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Since theoretical and computational difficulties often preclude exact
solution of telephone trunking network problems, approrimalte methods
are naturally used. A typical approach is to determine link™* blocking
probabilities and from them calculate point-to-point blocking probabilities
by invoking independence assumptions. Although the link blocking prob-
abilities may be quite accurate, the poini-to-point blocking probability
calculations will, in some cases, suffer from the independence assumplions.
This paper presents a method of taking dependence into account for certain
networks by approximating conditional probabilities which reflect the
dependence. The approzimations avoid the problems of dealing with the
large sums associated with this problem.

I. INTRODUCTION

The exact analysis of telephone trunking networks often leads to severe
computational problems due, e.g., to the large number of possible states.
Approximate methods are thus naturally used. There has been much
success in approximately caleulating link blocking probabilities but less
in determining point-to-point blocking probabilities. Errors in the point-
to-point blocking probabilities can be caused by independence as-
sumptions.

The purpose of this paper is to take advantage of existing techniques
for approximating link blocking probabilities (which are quite accurate)
and develop an approach for taking link dependences into account. In
particular, we present a method for approximating the appropriate
conditional probabilities for cases where the traffics are Poisson (or close
to Poisson). The extension of the approach to the case of distinetly non-
Poisson processes, such as arise in overflows, will be reported in Ref. 1.
To obtain point-point blocking probabilities for non-Poisson processes,

* We use link to denote trunk group.
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one must also solve for the blocking seen by individual traffies when
more than one traffic is offered to a link (the equivalent random method
gives the blocking seen by the combined traffic). This is also treated in
Ref. 1.

To clarify the role of independence assumptions, suppose there is
common traffic on links 1 and 2. Let A, and A, be the events that the
common traffic is blocked on links 1 and 2, respectively. Then the
probability of being blocked on either link 1 or on link 2, P{A4,\J 4.} =
P{A,} + P{A,} — P{A, N A,}, is often approximated by P{A,\J A,}
=~ P{A,} + P{A,} — P{A,}P{A,} orevenby P{A,\J 4,} = P{A,} +
P{A,}. The last approximation is clearly accurate if P{A,} 4 P{A4,} >
P{A, N A,} and the first is accurate if P{A, | 4;} =2 P{A,} or if both
P{A, N A,} and P{A,}P{A,} are relatively small. On the other hand,
it is easy to give examples where the neglect of dependence leads to
non-negligible errors.

The errors due to neglecting dependence naturally depend strongly
on mutual traffic. To see this in a transparent case, let us reconsider
the two-link network mentioned above with each link having the same
number of trunks, P{A,|A,} could vary from P{A,} (when the
mutual traffic is zero) to unity (when there is no traffic on link 2 not
shared with link 1). In the latter extreme case, assuming independence
would give P{A4,} + P{4.} (1 — P{A,}) for P{A, \J A;} compared
to the correct answer P{A,}. Thus, assuming independence could,
in this case, conceivably overestimate the point-to-point blocking
probabilities by something approaching 100 percent. In fact, it is
possible to overestimate a point-to-point blocking probability on m
tandem links by almost as much as m times by assuming independence.

II. BASIC APPROACH

For simplicity of explanation, first consider the situation shown in
Fig. 1. A, Ay, and A,, are the parameters of mutually independent
Poisson processes. Holding times are mutually independent exponential
random variables with unity mean (or the mean is the time unit)
here and throughout this paper. Also, throughout the paper we shall
assume that lost calls are cleared and that the system is in equilibrium.
Links 1 and 2 have N, and N, trunks, respectively. Assume N, = N,.

Let A, and A, denote the events of link 1 and link 2 being blocked,
respectively (i.e., there are N, calls up on link 1 and N, calls up on
link 2). :

All of the equilibrium state probabilities may actually be expressed in
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closed form using, e.g., the form of solution given in Ref. 2, Section 7.
For example,

Na E_’ Nai—i1a ?\_{‘ -\'a—zin )\;’
i1a=0 7:12! iv=0 '5.1! ia=0 7:2!
P[Al U AQ} = i1y i3 i1 ] (1)
12

irinsy, il 2ol g!

ia+1122N,

22

where the indices are nonnegative integers (throughout the paper).
However, the use of such exact results very quickly becomes impractical
for all but the smallest problems even for large computers because of the
number of computations required.

The link blocking probabilities can usually be quite well approximated.
TFor example, the following reduced load equations,

P, = B(N, , A, + A\x(1 — Py)), @
P, = B(N., \; + \a(1 — PY)), @3)
P{A,}) =P, , (4)
P{A,} =P,, (5)

(B(N, ) is the Erlang B formula) are often sufficiently accurate as they
stand.* See Ref. 3 for much more discussion of link blocking probabilities.

