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This paper presents a combinalorial analysis of a mathematical model
of the Main Distributing Frame (MDF). Results are found concerning
the amount of additional spare needed to converl a randomly connected
MDF to a preferentially assigned mode of operation. The analysis 1s first
performed for an M DF having two sections and serving one class of service.
The results are subsequently extended to an MDF with mulliple sections
and several classes of service.

I. INTRODUCTION

The Main Distributing Frame (MDF) is that equipment in a cen-
tral office building whose main funetion is to permit the flexible inter-
connection of eable from outside the building to central office equip-
ment inside the building. This primary function accounts for most
of the terminal capacity of a typical MDF. The remaining capacity
serves a wide variety of other cross-connecting functions ranging
from tying together two outside plant cable pairs to eross-connecting
two or more pieces of central office equipment.

The conventional MDF is a double-sided steel structure with pro-
tectors or terminal strips mounted on one side, and terminal strips on
the other. These are referred to as the “verticals” and ‘“horizontals”
due to their mounting orientation. The vertical side is the part of the
MDFT where the outside cable is terminated. The horizontal side is the
part of the MDF where cables, which connect to the equipment of a
central office (mainly line and trunk equipment), are usually termi-
nated. To provide the maximum capacity of interconnections as well
as complete flexibility in the connection of any outside plant equip-
ment to any central office equipment, administration of the MDF
must result in small numbers of long cross-connections. This can only
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be accomplished by having the outside plant terminals opposite or
nearly opposite the central office equipment terminals. The MDF at
present is handled on a completely manual basis by framemen and
framewomen who connect and disconnect the large number of wires
which terminate on the MDEF.

Cables terminated on the vertical side of the MDF are connected to
the horizontal side by wires referred to as “cross-connections” or
“jumpers.” Where the outside plant terminals are not directly opposite
the central office equipment terminals, these wires are run along hori-
zontal shelves in order to connect these vertical and horizontal ter-
minals together. Presently, assignment of outside plant terminals to
central office equipment terminals is on a random basis, i.e., no attempt
is made to make assignments so that jumper lengths are kept to a
practical minimum. Therefore, when cross-connections become too
numerous or too long they accumulate excessively, become unmanage-
able, and exceed the capacity (jumper volume) of the horizontal
shelves.

One proposed method of keeping cross-connections short is the use
of preferential assignment. In this mode of operation the MDF is
divided into several zones, and records are kept which show in which
zones cables and central office equipment are terminated. When con-
nections are to be made, for example, between a cable pair and line
circuit, a cable pair is first selected based on outside plant economics
and availability. Then, line equipment is selected which is located in
the same zone as the cable pair or in the closest zone to it. This
method reduces jumper pileup and increases the MDF capacity. There
arises the question of how many additional spare terminals and,
therefore, how much central office equipment is required to convert
from a randomly connected MDF to a preferentially assigned mode of
operation. Although some people may feel that a prohibitive amount
of spare would be needed, the following sections show that under the
specified conditions a relatively small amount of spare is required by
this conversion.

The approach used in this analysis is the following. Initially, it is
assumed that there is a single class of service on the MDF. Given the
initial number of wires which cross from one zone to another, and a
model for the introduction of preferential assignment, the probability
of exhausting spare in at least one zone can be found exactly for a
2-zone MDF and bounded for the general case. Since running a few
jumpers between zones is not considered a problem, this probability
is an upper bound on the probability of the MDF encountering trouble
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while converting to preferential assignment. For a given probability
of MDF trouble, we can, therefore, find an upper bound on the
amount of spare equipment required by conversion. If the number of
zone crossings is not known for a randomly connected MDF, the
probability of exhausting spare can be averaged over the joint prob-
ability of the number of crossovers of each kind.

When dealing with several classes of service,* each service can be
treated as a separate MDF with its own zone structure. To do this we
make a simplifying assumption about the manner in which changes
in service occur.

It should be noted that the analysis performed here finds the addi-
tional spare required initially for conversion to preferential assign-
ment. However, once the conversion is completed, all that is needed is
some small amount of spare to effectively administer service changes.

