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Improved Intersymbol Interference
Error Bounds in Digital Systems

By Y. S. YEH and E. Y. HO
(Manuseript received April 21, 1971)

A thorough solution to the problem of determining the error rale of a
digital communication system with intersymbol interference and additive
Gaussian noise is presented in this paper. The solution achieves for the
first time a combination of computational simplicity and a high degree
of accuracy, and is oblained by deriving tight wpper and lower bounds
on the error rate. It is shown that, for a system with a normalized peak
distortion less than unity, these bounds can be made to differ by an arbi-
trarily small amount. The numerical evaluation of the bounds takes less
than one second on the GE-Mark II time-sharing system for almost all
the cases.

Examples are given for 2M-ary digital systems lo demonstrate the
accuracy and computational efficiency of our method. The results show
thal our estimales of error rate are generally orders of magnitude better
than the Chernoff bound. For example, in the case of an ideal bandlimited
system [(sin 1)/t pulse shape] with a signal-to-noise ratio of 16 dB and a
sampling instant deviation of 0.05 from the optimum value, the lower
and upper bounds on the error rate are 1.1 X 1 0™ and 1.2 X 107%, respec-
tively.

This method can also be applied to the calculation of the performance
of cerlain phase-shift-keyed systems and certain systems with co-channel
interference.

I. INTRODUCTION

In many cases the transmission efficiency of a digital system is
Jargely limited by intersymbol interference rather than by additive
noise. Intersymbol interference may result from imperfect design of
the filters, distortion in the transmission channel, nonideal sampling
instant, or nonideal demodulating earrier phase. In analyzing such a
digital data system, it is important to determine the system error rate
due to intersymbol interference and additive noise.
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Various methods'™ to evaluate the error rate have been proposed.
They provide either a loose upper bound of the error rate or the error
rate of a channel with truncated impulse response.

In this paper we present a simple method to evaluate both an upper
and a lower bound of the error rate without invoking the finite pulse-
train approximation. Furthermore, it is shown that for a system with
a normalized peak distortion less than unity, the upper and lower
bounds can be made arbitrarily close thus obtaining an accurate estimate
of the error rate of the system. This method can be applied to 2M-ary
AM and coherent phase-shift-keyed systems.

The data system model will be described briefly in Section II. Various
proposed techniques to evaluate the error probability and their draw-
backs are discussed in Section III. In Section IV, we will present new
upper and lower bounds and the computation of the bounds by a series
expansion. Applications and the convergence properties of the bounds
are described in Section V. Throughout, additive Gaussian noise and
independence of information digits are assumed.

II. BRIEF DESCRIPTION OF THE SYSTEM

A simplified block diagram of a digital AM data system is shown in
Fig. 1. We assume that an impulse §(f) having amplitude a, is trans-
mitted through the channel every T seconds. The system transfer
function is

R(w) = S(w)T(w)E(w). (1)

In the absence of channel noise, a sequence of input signals,

> a8t — ITY, e)

I=—00

will generate a corresponding output sequence,

o0

2 an(t — 1), ®
where r(t) is the Fourier transform of R(w), {e;} is a sequence of in-
dependent, random variables, and e, = *1, &3, -+ £ 2M — 1)
with equal probability for all integers, . We also assume that additive
Gaussian noise is present in the system. Thus the corrupted received
sequence at the input to the receiver detector is

o0

() = ;E ar(t — IT) + n(?), )

=—wx
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Fig. 1—Simplified block diagram of a 2M-ary data system.

where n(f) is additive Gaussian noise with power ¢° watts. At the
detector, y(¢) is sampled every T seconds to determine the amplitude
of the transmitted signal. At sampling time ¢, , the sampled signal is

ylts) = ate) + 2 ar(to — IT) + n(t). (5)
I=—o0
=0
The first term is the desired signal while the second and the third
terms represent the intersymbol interference and the Gaussian noise
respectively.
The set of slicing levels is'
0, =2r(t), £4rl), -+, £2m — 2)r(L). (6)

Based on the decision levels given by equation (6), for a particular
transmitted signal level, a, , the conditional error probability is
Ply(ty) = —2(m — Ir(t)}, a0 = —(2m — 1)
Ply(t) £ 2(m — 1r(ta)}, a = 2m — 1
Plly(ts) = (ao + Dr(t)1Uy(t) £ (ao — Dr(to)]},
a, # +£(2m — 1),

where AUB is the union of the events A and B.