Onece the link blocking probabilities are determined (however they
are determined) all that is left to caleulate is P{4, | 4.} in order to
determine P{A,\J A4,}. We first write down this probability exactly and
then show a simple practical approximation. (Approximating the sums
becomes even more important when considering more complicated
dependences as in Section II1.) To this end, note that

N i Na—iia Ni=iia
A Mz M A

i12=0 'ilz! (Nz — 'ilz)! (Nl — 7:12)!

P(A, | A.) =

Na i1 Af\'s—iln Ni=ia )\l’.
2 1

12
;’,,Zu:] ?:12! (N2 - 7«-1‘2)[ i1=0 11'

< Nz) i Na—i X;v'_i

i=0

(
L N

1=0

(6)

* Tt may easily be shown that these P, and P. agree exaetly with P{4,} and
P(A.} to first-order terms in A2 Although the P; usually overestimate the P4},
they can underestimate (seriously, in extreme cases) when A is very large.
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Fig. 1—Two-link network.

where
— Ma
p - Rlz + Rz ) (7)
g=1—p. ®

Observe that (6) is the ratio of two sums each of which is essentially
a Bernstein polynomial (see Ref. 4). However, a Bernstein polynomial
is of the form 2."_, () p'q"'f(i/n) but our f is actually a function of 7
or of n(i/n). Each sum is also the expectation of a function of a bi-
nomially distributed random variable. Using the following interpolation
formula (see Ref. 5, p. 178),

f@) = @) + @ — 036 + 1) — 1@ = 1)]
+ G -G+ D - 2@ + /@ - D), ()

and taking expectations yields

n

i _n— - n
> (”.j)p ¢"f6) = f(np) + 5L [fap + 1) — 2f(ep) + flnp — D). (10)
i=1
(10) is the usual expression for the mean and variance approximation to
an expectation of a function of a random variable but with the second
derivative replaced by a central difference. Using (10) on the numerator
and denominator of (6) yields

P{A, | A} = P.{A, | A}

Napyg M N, — Np

1+ |: — —2+——]
_ 2 IN —Nip+1 A . (1)

- 1 +N2pq|: A _ 1}
B(Nl_sz,h]) 2 Nl—sz"‘l

Interpolation, such as given on page 571 of Ref. 3, may be used to
evaluate the Erlang B formula for a nonintegral number of trunks or an
approximation for Erlang B in integral form can be used.

Note that we use the same type of approximation on the numerator
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and denominator, which are closely related, so that the ratio can be more
aceurate than either taken separately.

(11) shows quantitatively what we expect qualitatively, namely, that
the dependence effect gets small as the common traffic gets small. In
particular, when A, = 0, P{A, | A,} = B(N,, \,) = P{A,} and when
N =0,P{A, | As} = B(N, — N, \;)(recall that we assumed N, = N,).

To examine the approximation, we find it eonvenient to first consider
P,{A5 | A,} where superseript ¢ denotes complement. Actually, since
P{A, \J A,} = Pl{A,}] + P{A{| A,}P{A,}, P{A;| A,} is really the
crucial quantity. With N, = N, , we have

P A7 | A} =1 — P A, | 4.}
1 _1+N2PQ|:1_2(N1—N22):|
— B(N] - sz, )\]) 2 Al

1 +N2PQ[ M _2]
B(Nl—ng,k]) 2 Nl_N2p+1

(12)
If we let N, = N, = N, then
1 nggl: QNq]
e — 1 + 1 - =4
P,,{Af ‘ Az} _ B(Ng, \) 2 A (13)

1 n Npq [ N _ 2:'

B(Ngq, \) 2 [ Ng+1
(12) could have been derived directly using a mean and second central
difference approximation just as (6) was approximated by (11). The
terms multiplied by N,pg/2 in both the numerator and denominator
are then the second central difference terms. If we hold A, and p fixed
and let N get large, it can be shown that the second central difference
terms get small compared to the mean terms suggesting that the ap-
proximation is accurate for large N. However, since P,{4, | A.} — 0 as
N — o (with \, and p fixed), investigation of this type of convergence is
of limited practical value.

