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Heavy Traffic Characteristics of
a Circular Data Network
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Traffic behavior in the Pierce loop for data transmission is studied
under assumptions of heavy loading. A deterministic mathematical model
for describing traffic flows is developed and analyzed. The mathemalical
problem 1is of a linear complementarity type which has not been deall
with in the lilerature of mathematical programming. An effective procedure,
the load-and-shift algorithm, for determining traffic flows is proposed.
The procedure yields all feasible solutions for traffic flows and reveals
the possibility of stations grouping into dominating classes and preventing
other stations from using the system. This property, which can be eliminated
by exercising appropriate control, also may affect the stochastic behavior
of the system when heavy traffic conditions do not prevail and therefore
deserves careful investigation. The paper includes two numerical examples
tllustrating use of the load-and-shift algorithm and numerical results
from a simulation showing some of the effects of dominating classes when
heavy traffic conditions do not prevail.

I. INTRODUCTION

The concept of a loop network for data transmission has been proposed
recently by J. R. Pierce." In such a network the stations are connected
to a closed loop main line on which one-way traffic is allowed. A message
to be delivered from one station to another is arranged, at the sending
station, into standard packets each carrying the address of the receiving
station. These packets are then delivered onto the main line, one at a
time, where they flow around in the allowed traffic direction. The address
of each packet is checked at each station on the way until it reaches
the receiving station where it is removed from the main line. Traffic
on the main line cannot be delayed; therefore, a station can deliver
a packet onto the main circular line only when permitted by the existence
of a gap in traffic or when receiving a packet from the main line. Principal
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features of the system may be explained with the aid of the four-
station network shown schematically in Fig. 1.

The four-armed structure revolves around the central axis and stops
briefly every time the four packet-carrying compartments at the ends
of the arms are aligned with the four stations. During such a stop
each station is able to check the content of the aligned compartment.
If the compartment is empty, the station can load it with a packet.
If there is a packet in the compartment, it will not be removed unless
it is addressed to the said station, in which case the station is permitted
to load the compartment again after unloading it. A Pierce loop can
be represented by the mechanical analog structure shown in Fig. 1;
however, the number of revolving arms in the structure is not neces-
sarily equal to the number of stations in the loop. Rather, the number
of arms is determined by the ‘““loop time’’ of the system (the time needed
for a bit to complete one round on the loop). Significance of the loop
time is diseussed in more detail in Section V.

In the Pierce loop it is currently assumed that no outside control
is applied and each station strives to send its messages at the earliest.
Therefore, a station will never miss the opportunity to load a compart-
ment unless there are no messages waiting for delivery at the station.

This paper presents a study of the flow characteristics of such a
system in heavy traffic, i.e., when the system is not able to deliver all
messages, and infinite queues build up at some stations. In Seetion II
the notion of “stable solutions” for the traffic flows is introduced and

STATION
3
STATION STATICN
| _J\f/l_ |
STATION
1

Fig. 1—A schematic description of a four-station Pierce loop.
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formulated mathematically. The case of a totally saturated system is
analyzed in Section III where the basis is laid for the mathematical
development of the load-and-shift algorithm given in Section IV. A
detailed description of a Pierce loop for data transmission is given in
Section V where the alternating priorities effect due to dominating
classes of stations is studied by simulation, This section also discusses
the important aspect of the order of stations in the loop. Readers not
interested in the mathematical elaborations may skip Section IV.

II. MATHEMATICAL FORMULATION

We assume that the flow direction on the main eircular line is counter-
clockwise. There are n stations, connected to the main line, numbered
from 1 to = in counterclockwise increasing order. The segment of main
line between the 7th and the (z + 1)th station, z = 1,2, --- , n — 1,
is called the 7th branch. Similarly, the nth branch is the segment be-
tween station n and station 1. Let p;; be the proportion of flow (packets)
emerging from station ¢ and destined for station j.

gpi:‘ =1. (1

The n X m square matrix P = {p;;] possesses all the properties of a
stochastic matrix. Note, however, that the elements of P are not
necessarily probabilities.

The demand at station 7 is given by A, which is the average amount
of flow (packets per time unit) generated at the station. The capacity
of each branch equals 1, that is, each branch is capable of carrying
a maximum flow of one unit. In the schematic description given in
Fig. 1 assume that one full revolution takes four time units (in general
it will take the number of time units equal to the number of arms)
The capacity of each branch will then be one packet per time unit.

The average flow emerging from station ¢ will be denoted by .
and the average flow in branch ¢ by p; . Clearly

0sx, =N, 2=1,2,-+,n (2)
and
0<p <1, i=12 " ,n (3)

Let a:; be the proportion of flow emerging from station j and flowing
through branch ¢, then

a;; = Z Dik (4)

keSij
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where
S”:j(ﬂrl,%+-, ) 3) it >4 g
e+ 1042 m1,2 ) if =0
Note that a;_,;—a;;=p;; = 0forall j # 7 where 1—1 is defined to equal
nwheni = 1. Forj = i we havea;; = 1 and a,_,; = p;; = 1. In most

reasonable applications p;; = 0.
The average flow in branch ¢ may now be expressed as a linear fune-

tionof X = (&, T2, +++ , Ta).
pi = E a;x; = 1. (6)
i=1

Every X which is a feasible solution for the average flows must satisfy
relations (2) and (6). The set of all feasible solutions is therefore con-
tained in a convex polyhedral set. A central control could select a
particular solution from this set to suit a given objective.