Substituting equation (5) into (7), we obtain
P{Y ar(ty — IT) +n(t) 2 7(t)}, @ = —@2m — 1)

PIY ap(te — IT) + nlt) £ —r(t)}, @ =2m — 1
P.(e/a)) = 1 '° (8)
P ar(ty — IT) + n(ty) = r(t)]U

1#0

P.(e/ay) = (7)

[Z air(te — Iy 4+ n(t) = _T(tu)]}r a, # +(2m — 1).

1#0
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Since ;.0 a;7(t, — IT) and n(t,) are equally likely to be positive or
negative, equation (8) reduces to

P E ar(t, — IT) + n(ty) = r(tn)}, a = +=(2m — 1)
Pr(e/aﬂ) = 0 (9)
2P Y awr(te — IT) + nlte) = r(ta)}, a0 = £(2m — 1).

1#0

The error rate of the system is

P, = Y. P.(e/ao)P.(a)

all ao

[(2m — 1)/m]P| ;j) ar(ty — IT) + nlty) = 7(to)}. (10)

We notice that in equation (10) the variables m, a; , and n(f,) have
already been defined. The sequence r({, — IT) is assumed to be known*
in the following sense:

r(to — IT) 1is finite and known WVlie Sy, (11)
where Sy is a set of N + 1 distinet integers (including I = 0) and'
”ZS; e — IT) = a7 < . (12)

Define
X = 2 ar(t, — IT). (13)

1#0

From equation (12) we conclude that the infinite sum X converges
absolutely to a random variable and equation (10) can be alternately
written as

P, (2re™) ™} ji exp {—[y — r(t) + X]*/20°} dy dF(X).  (14)

all X

III. REVIEW OF EXISTING METHODS

The existing methods of evaluating equation (10) can be divided
into the following categories.

3.1 Worst Case Estimate

A worst case sequence’ or ‘“‘eye pattern’’ analysis is frequently used
to analyze a data system. The error probability is estimated by setting

* The sequence r(f;, — [T) is either experimentally determined or calculated
through the system transfer function.

t ¢,2 is obtained through the application of Parseval’s theorem to equivalent
Nyquist pulse (p. 47, Ref. 1).
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D ino ar(ty — IT) to its worst case value in equation (10). In many
cases, this estimate is exceedingly pessimistic since the occurrence of
such a worst case sequence is extremely rare.

3.2. Chernoff Bound

Recently, Saltzberg® and Lugannani® applied the Chebyshev in-
equality to equation (10) to obtain the upper bound on error prob-
ability. We have shown in Ref. 6 that these upper bounds are in many
cases still too pessimistic by orders of magnitude.

3.3. Finite Truncated Pulse Train Approximation*'’®

When r(t) decreases rapidly relative to the sampling period T, we
may approximate the channel by a finitely truncated pulse train.
The error rate can be calculated by enumerating all the possible com-
binations of intersymbol interference. However, since each calculation
of the conditional error probability takes a great deal of computer
time, the number of m" must be held to several thousand.' This limita-
tion leads to a poor approximation of the true channel, and the error
probability so obtained is not very useful. Recently, Hill® has reported
that by computer simulation of the density funetion of X , the com-
putation time can be reduced.

3.4 Series Expansion Method

Recently, Ho and Yeh" and, independently, Shimbo and Celebiler’
discovered that equation (10) can be calculated in terms of an ab-
solutely convergent series involving moments of the intersymbol
interference.* Furthermore, the moments can be obtained readily
through recurrence relations, and the computation time is greatly
reduced. A better approximation of the real channel ean be obtained
by increasing the number of terms in the pulse train approximation,
However, the error in the P, estimate introduced by the truneation
of the system impulse response is still unknown,

IV. ERROR BOUNDS AND COMPUTATION TECHNIQUES

In this section we shall derive new upper and lower bounds on the
error rates and define the range of applicability of our method. No
truncation of the intersymbol interference is required. Furthermore,
this method will give an accurate estimate of the error rate with a
negligible amount of computation time.

* Only truncated pulse train approximations are considered.
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4.1 Upper and Lower Bound of P,

Let the intersymbol interference be partitioned into two disjoint
sets where

Xy = Z ar(ty, — IT), (15a)
g
and
Xp = 2 ar(to — IT). (15b)
SN

Equation (14) can be rewritten as

P, =fem—D/m [ f C

0

[ exp (—ly = ) + X + Xal/20") dy dF(X,) dF(X).