II. DISTRIBUTION OF CROSSOVERS IN A 2-ZONE MDF

In this section and in the next section, a model is developed for a
2-zone MDF. This model can be used to determine how much spare
is required for conversion to preferential assignment. In later sections
the more general and more useful case of multizone MDF is considered.

As illustrated in Fig. 1, zone 1 and zone 2 of the MDF terminate
N, and N, outside plant ecable pairs (side O) respeectively. On the
inside plant side (side I) there are Ny + 8; and N» + 8 terminals

SIDE ©

Ny Nz

Ny CROSSOVERS

2, Zs

N, CROSSOVERS

Ny+5, Np+5p

SIDE 1
Fig. 1—Model of a 2-zone MDF.

* This term usually refers to the class of subseriber’s line. Here this term will be
used in a more general sense and will refer to various classes of all equipment
or cable pairs terminated on the MDF.
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respectively. S; and S, are the nominal number of spare equipment
terminals available for each zone of the MDF.

First, assume that the MDF is used to capacity (i.e., all Ny + N
outside plant terminals are connected to equipment or inside plant
terminals). Further, assume that the terminals are randomly con-
nected. We wish to find the probability p(n;, nz2) of having exactly n,
jumpers crossing from side O of zone 1 to side I of zone 2, and exactly
ny jumpers crossing from side O of zone 2 to side I of zone 1. This
situation is illustrated in Fig. 1. After finding a suitable model to
account for preferential assignment, the probability of exhausting
spare at any time during the implementation of preferential assign-
ment will be found using p(n;, n.). This will be done in Seetion III.

In order to ealculate p(n;, n.) we assume all possible ways, Wy, to
wire the MDF are equally likely (random connections). p(n,, n2) is,
then, the ratio of W(n,, n,), the total number of ways to connect the
MDF with n; and n, crossovers of the respective types, to W,.

First, let us find W. As a first step, we choose at random N; + N
terminals of side I to be used. We can do this in C (T, N)* ways where
T=N;,+8 + Ns+ 8S;and N = N; + N,. In addition, we will use
the following notation: S =8, + 8, T, =8 + Ny,and T, = 8 +
N. . Now let us permute the N terminals we are using; there are N!
ways. Since the two operations of choosing and permuting are inde-
pendent, the total number of ways to connect the MDF is the product
of the separate enumerations, or

w, = N'C(T,N) = T!/SL. Q)

Next, W(n,, ng) is found as follows. First, let us choose n, terminals
from side I of zone 1, which will accommodate jumpers from side O
of zone 2. There are C'(T,, n,) distinet ways to make this choice.
Likewise, there are C (T2, n;) distinct ways of making the analogous
choice for zone 2. Now zone 1 has Ny —n; unused terminals on side O
which will require direct connection to the remaining terminals of side
I of zone 1. There are T; —n, unused terminals on side I of zone 1
(n, have been used to connect to side O of zone 2). Therefore, there
are C(T; —n., N; —ny) possible ways to make direct connection in
zone 1. Similarly, the direct connection in zone 2 can bhe made in any
of C(Ty —ny, No —n.) ways. Thus far, N; terminals from side I

(N1 —ns from zone 1 and n, from zone 2) have been chosen for con-

*Cn, k) = (:) = nl/kl(n — k)!
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nection to the N, terminals on side O of zone 1. Upon choosing the N,
terminals, each permutation of the chosen terminals corresponds to a
unique configuration. There are N;! such permutations. Similarly,
there are N, | permutations for the N, terminals of side O of zone 2.
Since each of the enumerations listed above is independent of the
others, the total number of configurations, W(ny, ns), is the product
of each of the individual enumerations or

Wn,, ny) = C(T,, n)C(Te, n,)C(T, — ny, Ny — ny)
'C(T2 — n, y N2 - ’nz)Nl! Ng!.
Upon expanding into factorials, simplifying, and regrouping, we have

! 1
W(nl y Ng) = C(Nl :ﬂl)C(Nz ,RE)C(S, S +n, — nz) T, STZ (2)

p(n, , ny) is the ratio W(n, , na)/W, or
p(ny, ny) = C(N,, n,)C(Ns, n)C(S, S, + ny — ny)/C(T,T)). (3)