In the circular network suggested by Pierce, however, there is no
central control. Rather each station is striving to maximize its own
flow onto the main line. For this case we define a stable solution as
a solution from which the system will not depart without outside
intervention. Suppose then that X* is a stable solution. Clearly X*
must satisfy relations (2) and (6) and the additional condition that if
pi = 2" a;x% < 1 then x% = A; . To show that this is a necessary
condition assume that p; < 1 and a* < A; . However, station ¢ strives
to maximize its flow and can increase it as long as x* < A\, and p; < 1.
Therefore, it is not possible that p; < 1 and z* < A; . This additional
condition is not generally sufficient for assuring that z* is a stable
solution.

Insufficiency is best demonstrated by a simple numerical example.
Suppose n = 4, A, = Ay = A3 = Ay = 2 and

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

Tt is easy to verify that X° = (0,0, 1, 1) and X" = (1, 1, 0, 0) both
satisfy relations (2), (6), and the additional necessary condition as
does X = aX°+ (1 — a)X* for 0 = a = 1. Tor simplicity we assume
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that the flows generated at the stations are deterministic in nature
and each station generates exactly two packets each time unit.

Suppose now that the system (see Iig. 1) has one rotating arm only.
In such a case there are only two stable solutions, namely X°, (a = 1)
and X*, (« = 0). If the system has two rotating arms, an additional
stable solution, @ = %, is added. If the system has k& arms, there exist
k 4+ 1 stable solutions, « = m/k, m = 0, 1, --- , k. The system shall
settle for the stable solution &« = m/k if at time zero m compartments
contain packets from stations 3 and 4 and £ — m compartments contain
packets from stations 1 and 2. The necessary condition for stability
is also a sufficient condition if the flows generated by the stations
are continuous (as in the case of nonmixable fluids or small particles
such as vehicles and a loop consisting of a pipe or a road). In such a
case the set of feasible solutions is identical to the convex polyhedral
set given by relations (2) and (6).

We wish to find all solutions which satisfy relations (2), (6), and
the necessary stability condition (these will be all the stable solutions
in the case of a system with continuous flows). Our problem can be
redefined as one of finding all feasible solutions to the following set of
equations:

x, +u = N,

Z @;;r; +z.‘ = 1, 1= 1, 2, R (7)
1

IV
=
v
=
N
v
o

wiz; = 0, T

This form resembles a linear complementarity problem,” where 1, and
2; are slack variables. A feasible solution to the set of equations (7)
is a basic feasible solution to the set of equations (2) and (6) since at
least, n of the variables must equal zero.

IIT. COMPLETE SATURATION

Tor sufficiently large values of x; (forexample X, = 1,7 =1,2, - -+, n),
all the branches are saturated and p, = 1,7 = 1, 2, -+ , n. The set
of equations (7) takes the form

Dagr; =1, i=12 - n. (8)
i=1

This ean be shown to be equivalent to the set of (n 4+ 1) linear equations.
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:E-'_Epiixi=0a i=1121"':ﬂ: (93‘)
i=1
$ud = b (9b)
i=1

The #th equation in (9a) is obtainable by subtracting the 7th equation
of set (8) from the (¢ + 1)th equation of set (8). Equation (9b) may
be selected as any linear combination of equations (8). Note that one
equation in (9a) is redundent since ", p,; = 1 for all 4.

Remark: The physical interpretation of equations (9) is that when
in complete saturation a station is able to deliver only when receiving,.
The flow emerging from a given station must equal the flow entering
the station from the main line. This equilibrium relation is expressed
by the n equations of set (9a). The (n + 1)th equation, (9b), expresses
the capacity limitation of the branches. If we select d; = D."., a.;
we have

Z T; d; = n, (10)
i=1
where d; is the average number of branches (distance) traveled by a
packet emerging from station j. Equation (10) states that the average
work (in terms of packets times distance) demanded from the system
per time unit must equal n, since all branches are saturated and each
traverses one packet per time unit. In matrix form we have

X'P = X7,

2 ad; = b, (11)
i=1
where X7 is the transpose of X, (note that all vectors are defined to
be column vectors).

P is a stochastic matrix and, therefore, the problem represented
by equations (11) strongly resembles one of determining the steady
state probabilities of a finite state space Markov chain. The difference
is that in the Markov chain problem d; = b for all j while in our problem
this is not necessarily so. In the following we shall make use of this
resemblance.

Definitions:

(7) S, shall be used to abbreviate “station .”
(72) S; is said to be accessible from S; , S; — S§; , if there exists a
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sequence of elements of P such that Py, Py, -+ Pi,_x.Pri > 0.
In such a case it is also customary to say that S; leads to S; .

(#7) If S; — S; and S; — S, both stations are said to communicate
(8; < 8,). Clearly if S; «> S; and S, <> §; then S; & 5, .

(iv) Let C(i) = {8, :S; « S:}. Clearly if S; ¢ C(¢) then C(j) = C(2).

(v) A nonempty class of stations, C, is called a communicating

class if for some station S; ¢ C, C = C(7). It follows that two
communicating classes are either identical or disjoint.

(vi) A communicating class is closed if no station outside the class
is accessible from a station in the class.

(vii) A closed communicating class shall be called a dominating class
or a class of dominating stations. A station not belonging to any
dominating class is a dominated station.

From the theory of Markov chains we know that there exists at
least one class of dominating stations in a given Pierce loop. However,
it is possible that there will be no dominated stations. In such a case
all the stations are dominating and may form into one or more dominat-
ing classes. It may be shown that the number of dominating classes
is one if and only if there exists a station accessible from all other
stations in the loop. In the case that dominated stations exist each
must lead to at least one dominating station.