It is probably of more interest to examine the approximation for
fixed p and to let A\, get large with N. To this end, let A, = kN with
k > q. For sufficiently large n and a > n, B(n, a) = 1 — n/a so that

B(Ng, kN) =1 — % (14)

Hence, we obtain for large N,
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2 |N 1 kN
Pu{Al [ A2} = 1 Npqq—'_ kN
{ g+ 2 [Nq-l— 1 1]
k
= B(Ngq, kN) (15)

which has the interesting interpretation that with link 2 full, the number
of trunks on link 1 to handle the A, traffic is reduced by the average
number of calls on link 2 which are common to link 1 (we shall elaborate
on this below). Although (15) is intuitively appealing and obviously
correct for p = 0 or 1, its accuracy should be examined for p ¢ (0, 1).
Observe that for large N, the variance terms dominate.

By elaborating on the interpretation alluded to above, we can see
why B(Ng, \,) should tend to overestimate P{A, | A,}. With D, the
event that % calls from the A,, traffic are up,

D; = {i A\, calls up}, (16)
observe that
Na
P{A, | A} = X, P{A, | A: N\ D;{P{D; | A.} (17)
i=0
= 3 BN, — i, MP{D; | 4s). (18)

i=0

Now, if the A;, calls were never blocked on link 1, then P{D, | 4,} =
(Mp'q"~. With N, = N, = N, A, = kN, it may be shown that

Yo BN, — i, \)(p'¢" " = BN, — Nop, M) = B(Ng, M) as N — .
B(N, — N,p, \,) is the blocking probability on link 1 when the number
of trunks is reduced by the conditional mean of trunks occupied by
M. calls. Hence, under these conditions, B(Ng, \;) approximates
P{A, | A,} by ignoring the blocking of X, calls on link 1. If we take
this blocking into account, we would expect that for large N, P{A, | A,}
< B(Ng, \,). This will be seen to be the case below.

Another approximation for P{4, | 4.} is

V(g + pr)V e/ vV 2mB,
73" (g + pra)" e /(1 — 1) V218,

P,{A, | A;} = (19)

where

_ V(M\g—Np+ Np)* + 4\Nipg — Mg+ Nip — Nap
= 2\p ;@0

T
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Bl = N[ - NQ(-—q irlpfrl) , (21)
2 2
- _ L Ta
B = N, N2(q + p'rz) + (1 - rg') ’ (22)

and 7, is the solution between 0 and 1 of the cubic
Mprs + (Nop — p — Nip + Mg — Mip)r:
+ (=g +Nip—Nig—Nop —@r2+Nig=0. (23)

This approximation is due to D. L. Jagerman (see the derivation in the

Appendix).
For N, = N, = N, A\, = kN, and N large,
~ 1 _ V¢ + dkpg — kg
PlA, | A} =1— Sep . 249

Table I shows some numerical values of the exact and approximate
conditional probabilities along with the values of the approximations
for large N. It is seen that, although P,{A, | A.} does not always surpass
the simpler P,{A4, | A,}, it is, on the whole, superior and its behavior
with increasing N is clearly better. We dwelled on P,{A, | A,} because
it is useful in many eases and the mean and variance approach is easily

TABLE I—NUMERICAL VALUES

9% error 7% error
in in
P M= N | PlA Ao} [Paldy | A]|PofAy | A2} [Pa{Ay | Ao} [Pyfdy | Az

0.1 5 0.3256 0.3246 0.3404 —-0.3 4.5
0.1 10 0.26087 | 0.26091 0.2732 0.015 4.7
0.1 15 0.2296 0.2287 0.2402 —0.4 4.6
0.1 20 0.2101 0.2096 0.2197 —-0.2 4.5
0.1 25 0.1966 0.1957 0.2052 —0.4 4.4
0.1 @ 0.1 0.092
0.5 5 0.5017 0.4926 0.5125 —1.8 2.15
0.5 10 0.4579 0.4635 0.4645 1.2 1.4
0.5 15 0.4386 0.4587 0.4431 4.6 1.0
0.5 20 0.4274 0.4599 0.4307 7.6 0.8
0.5 25 0.4200 0.4621 0.4226 10.0 0.6
0.5 @ 0.5 0.382
0.9 5 0.7806 0.8161 0.7827 4.5 0.25
0.9 10 0.7521 0.8258 0.7535 9.8 0.19
0.9 15 0.7416 0.8412 0.7421 13.4 0.11
0.9 20 0.7360 0.8525 0.7366 15.8 0.07
0.9 25 0.7326 0.8604 0.7330 17 .4 0.05
0.9 ® 0.9 0.718
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extendable to cases where extreme accuracy is not required (as in
Section III). It can be easily seen that a percentage error in the con-
ditional probability typically causes a smaller percent error in the
point-to-point blocking probability.

1II. MORE COMPLICATED DEPENDENCES

The extension of the basic idea of Section II is often rather straight-
forward. For example, consider the network in Fig. 2 which is com-
plicated enough to illustrate the ingredients of a general approach.