III. PROBABILITY OF EXHAUSTING SPARE IN A 2-ZONE MDF

Now suppose that a 2-section MDF has n, and n, crossovers of the
two types discussed above; and that it is decided to begin using prefer-
ential assignment. Note that simplifying assumptions are made that
the MDFT is filled to capacity (i.e., all N; + N outside plant terminals
are connected to equipment or inside plant terminals) and that all
lines have the same class of service.*

With preferential assignment, the desire is to keep all jumpers within
the zone, i.e., not to have crossovers from one zone to another. Suppose
a change oceurs for a jumper which does not cross the boundary. If no
spare is available in that zone, the change cannot occur (unless the
boundary is crossed, which we will assume is not allowed). However,
if a spare is available, there will be just as much spare available after
the change. Clearly then, a change for such a line does not affect the
total amount of available spare. Therefore, since our goal is to find
the probability of running out of spare while implementing prefer-
ential assignment, we need only consider the n; 4+ n, lines that cross
the boundary between sections.

Since we start with n, crossovers from side O of zone 1 to side I of

* Tt is shown in a later section that under certain restricting conditions, the
results for a single class of service can be extended to the case of many classes
of service.
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zone 2 and with n, crossovers from side O of zone 2 to side I of zone 1,
the number of remaining spare terminals (on side I) is S; + ny — np for
zone 1 and S; + 7o — ny for zone 2. The process of changing service
for the n; 4+ 7. lines can be described as a random walk starting at
(0, 0) with n; + ma epochs. At each epoch (corresponding to a change
for one of the n; + 7, lines) we move to the right and one step up if
one of the n; lines has a change, and a step down if one of the n, lines
has a change. We denote the location of a point on the path by
(h,, r) where h. is the height at epoch r. This situation is deseribed
in Fig. 2. The final point of the random walk will, in all cases, be
(ny — na, nq + ma) as illustrated in Fig. 2. Each step up in the random
walk brings zone 1 one step closer to running out of spare and zone 2
one step further from running out of spare, and conversely for steps
down. The probability of exhausting spare, Pr{exhaust/n, , 7.}, is then
the probability that a randomly chosen path from (0, 0) to (n; — na,
n1 + ma) (there are C'(ny + na, n1) such paths) touches or crosses
one or both of the boundaries at height S; + n; — ns. and height
— Sg + ny — Na.

More precisely stated, our problem is to determine the probability

Pr {exhaust/n, ,n;} =1 —Pr{—8; +n, —n: < h, < 8, +n, — n,
for r=1,2, -, 0, + n.}. 4)

As discussed in Appendix A, this problem is equivalent to a form of

the ballot problem? and the solution to our problem becomes

Pr {exhaust/n, ,n.} = 1 — 2 [C(n, + na , s — kS)

k

— Cly + 2y 8y + 1 + £S)]/Clny + ne ,ma) (5)

where the summations are over all integers (positive, negative, and
zero) for which the summands exist.

If we know n; and 7s in advance this is the desired result. However,
if we do not have this knowledge (e.g., if we do not wish to count all
of the crossovers) this result should be weighted by the joint prob-
ability of n, and n,. Now let us assume that we have no a priori
information about n; and n,. To find the probability of exhausting
spare, equation (5) is weighted by p(ny, na), ie.,

Pr {exhaust} = 1 — 2 > Pr {exhaust/n, , n,)pn, , ny). (6)

Substituting equations (3) and (4) into equation (6) and simplify-
ing yields
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hr' SPARE EXHAUST
Sy+My-N /\v/\
{Ny=nz,ny +Nzd
n-ng —— S —— A e ———— o —
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Fig. 2—Random walk model for a 2-zone MDF.