Each dominating class of stations is represented by a principal sub-
matrix of P (a dominating submatrix). This submatrix is obtainable
by deleting all rows and columns of P corresponding to stations not
belonging to the particular dominating class. Similarly, all dominated
stations may be represented by one submatrix of P.

Theorem 1. Let B be a k X k submatriz of P representing a dominating
class of stations, then all vectors Y satisfying the equation,

Y'B=Y" (11a)

form a linear space of one dimension. Furthermore, all the elements of ¥
must have the same sign, i.e., either all postlive, or all negative, or all zero.

Proof. Theory of finite Markov chains (e.g., Kemeny and Snell’).

Corollary. Assume that the dominating class represenled by B is C =
{8, ,8;:, ", 8.} then there exists a unique vector Y* = (y* ,y*, ---,
y*,) satisfying equation (11a) and the scaling equalion

k
Z y* d;, = b. (12)
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Clearly Y* > 0 and any solution to equation (11a) may be obtained
by multiplying ¥* by some real number. We define a vector X =
(€, , %2, -+, x,) wherez, = 0if S; ¢ C, and z; = y}* if i = 1; . The
vector X is called a dominating solution to equations (11) corresponding
to the matrix B and the class C.

Theorem 2. Let Q be a k X k submatriz of P representing dominated
slations, then the only solution to Y'Q = Y " is Y = 0.

Proof. Theory of finite Markov chains.

Theorem 3. Suppose that the malrix P contains exactly m dominating

submairices B, , B,, -+ , B, representing dominating classes C,, C,,
.+, C,. and suppose that X is the dominating solution corresponding
toB,, i =1,2, ---, m. X 1is a solution lo equations (8) if and only if
X = E a.-X,- 3
i=1

and

Z a; =1, (13)

i=1
where oe; , @ = 1,2, -+ , m are real numbers.

Proof. 'This is an immediate result of Theorems 1 and 2.

We conclude that in the case of complete saturation, (p; = 1,7 =
1,2, -+, n), there always exists a nonnegative solution to our problem.
If there exists only one dominating class of stations in the loop, there
exists a unique solution to equations (8). If there is more than one
dominating class in the loop, then there exist infinitely many non-
negative solutions obtainable as convex combinations of the dominating
solutions.

IV. THE LOAD-AND-SHIFT ALGORITHM

Returning to the more general case, we describe in this section the
load-and-shift procedure for solving the set of equations (7) when
pi =1,7=1,2, ---,n The algorithm is based on the results obtained
in the foregoing analysis. Assuming that the capacity of the branches,
¢, may be varied between 0 and 1, we start with e = 0 and increase
it until e = 1. While so doing we simultaneously load the system and
obtain the feasible solutions for any given value of 0 = ¢ < 1.

We shall start by outlining the procedure for finding just one solution.
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Start: r: =0, e =0, PV = P, AP = ;.

Step 1: Increase » by 1. In P find a square submatrix B’ repre-

senting a dominating class of stations ¢, C'” = {8, ,
Sig y T Sik}'-}
Step 2: Find the unique positive vector Y = {y{” , y7, -,y

satisfying the set of equations
(Y(r))TB(r) — (Y(-r))T

I
>yl d,, = 1.
m=1

To determine the value of d;,, we select an 7 such that S; e C
and let d;, = a; i, -
Enlarge Y to the form X = (2" , a7, --- , &),
where 2 = 0if 8, ¢ C” and z” =y if j = 1, .
Step 3 (Load): Tind a number A"’ such that
(r) (r)
AT = Min {"”} N
T x

Sl 1

(r)

where the minimization is over all 7 such that S, e C*".
A" 21 —¢set A” =1 — ¢ set N = r, and goto “Last
Step.” Otherwise increase e by A" and continue.
Step 4 (Shift): If r = n, set N = n and go to ‘“Last Step.” Otherwise
construet the (n — 7 + 1) X (n — r + 1) square matrix P""
by adding the jth column of P to its (j + 1)th column (f j
is the last column, it is added to the first one) and then deleting
the jth column and the jth row. A""": = N7 — A"z",
i=1,2, ---,n End of rth iteration. Go back to “Step 1.”

Last Step: The solution is
N
X => aA"Xx", (14)
r=1

STOP.

Theorem 4: The procedure described above will always yield a vector
0 = X £ \in at most n ilerations.

Proof: All possible matrices P’ are stochastic. Therefore there always
exists at least one dominating submatrix of P'” denoted by B'"’.
Since X’ =2 0and A” = 0then X = >V, A X" = 0. From the

t A procedure for determining B( is deseribed in the Appendix.
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algorithm we have x = 2.7, AV XY + A" = X 4+ 2™, The algo-
rithm also ensures that A'> = 0,r = 1,2, --- , N, and therefore X < A
Since P is n X n the number of iterations eannot exceed 7.

Theorem & (Existence): X obtained by the Load-and-Shift procedure
18 @ feasible solution to equations (7).

