase of bar clock
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#2 must advance with respect to that of each clock within R
by an amount (N/2 — 1)fAr.

Next consider bar clock #2; the following statements apply:

(7) Signals from each of the (N/2 — 1) clocks within R arrive later
by an amount (N/2)Ar, thus tending to make this clock run
slower.

(#7) To balance this tendency, the signal from bar clock #1 must,
then, arrive earlier by an amount (N/2 — 1)(N/2)Ar, i.e., the
phase of bar clock #1 must advance with respect to that of bar
clock #2 by approximately (N°/4)fAr as suggested above.

An estimate of the time required to reach equilibrium may be ob-
tained by noting that the initial effect of the step change is to decrease
the frequency of bar clock #2 by Kf,Ar and to increase that of bar
clock #1 by the same amount—resulting in an initial frequenecy
difference of 2Kf,Ar. If this difference persisted, an interval of dura-
tion N*/8K would be required to reach equilibrium. The actual ap-
proach to equilibrium is an exponential with time constant T, =
Nz/8K.

The response to a ramp change in delay could, if the system equa-
tions were linear, be derived directly from the response to a step
change. That is, a ramp change is the integral of a step change and
hence, were the system linear, the response to a ramp change would
be the integral of the response to a step change. Although the systems
equations are not linear in the delays, it is assumed that changes are
slow enough so that a linear approximation is justified. The frequency
difference Af;» between the bar clocks is then shown, in the Appendix,
to be given by the solution of the following linear differential equation:

SK*

‘A_yTAfnz = K(F}e - FL) - Kfu(""& - 7"L): (5)

Afie + KAfi, +
where f, is the nominal value of the system frequency.
In what follows, the effects of delay and free-running frequency
changes will again be considered separately.

VIII. EFFECT OF DELAY CHANGE (ADDITIONAL BOUNDS ON GAIN)

The solution of equation (5), while the delay difference . — 7, is
changing at a constant rate 7, , is shown in the Appendix to be

r2

/

M R o Ll = €T, ®
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where T, = N?/8K is the previously suggested time constant. The
complete solution for Af,, and for the change A¢,, in the phase dif-
ference between the bar clocks is sketched in Fig. 2 (for the case when
both ¢; and {5, are large compared with T'p).

If the “‘equilibrium” frequency difference

2

Af | max = % fotn (7)

does not exceed the maximum allowable difference 3Afp, ie., if

NN, = (%)’ ®

fﬂ’ﬁD
then no restriction need be placed on the gain K. However, if N > N,

then an upper bound, determined from equation (6) with ¢ = ., is
forced on K. For (N*/8)f,7p >> 1Afp the bound is

A >
KgK,=§f—:£9T;;f0r N 2 3N, . 9

Similarly, if the “equilibrium” change in phase difference

2
A¢ | max = J—VS— f.ATo (10)

is less than the allowable change Aép , i.e., if

NN, = (%)* (11)

fnT.D

then K may be chosen arbitrarily. However, if N exceeds Ny an
upper bound must be placed on K. When the equilibrium value is
much larger than the allowable change, the least upper bound is easily
determined. For, then, the time constant 7'p = N*/8K must be made
long compared with the interval over which the delay disturbance
persists. The phase difference grows then nearly as if the two halves
were not connected and hence approaches the value Kf,tpArp , which
will not exceed the maximum allowable value provided K meets the
upper bound

Ad s
K <K, =578 for N23N, (12)

where i, = &, + la, .
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IX. BOUNDS ON CLOCK STABILITY

It is assumed that the stabilities of the clocks under consideration
are such that performance objectives would not be met if the halves
of the dumbbell were not joined by the bar link (for small numbers of
clocks this is nearly equivalent to assuming that objectives would
not be met with all clocks operating independently). Thus, the interval
during which the free-running frequencies drift and that for which the
maximum drift persists must both be long compared with the dumbbell
time constant T, . Hence, the frequency difference between the bar
clocks approaches (N?/8K) |Fp, — F, |, while the change in phase
difference approaches (N*/8K) | AF, — AF, | . For the assumed model
these numbers are random variables; however, for purposes of further
discussion they will be replaced by the values of their standard devia-
tion, i.e.,

Nt
Af | max = SKF (13)
and
N?
A¢ | max = K AF, (14)

If the performance objective is no slips then A¢ must not exceed
$A¢p and hence, from equation (14), the random drift in each clock’s
free-running frequency must satisfy the bound

AF<%A¢D,

where K must not exceed K, , as given by equation (4), and further,
if N 2 3N, , must not exceed K, as given by equation (12). Assuming
K, < K, (see Section X), the maximum value of AF/f, is

2 Agyp Af,

- N < N,
i @
AF/f, | max = ¥ A7 [ fo (15)

2 Adp ) .
v, (F) waav,

where

- m)*_
N, = (f.,AfD
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Similarly, if the performance objective is expressed as a maximum
slip rate then Af must not exceed 3Afp and hence, from equation (13),
the rate of random drift in the free-running frequency of each clock
must satisfy the bound

4K
VAl
where K must not exceed K, and further, if N 2 3N, , must not exceed

K, as given by equf_ltion (9). Assuming K, < K, (see Section X) the
maximum value of F/f, is

F<

= N <N
. 3 7
Fff, | max = {V AT Lo Lo (16)
2 AfD)2 >
NSATD(L NHSN!,
where
]
v (25)

X. NUMERICAL EXAMPLE

Assume that all links are approximately 300 miles in length with a
nominal .delay of 6.5 mieroseconds per mile and a delay variation of
0.035 percent per degree Fahrenheit (these values apply to pulp-
insulated cable). In considering the effect of delay change on the system
frequency assume a temperature variation of +40°F, leading to (A7), =
30 us. As the worst case condition in the dumbbell configuration, assume
that the temperature difference between the two halves changes at a
rate of about 2°F per day for about 1 week, leading to 7 & 2 X 107"
and Arp &~ 10 ps; and assume that the maximum difference persists
for about 1 week.