(16)
Proposition 1: P, is lower bounded by

P, = [@m — O/m] [ e

[ "w exp [— (v — r(t) + Xx)2/20%]) dy dF(X,),  (17)

provided the truncated system has an “open eye pattern,” i.e.,

rt) — 2 |rto — 1) | 2 0. (18)

leSy
1#0

Proof: The complementary error function is concave upwards for

negative values of its argument and satisfies the following relationship:
Lerfe (z + o) + s erfec (z — a) = erfe (2), z = 0. (19)

Sinece Xy is symmetrically distributed around zero and X, satisfies
equation (18), we obtain, by applying equation (19), that

fllX)z f—{; exp {—[y — r(to) + Xy + XR]Z/Z‘TE} dy dF (Xpg)

= ‘[_0 exp {—[y — r(fo) + XN]2/20'2] dy. (20)

Substituting equation (20) into equation (16), we obtain the lower
bound of equation (17).
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Proposition 2: P, is upper bounded by

P, = [@m — 1)/m] f G

- f exp (—[y — r(t) + XuI*/20%} dy dF(Xy),  (21a)

where
o = o' (1 — ap/d”)™, (21b)

cr = (1/3)(2m — 1)(2m + 1)o7, (21¢)
and ¢ is defined in equation (12).
Proof: Applying the following inequality,
exp | —X7/26°} £ 1, (22)

to equation (16), we obtain
P, < [@m — 1)/m] [ [ e
all Xy ¢ —wm Yall Xpg

cexp {—[y — r(t) + Xy]*/26°)
vexp [—[y — r(te) + Xy]Xz/c"} dF(X3) dy dF(Xy). (23)
IKnowing from equation (15b),

Xe = 2 ap(ty — IT),

lySw

the average over X can be performed, we thus have
f e (=l — 10 + XuIXa/o"} dF(XL)
a AR

= H (exp {—[y — r(ts) + Xylar(ty — ZT)/‘TE})ar ) (24a)

I§SN

where {g(x)). means expectation of g(x). It has been shown* that the

following inequality holds.
(exp {a;x})., < exp (2°0%,/2) = exp {2°(2m — 1)(2m + 1)/6}. (24b)

Substituting equation (24b) into (24a) we obtain
[ e i=ly = ) + XulXa/o") dF(Xe)

< exp {ly — r(ts) + Xal0e/26"}, (240
* Appendix of Ref. 6.
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where o} is given by equation (21c¢). Substituting equation (24c) into
(23) we obtain the upper bound of equation (21a).

It is interesting to note that the upper bound differs from the lower
bound only through a modification of the noise power by the truncated
terms. For a system with a peak distortion* less than unity, by taking
the set Sy large enough o2 approaches zero, o; approaches ¢°, and the
upper bound converges to the lower bound. Therefore, the exact error
probability can be located within a small range. The computation
time involved for large enough N is rather minimal when a digital
computer is used as will be illustrated in Section V.

4.2 Evaluation of P, and P,

We have already shown in Ref. 6 that equations (17) and (21) can
be expanded into an absolutely convergent series involving moments
of the truncated intersymbol interference.

The series expansion of equation (17) is

P, = (@m — 1)/m] erfe [—r(t) /@)
+ [@m — D/m] 3 (K1) exp (—r (120"
Haer(r(10) /(P o) M, (25)

where

H,,._, 1s the Hermite polynomial,
M 5, is the 2kth moment of the random variable X .

The series expansion of equation (21) is similar to equation (17),

Py = (rrx/o){[(Zm — 1)/2m] erfe [—r(t))/(2}01)]

+ [@m — 1)/m] X (2017 (2e) ™)~ exp [—r"(t)/207]

=1

'szgl(?'(tu)/@%ﬂ’l))Mzk}‘ (26)

The moments (M) can be obtained through the characteristic
* Normalized peak distortion (D,) is defined as

D, = ¥ Irlte + nD)|/Ir(to).

n#0
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function of X, without the explicit evaluation of the distribution
function. The recurrence formula for M, is

M, = _Z (gf )Mrz-:k a(—=1)° {‘)2'[(2'”7*) — 1]/24} [Bz.- |

2 r(te — 1), @7

I=0
leSN

where B,; are the Bernoulli numbers.