Proof: We enlarge Y by adding zero elements corresponding to
columns of P’ not included in B‘’. The enlarged vector, denoted
by Y°” is a dominating solution to
}rTI)(r) — er

2 v di =1, (15)

jeRy
where R, is the set of indices of columns included in P‘”. These equa-
tions are equivalent [see equations (8) and (9)] to

> aPy; =1, ieR,. (16)

ieRr
It is easily verified, by the use of equation (4), that
a(ﬂ = a",' . (17)

if
The vector X" is obtained by adding to ¥°* zero elements correspond-
ing to columns of P not included in P*”, Therefore

A Z a;x” = AT, forall ieR, . (18)
From the definition of a,; , equations (4) and (5), we know that
@;_1; = a;; forall jexcept j = 4, (wherei — 1 =nifi = 1). If i ¢ R,

then z!”’ = 0. It follows that

AT D g £ AT, forall i¢R, . (19)

i=1
Summing equations (18) and (19) with respect to r and then substitut-
ing equation (14) we obtain (for N < n)

N

Yaga; = 2 A" =1, if ieR, forall r=1,2,--- N,
i=1 =1

n N

dagr; £ 2, A =1, otherwise. (20)
i=1 r=1

From the algorithm we know thatif ie R, forallr = 1,2, .-+ | N then
z; = A; . Otherwise z; = A; . This completes the proof for N < n.
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In the case N = n it is possible that D_~_, A™ < 1 (nonheavy traffic).
The theorem still holds since z; = X\; ,7 = 1, 2, - - -, n. In the following
we illustrate the use of the algorithm in solving for the flows in a 5-
station loop:

Numerical Example 1

0 1/2 1/2 0 0 [0.5]

2/3 0 1/3 0 0 0.4

P=|1/4 3/4 0 0 0 hA=10.5

1/4 1/4 1/4 0 1/4 1.0

11/4 0 1/2 1/4 0 | 10.8 ]

Table of Results
C")-domi-
r | nating Class | (" x. (" x3(") x40 50 Al €

-1_ 81, Sa, Sa. 0.6000 | 0.7000 | 0.5444 0 0 0.5714 | 0.5714
21 8y, Ss. 0.2500 0 1.0000 0 0 0.1953 | 0.7667
3| 8y, 8, Ss. 0.3123 0 0 1.0000 | 0.2500 | 0.2333 | 1.0000

The procedure terminated in three iterations yielding a solution:
x, = 0.4646
x; = 0.4000 = X,
23 = 0.5000 = X,
x, = 0.2333
x5 = 0.0508

Actually the algorithm finds the value of one variable in each iteration.
When all variables equal to their respective A,’s have been determined,
the algorithm finds in one iteration the values of all the remaining
variables. It is therefore advisable to test the possible solution X = A
beforehand.

We note that in the example there is a single dominating class of
stations in each iteration (i.e., each matrix P‘” has only one dominat-
ing submatrix B‘”’). It will be shown later that if P has only one dominat-
ing submatrix then there exists a unique solution to equations (7).
In the general case, however, P may have more than one dominating
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submatrix. This may give rise to the existence of infinitely many solu-
tions. We would now like to improve the algorithm in order to be
able to determine all feasible solutions.

Theorem 6: If P has evactly one dominating submatriz, say B,
then PV will also have exactly one dominating submatriz.

Proof: Suppose i is such that S; ¢ C”, then S; — S, for all j. We
apply the shift operation from 7 to %, (adding column 7 to column &
and then deleting row and column %), thus creating P“*". Clearly
now S; — 8, for all j. However, if there exists a station accessible
from all other stations there exists exactly one dominating class in
the loop. Furthermore C"*" = C(k).

Corollary: If P has one dominating submatrix so will P, r = 1, 2,
-, N
, N.

Theorem 7: If P has m > 1 dominating submatrices, P"*" will have
either (m — 1) or m dominating submatrices.

Proof (outline): Let B{”, By, -+ , BY’ be the m dominating sub-
matrices of P’ and let C{’, C{”, --- , C be the corresponding
classes of dominating stations. @’ is the submatrix representing
dominated stations. We apply the shift operation from 7 to & to obtain
PU*Y Without loss of generality we assume that S; e C{”. For S,
one of three alternatives must be true:

(7) S e C{”. In this case a dominating class will be formed, con-
taining some or all the remaining stations of C{”. Note that S, must
be in the newly formed dominating class since it is accessible from all
remaining stations of C{”’. Those stations of C;”’ which are not included
in the newly formed dominating class turn into dominated stations.
The matrix P"*" will then have m dominating submatrices, namely
B B ..., B! and a newly formed one.

(1) Sy e C{”, 1 # 1. In this case every station in C}” is accessible
from any remaining station of C{”. Therefore all remaining stations
of C¢ become nondominating, and P"*"’ will have m — 1 dominating
matrices, namely B{”, B{”, --. , BI",

(44i) S, is nondominating. S, must lead to at least one dominating
class. If it leads to any dominating class other than B{” then this
case becomes the same as (i2). If S, leads to B;” only, then a new
dominating class is formed. This class includes all stations accessible
from S, . Remaining stations of B{” which are not accessible from S,
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become nondominating. P”*" will have m dominating submatrices,
namely B{”, B{”, --- , B\, and a newly formed one.

This completes the outline of the proof. It is important to note that
a dominating submatrix of P'’, say B|”, will be a dominating sub-
matrix of PV if S, ¢ 7.

An Oulline of the Complete Version of the Load-and-Shift Algorithm

In the procedure for finding just one solution, outlined in the pre-
ceding, we apply one load and one shift operation in each iteration.
In the complete version of the algorithm we need to apply several
such operations in each iteration. To eliminate possible confusion the
superseript denoting the iteration number will be placed at the upper
left side. Thus, for example, ’P is the stochastic matrix remaining
by the beginning of the rth iteration.