Assume, also, that the system frequeney corresponds to the digital
sampling rate in D-type PCM channel banks, viz., 8 X 10° frames/
second, and that it is to vary by no more than one part in 10° (which
sets the total allowable free-running frequeney drift). Furthermore,
assume that A¢p = 1 frame (which is ample allowance for the link
delay change f,Ar, = 1/4 frame) and that Afp is not to exceed one
part in 10°.

Under these conditions, the various upper bounds on K are

K, =1/6s",
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K,=5X10"s",
K, =5X10"s",

If there are to be no slips (performance objective #1), then the
maximum allowable random drift in any clock’s free running is

__\_..g i\‘r < 7
AF/f, | max =

D] -9

S vaa

The first bound corresponds roughly to the performance obtainable
from relatively inexpensive crystal oscillators. However, the second
bound, which must be met if the number of clocks exceeds about 20,
implies atomic standards.

Alternatively, if it is the slip rate that is to be bounded (perform-
ance objective #2) then the rate of random drift in any clock’s free
running must not exceed

GXIO

/ day N <14

= >f\ ,!10 /day N 2 42

F/f, | max =

Again, the first bound is met by relatively inexpensive erystal oseil-
lators while the second, which applies if there are more than about 40
clocks, implies either the best present day crystals or atomic standards.

XI. CONCLUDING REMARKS

It should not be concluded that a mutually synchronized system
must be designed as described above. For example, although the
dumbbell configuration represents a worst case, it is perhaps too
unlikely a case on which to base parameter specifications. Further-
more, the dependence of clock frequency on delay can be eliminated
with two-sided controls® (which, however, requires a special data link).
Alternatively, sufficient reliability without the problems associated
with a large-dumbbell network might be obtainable from some type of
hierarchical system—composed, for example, with clocks of varying
degrees of stability™ or of a small number of mutually synchronized
clocks at a top level with lower levels consisting of a number of
similar small groups each redundantly slaved to higher levels. Finally,
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it should be noted that the relatively large phase shift which may
occur between the bar clocks in the dumbbell configuration could be
reduced by increasing the “weight” given to the bar link (ie, by
increasing the averaging coefficients associated with this link). This,
however, is not really in the original spirit of mutual synchronization,
as it requires that the system configuration be known and used in
determining the averaging coefficients. This introduces administrative
complications comparable to those involved in reorganizing a master-
slave network.
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APPENDIX

Phase and Frequency Difference in the Dumbbell

Tt is assumed that the solutions of equation (1) are continuous
functions of the delays and that frequency changes are slow enough so
that the approximations

pit — 7)) = p() — fimi
are justified. Furthermore, changes in fir; are assumed dominated by
changes in delay (i.e., doppler shift) so that f;, in this product, may be
replaced by the nominal frequeney f,. Since the delay r is small
compared with the response time 1/K, ie., Kr < 1, these approxi-
mations appear reasonable.
The control equation [equation (1)] for the left-hand bar clock

may, then, be written in the form

f= By — Klois + KIfh — 1) + Ni/z . — £,  (an

where f/ is the arithmetic average of clock frequencies in region L (which
excludes the bar clock) and, from equation (1), satisfies

i = Fi = Ki.tu + 75 1 = fil. (s)

Similarly, for the right-hand bar clock

fo = By — Kfuin + Klfs — o} + _ﬁ% (o= fa),  (19)
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where
= Fy — Kfin + 2= {fa — fi (20
f}z = I'g fnTR N/2 fz fn}- )

The network shown in Fig. 3 is equivalent in that it is desecribed by
the above set of equations.

With x and y denoting, respectively, the frequency differences fi — fa
and f/ — i, it follows from equations (17) through (20) that

i+ K(l n %)L = Ky+ Py — By — Kfo(is — 70) (1)

and

. 2K 2K ., . ) .
y+T!I=FI+FL—Fﬁ—Kfa(TL—TR)- (22)

Eliminating y from equation (21) it follows that z satisfies (for
N>1)

2
b+ Kt ooz = KW, — Iy) — K6, — 7 (23)

and its solution, subject to the initial copditior_xs z(t = 0) = 0 and
y(t = 0) = 0 which implies #(t = 0) = (F, — F,) — Kf,(+, — ), is

2 N2 . .
20 & g Ll = £ — ) N (B — By

(FL_F!)_(FR_F?)E—K!

+ K — 8/N%
. . N® . .
(Fn - Fz) - ?(FL - F}z)

+ e—t/Tn

K(1 — 8/N% ’
WheI‘B TD = NZ/SK.
K K K K
SANNZE w Nz N/z Kk N7z

Fig. 3—Equivalent dumbbell configuration.
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