4.3 Truncation Error Bound of Series Expansion

The error incurred by truncating the series of equation (25) at
(n — 1) term is given by

= [@m = /m] T @)@ @™ exp [F(10)/20']
Hoa[r(t)/(240)]- Mo (28)

Let
N=max | Xy|=Cm—1) > |r(te — IT) |. (29)
leSy

10
It can be shown that the moments satisfy

Mypioy < MyN™, p=0,1,2, --- . (30)

For (2k — 1) > =z, the Hermite polynomials are upper bounded by

| Hooo(z) | < 2°7H(2k — 3)1M] v/2% — 1 exp [2%/2]. (31)

Substituting equations (30) and (31) into equation (28) we obtain the
following:

| R, | = [(2m — 1)/m]2m)F exp [—r'(ts)/40"]

D267 3 ()@ — 1) /20)

k=n

< [(2m — 1)/m](2m)7F exp [—r"(to)/40"]

M, (207)7 {E (k)7'(2k — DTH(/20°)""

k=n

+ (P)7'2p — DTHON/20°)" (L — N/ 21062)_1} y o (32)
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\ P, = UPPER BOUND —<

/._..-——l"_-.—_'

|
P =LOWER BOUND~

ERROR RATE

_~—Py = TRUNCATION
- ERROR BOUND

— P = TRUNCATION

- ERROR BOUND

10-10 | ] | 1 | | | 1
o 1 z 3 4 5 6 7 -] 9 10

NUMBER OF TERMS IN EQUATIONS (25), (26), K

Fig. 2—The convergence of the series expansion method; (sin #/7T)/(wt/T) pulse,
binary AM system, {, = 0.05 7, SNR = 16 dB. The set Sy includes the first 12

sampling points around {,.

where p is an integer which is chosen to satisfy (\*/2ps®) < 1. Similar
truncation error bounds can be obtained for P, .

V. APPLICATION

The error probability of a 2M-ary digital AM system with an ideal
band-limiting pulse signal operating over an ideal channel is calculated
by equations (25) and (26) to determine the convergence of the method.
The received binary pulse is assumed to be

r(t) = (sin wt/T)/(xt/T). (33)
The system SNR is defined by
SNR = {(a2)r*(0)/c". (34)

The convergence of the series expansion method is illustrated in Fig. 2.
The system is binary with the sampling instant deviated by 0.057
from its nominal sampling instant. The SNR is 16 dB. The set Sy
includes 12 elements, ie.,, I = +1, 2, --- , £6. It is observed that
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Fig. 3—Convergence of Py, as a function of number of terms in the series expansion;
(sin wt/T)/(wt/T) pulse, 4-level digital AM system, ¢, = 0.05 T, SNR = 23 dB.
The set Sy includes the first 12 sampling points around ¢,.

the series converges after 3 or 4 terms. A similar example is given in
Fig. 3 for a 4-level system with SNR = 23 dB.

The convergence of the upper bound to the lower bound with in-
creased size of Sy is illustrated in Figs. 4, 5, and 6 for binary and 4-level
systems respectively.* It is observed that the two bounds indeed
merge together as N is increased. The upper and lower bounds on the
error rate were calculated using a program written for the GE-Mark II
time-sharing system. For the examples given here, computation time
was less than a second. The change of N from 6 to 30 hardly had any
effect on the computation time which indicates that one should start
with Sy sufficiently large such that ¢? is small in comparison with o°,
probably of the order of 0.2 ¢° or smaller. Under this condition the
upper and lower bound should be fairly close. As a comparison, the
Chernoff bounds are also presented in Figs. 4, 5, and 6.

The method given here can also be applied to the calculation of the
error rate of a coherent phase-shift-keyed system. The error rate
calculation of a two and four phase system can be reduced to the basic

* The number of terms in the series expansion used to calculate the pvints in these
figures are determined so that the truncation error is negligible.
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Fig. 4—Convergence of P, to P ; ideal band-limited pulse, binary system, SNR =

16 dB, ¢, = 0.05 T'.

formula, equation (10)," which then requires the determination of

P Z air(te — IT) 4+ n(ty) = r(to)}. (35)

The method described here can then be applied. Similar applications
can also be found in the error calculation of co-channel interference.

CHERNOFF BOUND 10~4

10=4

10-5}—

o
|

ERROR RATE
»
I

10-°

12 18 24 30 36
NUMBER OF TERMS IN Sy

Fig. 5—Convergence of Py to Py ; ideal band-limited pulse, binary system, SNR =

16 dB, £, = 0.1 T.
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Fig. 6.—Convergence of P, to Py, ;ideal band-limited pulse, 4-level system, SNR =
16 dB, t, = 0.05 T.

VI. CONCLUSIONS

We have presented a method to calculate the error rate of a coherent
digital system subject to intersymbol interference and additive Gaussian
noise. The error rate for a system with a peak distortion less than unity
can be determined to arbitrary aceuracy through the calculation of
an upper bound and a lower bound of the error rate. The computation
time involved (less than one second on the GE-Mark II time-sharing
system) is many orders of magnitude shorter than the time required
by the straightforward calculation of all the possible states. On the
other hand, the results are generally much more accurate than the
results obtained through the application of the Chernoff bound.
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