Pr {exhaust)

1*22{2 [Cn, +ns 2 — kS)_C(n1+n2181+n1+kS)J

o OV, m)C , m)C(S, Sy + m = m)}_ o
Cln, + n, , n)C(T, T))

Expanding binomial coefficients in terms of factorials, simplifying, and
regrouping yields -

Pr {exhaust}

1
C(N, + N,,N)C(T, T)

X > Z [C(N, + N, , N, + kS)C(S, 8, +n, — ny)

ny Nz

=1-—-

X C(N. — k8, n, — kS)C(N, + kS, N, — n))
— O(N, + N, , T, + kES)C(S, S, +n, — no)
X C(T, + kS, N, — n)C(N, — 8, — kS,n, — 8§, — k8)]. 8

At this point the order of summation is interchanged, summing first
with respect to n; then with respect to no. In each case the basic
combinatorial identity of Appendix B [equation (23)] is used with
the final result:



2472 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1971

Pr {exhaust}
22 [C(T, Ty —kS)C(N, No—kS)—C(T, Ny —kS)C(N, Ty +kS)]
=1- (T, T)CN, N '

(9)

As an example of the result of this equation, see Fig. 3. The curves are
plots of Pr{exhaust} versus nominal percent spare, s (s = S/N), for
2-zone (equal size) MDFs with 10¢, 10% and 10° lines* and one class
of service.

Equation (9) gives the probability of exhausting spare in one or
both of the two zones. To find the probability of exhausting in a single
zone, say zone 1, we wish to find the probability

Pr {Z, exhausts} = > Y. Pr {Z, exhausts/n, , n.)p(®, , ns).

1 Tz

The probability conditioned on n; and n. can be written

Pr {Z, exhausts/n, , ny} =1 — Pr [k, < S, 4+ 0, — n,
for r=1,2, -, 70 + ny}. (10)

As discussed in Appendix A this is a one-sided ballot problem! with
solution

NRVERN
L\ N

o
[+

06
108 LINE \ 105 LINE MDF \o“ LINE MDF
MDF \
0.4 \ \ \
0.2

PROBABILITY OF EXHAUSTING SPARE,
Pr {EXHAUST }

\ \\
0 0.4 0.8 1.2 1.6 2.0
NOMINAL PERCENT SPARE,SX 100

Fig. 3—Probability of exhausting spare vs nominal percent spare for a 2-zone
(equal size) MDF.

* Note that “line” is being used here to mean cable termination of any kind
on the MDF.
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Pr {Z, exhausts/n, , n,] = C(né(j; 7’:2_;181 :')711)_
1 2y T

Again, if we know n; and 7. exactly, then this is the desired solution.
However, we assume no such a priori knowledge, and upon multiply-
ing by p(ny, n:) and summing over 7, and 7, (as we did for
Pr{exhaust}), the result is

C(Tz + Nz ) -Nz - Sl) . (11)
C(T: + N, , Ny)

Figure 4 shows plots of equation (11) for zones which comprise one-
half of an MDF with 10¢, 10°, and 10° lines and one class of service.

In the case of a 2-zone MDF, an exact solution has been found for
the probability of exhausting spare in the entire MDF and for the
probability that a particular zone exhausts spare. As will be shown in
the next two sections, the general solution for the probability for
exhausting spare in an M-section MDF is difficult to find. Instead, the
result [equation (11)] for a particular section can be used to find
upper and lower bounds on the desired probability.

Pr {Z, exhausts} =

IV. DISTRIBUTION OF CROSSOVERS IN AN M-ZONE MDF

In this section the distribution of crossovers for an M-zone MDF
with a single class of service is found in much the same way as it was
found for a 2-zone MDF in Section II.
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Fig. 4—Probability that a particular zone exhausts spare vs nominal percent
spare for a 2-zone (equal size) MDF.
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The configuration of the M-zone MDF is illustrated in Fig. 5. For
simplicity, the following notation will be used:

Ti=Ni+S1'r
S—_—ZS",

M
T=3T,.

i=1

In addition, we define n;; to be the number of crossovers from side O of
zone 1 to side I of zone j with ny; = 0 by definition. In this case the
number of distinet ways to wire the MDF is again given by W, of
equation (1), using the more general definitions of T and S above.