Definitions: Suppose P has m, dominating submatrices, B, ,
“B,, -+, B, , representing classes “’C, , 7'C;, -++ , C,, .
The matrix ‘P was obtained from ‘P = P by executing some sequence
of load and shift operations. In order to keep track of these operations
we relate to B, a set "’E, containing labels. If the label *’a; ¢ " E;
we know that “’B; cannot be obtained unless the appropriate shift
operation is applied to *’B; . Thus, when K, ,7 = 1,2, -+ , m,,
are given, the exact sequence of load and shift operations that led us
to P is known.

The n dimensional vector “’A denotes the remaining unutilized
flows at the n stations of the loop. The m, dimensional vector e =
(e , e, -+, "en,) describes the amount of branch capacity
utilization. Thus ¢; is the amount of branch capacity utilized by
the sequence of load and shift operations resulting in ‘' B, .

For each “’B; it is possible to determine the dominating solution
X, and the quantity “’A, in the manner described in steps 2 and 3
of the procedure outlined previously.

We say that "B, — B, if when applying a shift operation on the
appropriate column of B, all remaining stations of “’C; lead to
stations of “’C; . If ’C; consists of a single station then "'B; — 'B;
if the shift is from this station to a station in “’C; or to a dominated
station leading to ’C; . The submatrices ’B, ,7 = 1,2, --- , m, ,
divide into three types: transient, terminal, and ring members.

Ring: Theset R = {“'B,,, "'B,,, ---, "'B,} is called a ring if
it satisfies three conditions:
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(1:) (r)B‘_. —_ ‘,]B,-, e — (”Big — (r)B‘_. ,
(@) B, ,j=1,2, ---, k, does not lead to any dominating
submatrix outside of the same ring,

@) 1 — 25, (Ve — TA;) > 0.
Terminal: (i) If conditions ¢ and % above are satisfied while con-
dition 777 is violated the matrices ’B,, , "'B,,, ---, "'B,,

are called terminal matrices.

(i) If A; = 1 — ¢, then “’B; is terminal.

(#7) If "B, is terminal and “’B; — “’B, then "’B; is
terminal too.

Transient: B, is called transient if it does not belong to a ring
and is not terminal.

There is a strong similarity between the notion of a ring and the notion
of a dominating class. To identify rings one may use essentially the
same technique proposed in the Appendix for identification of domi-
nating classes.

It is important to observe that when applying the appropriate shift
operations to all members of B, what remains of B will form one domi-
nating submatrix and possibly some columns and rows corresponding
to dominated stations will be left out. This property follows from
Theorem 7.

The following is an outline of the algorithm:

Start: =0, "P: =P, "x: =) Ye =0, VE; : = ¢.

Step1: r:=1r+ 1.

Find all the dominating submatrices of “’P denoted by "B, ,
B, , -+, B, . Caleulate the numerical values of ‘A,
and "X, , corresponding to “’B;, "'\, and e, ,i = 1,2, -+ -,
m, . Find all the rings of ‘"’ P denoted by "R, , "R, , --- ,
'R,, . Identify the terminal and transient dominating sub-
matrices of “’P. If all dominating submatrices of “’P are
terminal go to LAST STEP. If the number of columns of
P equals the number of its dominating submatrices who
form into one ring, go to LAST STEP 1. Otherwise ‘"A; : = 0
for all “’B; not belonging to a ring.

Step 2: Execute the appropriate shift operations to all “’B; belonging
to rings and obtain “*”P. Note that in “*VP there will be
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one dominating submatrix corresponding to each ring of ’P
and, in addition, all terminal and transient dominating sub-
matrices of P will be dominating in " P.

Step 3:

My

(rely L 0y Z a0y
. = 1 P

i=1
(r+1)

€ = > (e, + A), i=1,2 k.

(i Bret IR

r) r -
(r+1}ei:=( e;where('+’)B‘=“B,-,1,=k,+1,k,+2,---,
Meyy -

g = U (DB U %), i=1,2, k.

15 BT R

(r+I)E‘_ s = (”E; where (r+1}Bi — (r)Bi , = kr + 1] kr + 2, -
m, ., . GO TO STEP 1.

Last Step 1: The unique solution is X = A. STOP.
Last Step: N: = r.

All the solutions are given by

N mr
X — 2 Z (r)a" (r)Xi , (21)

r=1 i=1
N
2

r=1 i=

M

Do, =1, 0= e, £ A, P, =0, r=2

unless %o, = “A; forall “a;e TE;. STOP.
Note that it is advisable to test the possible solution X = A beforehand.

Theorem 8: The load-and-shift procedure will yield vectors 0 < X = \
in al most n iterations. Each such vector, given by equation (21), is a
feasible solution to set of equations (7).

Proof: The proof is practically identical to the proofs of Theorems
4 and 5.

The use of the algorithm is illustrated by a 10-station numerical
example.
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Numerical Example 2

S 08 8 S
0 0 1 0
0 0 0 1/2
1 0 0 0
0 14 0 0
p_wp_|0 34 0 1/4
0 0 0 0
0 o0 0 0
0O 0 0 0
0 0 0 0
:0 _0 0 0
0.10
0.46
0.20
0.20
Ly | 065
0.50
0.45
0.60
0.50
11.00
We first observe that ‘" P has m, =
S,
S S, 0
‘”B1=[0 IJ, B, = |1/4
1 0 3/a

The calculated results for the first
following table.

S, Ss S S S, Sy
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
34 0 0 0 0 0
0O 0 0 0 0 0
0 0 0 1 0 0
0 1/4 0 0 3/4 0
0 1 0 0 0 0
0 0 1/4 0 0 3/4
0 1/4 1/4 0 1/2 0 |

3 dominating submatrices

S, S,
/2 1/ Sy S
0 34|, B, =|° 1}-
1/4 0 R

iteration are summarized in the
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It remains to show that the load-and-shift algorithm will yield all
the feasible solutions to equations (7).