Now we must determine for a given matrix {n;} of crossovers the
number, W ({n;}), of distinet connections of the MDF that have
{n;;} crossovers of each type. Let us concentrate on the ith zone. Side
I of this zone must supply the other zones with =, ny; terminals to con-
nect to side O of those zones. The number of ways to do this is

(T 5nae yMaiy oo e, T — Enki)*
k

where the summation is from & = 1 to k& = M. As far as direct con-
nections are concerned, N; — 3 ny; terminals must be chosen from the
N, + 8, — = ny terminals remaining on side I. This may be done in
C[T: — 3y nu, Ni — 2 ni] ways. In addition, after choosing the
particular terminals to be connected, the V; terminals on side O of zone
i can be permuted in N;! ways. Each of the choices mentioned above

SIDE O PJL CROSSCVERS
Ny Nz N{, Nj "l' Ny
- .- V.
\ < L/
Z, Zn ZL Zj ZM
see
-— |
// \ N
Ny+S;  Na+tSp NL+ 5L Nj+5 ‘\\ Nit+Su
SIDE I nLJ' CROSSOVERS

Fig. 5—Model of an M-zone MDF.

*(a; 1,02, ,an) =al{a ! @l -+ a0
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is independent for each zone. Therefore, the number of ways to con-

nect the MDF with {n;} crossovers is the product of the three num-
bers enumerated above for each zone, viz.,

Wini ) = I 0T = Eme, No = ZnaN, !

'(T.' Ry gy Moy -0y Nypi T, — Znh‘)-
i

The probability, p({n;}), of having {n;} crossovers is equal to the
ratio W({n;;}) /W, or upon regrouping

p(ini})
(S; S]+ ; (nlk_ni'l)J S+ LZ ('n‘zk‘nkz), oty Sy+ E (an—nkM))
- (T;T‘I:TZ)..‘ 7Tﬁ!)
M
X II (JVI' ;nl'l Jnl'E} fee 9’”’{,\! ,N| - Znik). (].2)

Equation (12) is, then, the distribution of crossovers for an M-zone
MDF. Equation (12) reduces to equation (3) for M = 2, in which
case Mo = Ny and Ngy = No .

V. PROBABILITY OF EXHAUSTING SPARE IN AN M-ZONE MDF

The remarks about the random walk model of Section IIT can be
generalized in the following way. Let there be a random walk for each
zone starting at (0, 0). The number of epochs is equal to the total
number of crossovers, viz., 3; Z; n;; . For zone 1, the height of the ran-
dom walk at epoch r is hy . Each of the M random walks moves one
step to the right at each epoch. In addition, each random walk moves
up each time spare is reduced and down when spare is increased in its
corresponding zone. Thus, at each epoch one walk moves up, one moves
down, and the others exhibit no echange in height. Each random walk
has associated with it a boundary, S; + =; n; — 2; ny, and there is a
further restriction that each walk reach the final point [Z; Z; ny,
s; ny; — Zj n]. The probability that the MDF exhausts is

Pr {exhaust] = 1 — Pr {h,, < S; + Z (n;; —n;.)

forall :=1,2,---, M
and forall r=1,2, .-+, 2 Xon,}-  (13)
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This problem is equivalent to an M candidate ballot problem as
described in Appendix C. This problem, unlike the simpler ballot
problems of Appendix A, is as yet unsolved. However, upper and lower
bounds for equation (13) can be found, as shown in the next section.

VI. BOUNDS ON THE PROBABILITY OF EXHAUSTING SPARE IN AN M-ZONE
MDF

In this section, the result [equation (11)] for the probability of
exhausting spare in a single zone is used to find upper and lower
bounds on the probability of exhausting spare in an M-zone MDF.

If we denote the M zones by Z,, Z,, - -+ , Zx , we have

Pr {exhaust} = Pr {Z, or Z, or --- or Z, exhausts}. N (14)

For simplicity let us assume that zones are indistinguishable,* i.e., that
N,=N,=--- =Nyandthat 8§, = S, = --- = 8, . Nbw equation
(14) can be rewritten as’

Pr {exhaust} = M Pr {Z, exhausts} — C(M, 2) Pr {Z, and Z, exhaust}
+ C(M, 3) Pr {Z, and Z, and Z, exhaust} + ---
4+ (=) ' Pr {Z, and Z, and - -+ and Z,, exhaust}. (15)

Successive partial sums of equation (15) oscillate about Pr {exhaust}

and in particular
M Pr {Z, exhausts} = Pr {exhaust} = M Pr {Z, exhausts}

MM - 1)

5 Pr{Z, and Z, exhaust]. (16)

Given a randomly wired MDF, a zone is less likely to exhaust if it is
known that another zone has exhausted, i.e.,

Pr {Z, exhausts/Z, exhausts} < Pr {Z, exhausts)
and so

Pr {Z, and Z, exhaust} < Pr {Z, exhausts} Pr {Z, exhausts]}.