Theorem 9: If X" = (20,23, -+, x¥) is a feasible solution to equations (7),
then
N
\; 2 2! 2 Min {Z i A} (22)
i=1

Proof: The left-side inequality of (1) is part of equations (7). For the
right-side inequality, suppose first that 2] < X, , then

:E: ﬂ;ixg =1 alni :E: a;_lix? §§ 1.

i=1 i=1

Taking the difference we obtain

2 (@ — aiy))z} Z 0. (23)

i=1
From the definition of @,; we have that

A;; — Qi—; = —Pji, fOI' all j = 'E',

and

Qi — Gy = 1 — pyi.
Therefore

Z? P E PHW? . (24)
i=1

It follows then that 2% = A, if D__, p;:27 = A, and therefore

o2l 2 Min{z Pi-‘x? ’ )\-}'

i=1

Theorem 10: Let X° be a solution to equations (7), and assume that A > 0,
then

(?) If 2} = 0, then 2% = O for all © such that S; — S, .

(%) If 2% > 0, then 27 > 0 for all © such thalt S; — S; .
Proof: If S; — S, there exists a sequence P; i, » Pickas *** 3y Phrs ke s
P+, whose product is positive. Suppose z° > 0, then min (Q_%_, P,
M) = pin; > 0. From relation (22) it follows that z}, > 0 and simi-
larly 2y, > 0, -+, 2% > 0. This proves 7. The proof of ¢ is immediate.

Remark: The assumption A > 0 is not restrictive. If \; = 0, we apply
a shift operation to the 7th column of P.
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Theorem 11: Let B be a dominating submatrix of P and assume,
without loss of generality that C'"' = [S,, Sy, -+, S.} is the class of
dominating stations represented by B. AV and XV are then uniquely
defined. Suppose X° is a feasible solution to set of equations (7) then

Either: (1) 20 = ax”,i=1,2, -+ k0= a =< AV,
or: (@) 20 = AWV ;1 = 1,2, -+, k, where the inequality

1s sirict for at least one value of 1.
(77) If 7 is the case then x° = 0 for all S; ¢ C*" and leading
to C'". If there exists such an S; and x} > 0, then ii is

the case.
Proof: Since B is a dominating submatrix then D ., p,; = 1 for
i=12 -,k
(?) We assume that 2] < \, for7 = 1, 2, -+, k and then sum the

first k inequalities (24) to obtain

k k n k
Lotz it 2 L
For this relation to hold it is necessary that 2} 2 %, p;; = 0 for all
i =k + 1. If ' is not accessible from S, then X %, p;; = 0, other-
wise either ».%_, p,;; > 0 and therefore 2} must equal zero, or S; — S,, ,
m =k +1,and 2.5, p.. > 0and therefore z,, must equal zero. From
Theorem 10 we know that in this event 2f = 0. Concluding then that
22 = 0forall {j:8;¢C"} and S; — C" we obtain [in a manner similar
to the one used in obtaining relation (24)]

k
(] U] -
€T = Zpl'i:viy %=l,2,"',k,

i=1
yielding

2 =ax!V, 1=1,2, -,k

1

Since 0 < 2% < A, we have that 0 £ & < A", It also follows that if
there exists S; ¢ " and leading to C"’ and 2} > 0 then there exists
at least one value of 7,7 = 1, 2, --- , k, for which 27 = \..

(77) Suppose there exists a value of 7, ¢ = 1, 2, --- | k, such that
2 =z A"z, From Theorem 10 it follows that 2? > 0 for all 7 =
1,2, -+, k. We select a number a, A"’ > a > 0, such that

Min {2} — az’} = 27, — azx{) = 0.
1=1,2,¢¢¢ .k

1)

Clearly if such an a exists then 2, < A™2%) and from relation (24)
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we have
n
0 0
xi, = Zpiimxi . (25)
i=1
On the other hand we have

k
$?m = ﬂf-'ﬂ-": = Z ?Jﬁ..a-'ﬂ:('”- (26)
i=1
Subtracting equation (26) from (25) yields

k n
0= 2 piina} —ax") + 2 piinal .
i=1 i=k+1
Since S;, e C'" there exists a value of j, j # 4,, and S, ¢ C*, such that
Piin > 0. It follows then that 2] = ax{” for¢ = 1, 2, --- , m. This
is a contradiction, which completes our proof.

Corollary: Let ‘"B, , "B, , -+, "B, be all the dominating submairices
of P = VP, and let ‘VC,, VCy, -+, ""C,, be the corresponding domi-
nating classes. If X° is a solution lo equations (7) then either

Xn — z‘: “)G!" (I)X‘ , Zi (l)a‘_ — 1, 0 é (l)a‘_ é (I)Ai , (27)
i=1 i=1

or there exists al least one class of dominating stations, say 'C, , such

that X° = VA, VX, .

Theorem 12: If X° 1s a feasible solution to equations (7) it is obtainable
by the load-and-shift algorithm.

Proof: If X°is given by equation (27), it is obviously obtainable after
one iteration of the algorithm. Otherwise there exists a class of dominat-
ing stations, say ‘’C,, such that X° = ‘““A,”X;. We execute a
shift operation involving the submatrix ‘”’B; and obtain a stochastic
matrix P (note that P # “P). We let X"® = X° — Ma, VX,
and A =X — PA,VX, . Clearly X°* is a feasible solution to equa-
tions (7) when using as parameters P and \® and replacing the
right side by 1 — ‘A,. It is possible therefore to proceed with a
sequence of load-and-shift operations until X° is obtained. Since the
algorithm takes into account all possible sequences of load-and-shift
operations, X° is contained in the set of solutions given by equation (21).