Substituting into equation (16) and recalling that Pr {Z, exhausts} =
Pr |Z, exhausts} (since the zones are of equal size) yields

M Pr {Z, exhausts} = Pr {exhaust} = M Pr {Z, exhausts}

* This assumes an even spread of equipment, which is not necessarily true in
practice but can be approximately achieved through retermination of equipment.
Retermination to achieve spreading has been done to enhance the effectiveness
of preferential assignment.
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— ML= 1) (pr (7, exbausts})’. (17
Equation (11) gives Pr{Z; exhausts} for a 2-zone MDF. One can con-
sider the M-zone MDF as having two zones, one with N, terminals
and 8, spares and the second with (M — 1) N; terminals and (M —1)8,
spares. Thus, in equation (17),

O((M _ 1)(T1 + Nl.)? (M _ I)Nl - S'l)
C((M — 1)(T, + N,), (M — 1)N))

and with the substitution, equation (17) gives the resulting upper and
lower bounds for the probability of exhausting spare in any section of
a multizone MDF with a single class of service.

As an example of the results that can be obtained from equation
(17), Fig. 6 shows plots of the upper and lower bounds on Pr{exhaust}
for 10-section MDFs having 10%, 10°, and 10° lines. The upper bound
is shown as a solid line and the lower bound is shown as a dashed line
and is incompletely drawn. Figure 7 shows plots of bounds on
Pr{exhaust} for 10%-, 10°-, and 10°-line MDFs with 10°-line zones.
Pr{exhaust} for a 10°-line MDF with 5, 10, and 20 zones is plotted
in Fig. 8. The meaning of these results will be discussed in greater
detail in Section VIIL

T \
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108 LINE \105L|NE MODF \mﬁ.me MDF
08 MDF
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l \ \
1 \ N
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N
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U N

0 2 4 6 8
NOMINAL PERCENT SPARE, S X 100

Pr (Z, exhausts] = (18)

BOUNDS ON Pr {EXHAUST}

Fig. 6—Bounds on probability of exhausting spare for a 10-zone MDF, for
10¢, 105, and 108 lines (solid line—upper bound, broken line—lower bound).
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Fig. 7—Bounds on probability of exhausting spare for 104-, 105-, and 108-line
MDFs with 103-line zones (solid line—upper bound, broken line—lower bound).

VII. SEVERAL CLASSES OF SERVICE

The analysis up to this point has considered a single class of service.
The results for one class of service can be extended to the case of sev-
eral classes of service, C'S;, C8;, ---, CSp, if we assume that a cable
pair is always used for the same class of service. Then each class of
service can be considered to comprise its own sub-MDF. This is also
true for the less restrictive assumptions which follow.

Assume first that the working and spare equipment for each service
is evenly distributed throughout the M zones of the MDF. In addition,
assume that whenever a customer in zone Z; requests a change in
service from CS; to CS;,, another customer in Z; makes the symmetric
request for change from CS; to CS; .*

With these assumptions, we can consider the single M-zone MDT
with P classes of service to consist of P sub-MDTFs each with a single
class of service and M zones. Side O of each of the P sub-MDFs is com-
prised of the terminals equipped for that particular class of serviee,
At any time, side I of each of the P sub-MDZF's consists of all side 1
terminals of the total MDF which are connected to equipment of the
particular class of service for that sub-MDF.

* This is unlikely to always be true in an instantaneous sense. However, it is
reasonable in an average sense if the make-up of services on the total MDF is
stationary.
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As an example of the use of this analysis, consider the following
case. A 100,000-line MDF has three classes of service. Class A serves
70,000 lines, class B serves 25,000 lines, and class C serves 5,000 lines.
As described above, each class of service can be assumed, for the pur-
pose of analysis, to comprise its own sub-MDF. Suppose a 10-zone
preferential assignment procedure is introduced. After considering each
class of service as having its own sub-MDF and applying the analysis
of Section VI, we find the results illustrated in Fig. 9.

To assure negligible Pr{exhaust} during conversion to preferential
assignment class A needs about 3 percent spare (2100 equipped spare
terminals), class B requires about 5 percent spare (1250 equipped
spare terminals), and class C requires about 12 percent spare (600
equipped spare terminals). Further, if there were only one class of
service, Fig. 6 shows that about 2.5 percent spare would be required
or 2500 equipped spare terminals as compared to 3950 for our example
with three classes of service.

Thus, we can conclude that for a given MDF size, multiple classes
of service require more spare equipment to convert to preferential
assignment. Furthermore, just as a small MDF requires more percent
spare than a larger MDF, a class of service provided to a small number
of lines in an MDF requires more percent spare than a class serving
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Fig. 8 Bounds on probability of exhausting spare for a 105-line MDF with
5, 10, and 20 zones (solid line—upper bound, broken line—lower bound).
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Fig. 9—Bounds on probability of exhausting spare in an MDF with three
classes of service (solid line—upper bound, broken line—lower bound).

more lines. Thus, there is an economy of scale for spare equipment
during conversion to preferential assignment.

VIII. DISCUSSION OF RESULTS

From Fig. 6 we see that for an MDF serving lines with the same
class of service, Pr{exhaust} is negligible in a 10-zone, 10°-line MDF
if we have about 1 percent spare. For a 10-zone, 10°-line MDF about
2.5 percent spare is sufficient and for a 10-zone, 10*-line MDF about
8 percent spare is required. Thus, if we fix the number of zones, the
required percent spare decreases as the size of the MDF increases. On
the other hand, if, as in Fig. 7, zone size is fixed at say 10° lines, larger
MDF's require more percent spare to attain the same value of Pr{ex-
haust}.

Figure 8 illustrates the effect of zone size on an MDF of a given
size. For a 10°-line MDF, 5 zones require about 1.75 percent spare
for negligible Pr{exhaust}. If we have 10 zones, about 2.5 percent spare
is required, while about 4 percent spare is required for 20 zones.

It should be remembered that an MDF will not be in trouble simply
because spare has exhausted. Running a “few” jumpers across the
boundary between zones is not considered a problem. Trouble occurs
when this happens too often. Thus, the spare requirements stated
above, based on Pr{exhaust}, are really upper bounds on the spare
required for conversion to preferential assignment. We can heuristically
say that the tightness of Pr{exhaust} as an upper bound on the prob-
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ability of trouble increases with the size of the MDF. This is due to
the fact that running jumpers between zones is more detrimental to
larger MDFs.

In addition to analyzing a single class of service, a method for
analyzing the case of multiple classes of service has been discussed.
The results indicate that multiple classes increase the need for in-
creased spare, since smaller classes require more percent spare than
larger classes. It should be noted that the remark that Pr{exhaust}
is a better upper bound for larger MDFs carries over to multiple
classes of service. Specifically, Pr{exhaust} is a tighter upper bound
for the probability of getting into trouble for a class of service which
serves many lines rather than a few lines.

The example for the case of multiple classes of service treated three
relatively small classes of service. In practice central offices employ
thirty or more subscriber classes of service, and several hundred other
classes of cross-connections. If all classes of service were of equal size,
then spare requirements could become quite large. Usually, however,
a few classes of service account for most of the terminations on the
MDF, while the many remaining classes of service have a relatively
small number of terminations. These less widely used classes would
require a disproportionate amount of spare equipment. However, if
less spare were provided for these classes, the resulting number of long
cross-connections would be small if such classes constitute a small
percentage of MDF terminations.

IX. CONCLUSIONS

Preferential assignment is a method to reduce the volume of wire
in the MDF and thus increase the effective MDF capacity. The
analysis presented here investigates the spare requirements for con-
version of an MDF to preferential assignment from random assign-
ment, Starting with a fully loaded, randomly connected MDF, con-
version to preferential assignment first requires an even distribution
of circuit types over the MDF. When, as discussed above, a few classes
of service account for most of the terminations on the MDF, the over-
all pereent spare required for conversion to preferential assignment is
in the order of a few percent. If this assumption is not valid, then
spare requirements may become relatively large. In either case the
analysis presented here provides a useful method for estimating spare
requirements.
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APPENDIX A