Corollary (uniqueness): If P has exactly one dominating matriz then
there exists a unique feasible solution to equations (7). Note, however,
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that this is not a necessary condition for uniqueness. It is possible that P
will have several dominating submatrices and the solution will be unique.

V. DISCUSSION

The heavy traffic assumption enables us to regard the system as a
deterministic one. The analysis of the deterministic flows shows that
stations tend to “band” into classes with the ability of dominating
the system and preventing other stations from using it.

This undesirable property, which can be eliminated by exercising
appropriate control, also may affect the stochastic behavior of the
system when heavy traffic conditions do not exist. One can imagine
two classes of stations competing for domination of the system. Since
traffic is not heavy, all the stations in the system are able to deliver
their messages in finite time. Nevertheless, when one dominating class
controls the system, it will prevent other stations from using the belt
line until the queue at one of the stations belonging to this class becomes
empty. At that moment the competing dominating class is able to
take over and prevent other stations from using the belt line. This
may result in a situation of alternating priorities (see Ref. 4) where,
while one class is served, the queues at the competing class build up.
While average queue sizes may not be strongly affected, the strong
fluctuations in queue lengths may be undesirable. This possibility has
been explored numerically by the use of a digital simulator.” The
operating principles of the simulated system will be explained with
the aid of Fig. 2.

Each of the stations is represented by a B-box. A packet coming
out of a station is first multiplexed on the line by the B-box, provided
the line is free, and then is passed from B-box to B-box until its destina-
tion is reached. At each B-box on the way the address of the packet
is examined. At the particular B-box of destination the packet is taken
off the line. The main function of the A-box, shown in Fig. 2, is syn-
chronization of the loop.

Assume that the packets are made of L bits each and the address
is given in the first k bits of the packet. A time unit in this system is
the time it takes to multiplex a bit on the main line by a B-box. Assume
also that the traveling time from one B-box to the adjacent one is
zero. Station 7 is allowed to start sending a packet at times mL + ik,
m =0,1,2 -, providing that the main line is free. The A-box is
a buffer. Bits coming out of the B-box of station n accumulate in the
A-box. Suppose at time k B-box 1 starts sending a packet. At time
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STATION
4

STATION
3

STATION
1

Fig. 2—A schematic description of a loop with n stations.

k + 1 the first bit reaches B-box 2 and is delayed there until time 2k
when the whole address of the packet has been received. If the packet
is addressed to station 2, it will be taken out and at the same time
B-box 2 can start sending out its own packet. If the packet is not ad-
dressed to station 2, it will be sent from B-box 2 to B-box 3 where the
same process will take place starting at time 3k. Bits arriving at the
A-box are buffered. At time L the A-box starts to send bits (at the
same rate as a B-box) until a whole packet has seen sent. If the buffer
is empty the A-box will wait another L time units and will start sending
at time 2L. In general, the 7th B-box checks its buffer at times mL + ik,
m = 0,1, 2, ---, and if the buffer is empty it may start sending its
own packet. If the buffer contains the address of station ¢, the B-box
will remove the arriving packet and may, at the same time, send out
its own packet. If the buffer contains an address different than station
1, the B-box will pass on the arriving packet.

In a similar manner the A-box checks its buffer at times mL, m =
1, 2, + -+ ,. If the buffer is not empty, it sends out L bits. If the buffer
is empty, the A-box remains inoperative for the next L time units.

The loop time is the time it takes a bit to complete one round of the
loop, and is measured in multiples of L. In the single A-box loop de-
seribed here the loop time is the smallest integer greater than or equal
to nk/L where n is the number of B-boxes in the loop. Clearly there
is a complete analogy between the loop desecribed here and the one
presented in Fig. 1 if the number of revolving arms is taken as equal
to the loop time.
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It is important to note that the simulated system described here
represents only one conceptual way in which the loop may be operated.
It is possible, for example, that the packets will move from one B-box
to another in one block rather than bit by bit. This is equivalent to
placing an A-box between any two B-boxes (n rotating arms).

We have used the digital simulator to examine the queuing char-
acteristics of several small systems. The main purpose of the simula-
tion was to study the effects of dominating classes in nonheavy (non-
saturated) traffic situations. Numerical results are presented for an
8-station loop with two dominating classes C, = (8, 82, Ss, S
and C; = (S5, Ss, S7, Ss). The loop time for this system was selected
to equal 1 (one rotating arm) and the system was simulated for three
different expected main line loads (utilization). The P matrix and
average queue sizes (in packets) at the stations are shown below.

Simulated Example: 8-Station Loop (Two Dominating Classes)
Sl S2 Ss S4 85 SB ST .Ss

sf[o 1313 1/3:0 0 0 0
S./1/3 0 1/3 1/35 0 0 0 O
S.|1/3 1/3 0 1/3?0 0o 0 0

p-S|VB 18 13 040 0 0 0
S 0 0 0 oio 1/3 1/3 1/3
S/ 0 0 0 0 51/3 0 1/3 1/3
S0 0 o0 0 51/3 1/3 0 1/3
S0 0 o0 0 :1/3 1/3 1/3 0 |

Line and

Source Average Queue Sizes

No. | Utilization S Ss S Sy S; Ss S7 Ss Ave. Max.