Ballot Problems and the Solution for a 2-Zone MDF

As stated in Section III, the problem of finding Pr{exhaust/n; , no}
is equivalent to the ballot problem (Ref. 1, problem 4) which states:
In a ballot, candidate A scores a votes and candidate B scores b votes,
and all the possible voting records are equally probable. Let ¢ — d <
b — a < ¢ where 0 < ¢ < d are integers. Denote by «, and B, the
number of votes registered for A and B, respectively, among the first
r votes recorded. Find the probability

P=Pric—d<p —a <c for r=1,2,--- ,a+d}. (19)

Takécs! shows the solution to be
P= > [Cla+ba—ikd) —Cla+b,a+t+c+kd]/Cla+b,a). (20)
k

To apply this solution to the problem at hand, let b = n,, a = n,,
c=8 +n —ny,d=2=8; + 8. Also, let 8, be the number of upward
steps and «, be the number of downward steps after r epochs in the
random walk model of Fig, 2. Therefore, in the notation of Section III,

hr=Br_ar-

Making these substitutions, we have

Pr{i—S.+n-—n<h <8 +n —n for r=1,2, - ,n, + n,}
= E [Cny+ns , n.—kS)—Clny 41, , S;+n,+EkS)]/Cln,+n, , ny).

This is the result reported in equations (4) and (5).

The problem of finding Pr{zone 1 exhausts/n, , n.} is equivalent to
the one-sided ballot problem (Ref. 1, problem 3) which states: In a
ballot, candidate A scores a votes and candidate B scores b votes, and
all the possible voting records are equally likely. Let b < a 4+ ¢ where
¢ is a positive integer. Let o, and B, be the number of votes registered
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for A and B, respectively, among the first r votes recorded. Find the
probability

Q.(a, b)) =Pri{B. <a +c¢ for r=1,2, ---,a+ bl
The solution is shown to be
_q_ _Cho |
Qr(a! b) =1 C(ﬂ, + C,C)

Upon making the substitutions that were made for the two-sided
ballot problem, we have

_ C(nl y Sl + n, — n?) .
C(S, +n,, 8 +n —n)

After expanding binomial coefficients and regrouping, the result is

Prih. < S +n —n} =1

Cln, +n, S, + n1)

Plh, < S, +n, —na} =1 —

Cny, + na ,m)
as reported in equations (10) and (11).
APPENDIX B
A Basic Combinatorial Identity
The basic combinatorial identity
ol lm— m

(where r, s, m, and 7 are integers and the sum is over all integers for
which the summand exists) is easily proven® by considering the equa-
tion

I+ A+ =>0+2)""

Expansion of each term in a binomial series yields

£[i-»

i z' i

SI = r+ s‘ ™. (22)
il " m
Equating terms on each side of equation (22) with exponent m results
in equation (21).

Equation (22) can be expressed in another, more general form. If
we let 1 = k + j with k& and 7 integers, equation (22) becomes
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E l r S ] —

T+ lm—k—j
where the sum is again for all integers for which the summand exists.
If we further let n = m — k the result is

r—i—s}

m

E { r 8 _ lr + s . (23)
T k4 ln—3j kE+n
APPENDIX C
An M-Candidate Ballot Problem
In a ballot there are M candidates, viz., C1, Ca, -+, Cy . Each of

N voters casts a ballot which contains a vote in favor of one candidate
and a vote against another candidate. Let b; and a; be the total pro
and con votes for C;. Let k;; be the total number of ballots which have
a vote for C; and a vote against C;. Thus b; = 3; ky; and a; = 3; ky; .
It is assumed that all possible voting records are equally probable. Let
Bir and a; be the number of pro and con votes, respectively, registered
for C; among the first » ballots recorded. Find the probability

P="Pr {8, — a,<d;foreach?i=1,2 ---, M
and foreach r = 1,2, -+-, 2 a;}. (24)

Note that Z; a; = 2; b; .
This problem is equivalent to the random walk model of Section V
if we let h{r = ﬁ{r - Q®jr, di = S-i + E,‘ (nij - nﬁ), and {k;j} = {nﬂ}.
This problem is much more complex than the ballot problems of
Appendix A, and has not, as far as the author knows, been solved.
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