1 [A=023,|9.710.1138 6.715.6 14.6 11.2 6.8 | 11.1 | 33-58
p = 0.956

2 |A=022,|56 56 6.1 3.0 50 6.8 52 3.2| 5.1 |26-45
p = 0.916

3 |A=00213 |24 26 1.9 1.1 2.4 23 2.1 1.2| 2.0]|16-22
p = 0.852

The alternating priorities effect, due to domination, is demonstrated
in Fig. 3. The total number of packets at the four queues of C, (dotted
line) and C, (solid line) were plotted against time. For the case p =
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Fig. 3—Simulated queue sizes.

0.956 (high utilization) one can clearly see that only one dominating
class is served at one time. When stations of C, take over control
of the system the queues at stations of €, build up while at C, they
are being depleted until the queue at S; reaches zero and C, can take
over.! The average cycle time (time elapsing between two consecutive
peaks of the dotted or solid lines) for this case was 110 time units.
As the load on the system is decreased, the alternating priorities effect
becomes less and less distinctive. For p = 0.916 (not graphed) the
average cycle time reduces to 23 time units, and for p = 0.852 (see
Fig. 3) alternations are very frequent and cycles are practically un-
noticeable.

Notwithstanding the complete symmetry within classes the average
queue sizes at S, and S; are consistently smaller than the average
queue sizes at the other stations. The explanation of this phenomenon
is as follows: At a moment when C, loses control to C, the queue size at
8, is zero while at §,, 8;, and S, it is greater than or equal to zero.
From that moment on the queues of C, build up at equal average rates
until the moment control returns to C, (peak of the dotted line in Fig. 3).
At that moment the queues start being depleted at equal average

t Note that the queue size at Ss being zero is a necessary but not sufficient condition
for losing control.
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rates. Since the expected queue size at S, is smallest, it has a higher
probability of being completely depleted first. This phenomenon tends
to shorten the alternations cycle.

The alternations cyecle will be shorter when the number of rotating
arms (loop time) is increased. Therefore large loops (local or regional
loops) will be relatively more stable when high utilization occurs.

The nature of the stochastic process used for generating packets
at the stations of the loop is described in Ref. 5.

An important aspect, not analyzed in this study, is the question
of the order of stations in the loop. Clearly, the amount of traffic the
loop can carry and the resulting congestion are strongly dependent
on the specific order of the stations in the loop. In Example 1 we have
assumed counterclockwise traffic direction. If we reverse the direction
of traffic on the main line we shall get a different solution for the flows.
The two solutions are compared in the following:

Counterclockwise Clockwise Flow
Flow Direction Direction
xr, = 0.4646 r = 0.5000 = )\[
r, = 0.4000 = A, z, = 0.4000 = A,
xy = 0.5000 = A, z3 = 0.5000 = Aq
xy = 0.2333 z, = 0.0917
x; = 0.0508 x; = 0.3667
Total: 1.6487 1.8584

Reversing the flow direction results in an increase of 13 percent in
the amount of satisfied demand.

In a practical situation not all orders are feasible. Still the number
of feasible orders may be overwhelmingly large and an appropriate
algorithm for determining best order is called for. An interesting pos-
sibility is a double loop system where each station is connected to two
loops with opposite traffic directions. This may increase reliability
and enable better utilization by allocating traffic in an efficient manner.
One possible allocation rule is shortest distance allocation where the
loop to be used is the one with the shortest travel distance for each
particular message (this is an example of a possible rule and is not
proposed as an optimal rule).

The bounded linear complementarity problem presented by equa-
tions (7) is of somewhat more general interest, bearing little relation
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to the Pierce loop. In matrix form we have
X4+ U =\,
AX+Z =1,
U'Z =0, Uzo, Z =z 0, Xz0.
Substituting X = X\ — U we obtain the same set of relations in a slightly
different form.
AU —Z = AN —1=g¢q
U2 =0, Uz=0, Z =0, U=z (28)

It is now possible to compare our problem to the Fundamental Problem*
treated by Lemke,’ and Cottle and Dantzig.*

AU — Z = ¢
U'Z =0, Uz0, Z=0. (29)

The only basic difference between the two problems is that in our
problem U is bounded from above while in Lemke’s problem U is
unconstrained. In this respect our problem is more general. The shift-
and-load procedure is, however, fundamentally based on the specific
structure of A and ¢ and may not prove useful for a wider class of
parameters.
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APPENDIX

In this appendix we outline a procedure for determining all dominat-
ing submatrices of a given stochastic n X n matrix P.

Step 1: Construct a matrix II = {r,;} where
mij = [1 lf pﬁ > 0’
0 otherwise.

t The term “Fundamental Problem’ was coined by Cottle and Dantzig. ?
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Step 2: Q = [q.;}: = IL
Doforj=1,2, -+ ,n
Repeat until g,; , k = 1, 2, --- , n, remain unchanged.
qki:=qki+[2 Qki k=12 ,n.
i:gij=1]
(Note that all additions are Boolean.)
If S; — 8, then in the resulting matrix @ the element ¢,; = 1.
Otherwise ¢;; = 0.
Step 8: Construct a matrix @ = {g?;} such that
a7 = q7 = €Gigii -
If S, does not belong to a communicating class then ¢;;’ = 0,
j=1,2, -+, n Otherwise ¢Y = 1and S; ¢ C(7) if and only
if ¢! = 1. C(7) is closed (dominating) if and only if the 7th
row of Q*” is identical to the 7th row of @.
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