Assume (for the sake of being concrete) that N, = N3 = N,. All of
the traffies are mutually independent Poisson. Let A,, A,, A, represent
the events of links, 1, 2, 3 being blocked, respectively. Then the fol-
lowing are approximations to conditional probabilities:

Na
>

Nai—i
2 Na—1 k1
T

PA, | Az} = =5 N i
. N P Ni—=i i
E ( .2)P1zqi\2’ Z )‘_[l
i 17 i=0 J¢
> (Nz) i Ny—i A
. P22 Tar o
i= Ny — 9)!
P{A; | A,) = 2\,, ZN _ FN?—:‘ 7\? ) (26)
Z( .z)p:;zq;i‘;’_l Z %
im0 M T i=0 J:
N, (Na)p| qN;-I' _Q\—_l)_:
PiA | A e SN (N — )
{ 1 I 3} = N N ) .Nl—i (R_)' ’ (27)
( z‘a)”i”‘-’f”_' it
where
Alﬂ + h13(1 _ Pg) Giz = 1 — D2, (28)

Pz = Mz + )\13(1 _Pa) + Ao + ;\23(1 —Pa) ’

——— e >
—— Ay L
- e >
Ny N2 N3
O — 0
A A2
-—— — —_—_———

Fig. 2—Three-link network.
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_ Aes + 7\13(1 - Pl) — —
Ps2 = )\23 + )\13(1 - Pl) + )t2 + }\12(1 - Pl) ’ o2 = 1 Paz » (29)

_ Ma(L — Py)
P = N0 = Po) + M F dm(l — Py)° G

S () a1

=1—ps, (30

and the P; are approximations to the link blocking probabilities. In
(31), the approximation to P{A4; | A} is used (and we are obviously
assuming P, > 0). '

The rationale behind (25)-(27) is based on (6) at least in the case
where the P; are small so that the carried traffics are not too far from
Poisson. We have already discussed approximating the sums of (25)-
(27) in Section II.

But for the network on Fig. 2 we should also calculate P{4, \U
A, \J A,}, the blocking probability seen by the A,; traffic. Since

P{A,\U A, U A4,)
= P{A,} + P{4,} + P{4,}
— P{A, | A.}P{A,} — P{A, | A,}P{A,)
— P{A, | A,}P{A,} + P{A, N A, | A,}P{4,},  (32)

we see that we need only discuss the evaluation of P{A, M A; | 4.},
the other quantities already having been treated.
Just as we derived (6), we can show that (exactly)

P{AquslAE}

a3, _d13, T2 Ny—igs—iaa ?\Nr*fu*l'u
3 1

szpié’péa Pia P2 a
_ daatisstiiatia=Na 212! oa! 21a! €o! (Nz — Tp3 — 'i"ls)!I (N1 — %1z — %13)!

N,! pfé’PéQ’Pls P2

T13 i3 Na—iga—i1s >\1': Ni—i1a—i1s )\fl
3 1

Tyatiaat+tiaatia=N, ?‘-12! ?:23! 1:13! iﬂ! 1a=0 ?’.3‘ i1=0 ’l’l!
(33)
where now
h12
= 34
D VS Ry W W @)
)\23 (35)

P s N F A+ e + N
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_ Mo
I VT T W (39

i RQ
P = N F A+ M+ N

These sums may be approximated by recognizing that they are both
expectations of functions of multinominal random variables. Thus,

Elf(is , t1s , 512)] == (T, Taa , Tao)
+ H{[E(z — T20)° 822 + E@is — Tas)” 813 + E(Giz — T12)” 1]
+ 2E[(d3s — 72)(f1a — T1a) [1t8asubis
+ 2E[(f2s — Tas)(Bra — o) ubasndia
+ 2E[(f1s — Tia) (2 — Ti)biandia]}f(Gas , Taa ) Tu2) (38)

where 7,,, here indicates expected value and where 8% is a second central
difference, e.g.,

82, f(Tas , Tas » T2) = f(Bas + 1, Tua , T12) — 2f(%aa , T1a , T12)

+ f(i23 - 1;! ’Elﬂ ] r‘-’12) (39)

37)

and the operator ud is given, e.g., by
bysf(Tas , Tus , Taa) = 3[f(Tas , Taa + 1, 812) — f(B2s , T1a — 1, Tua)] (40)
so that, e.g.,
1 823u813f(Tas | iz 5 T12)
= 1[f(s + 1, %5 + 1, %) + fies — 1, %5 — 1, %)
— s — 1, Ts + 1, %) — s + 1,0 — 1, %)), (41)

The variances and covariances for the multinominal distribution are
given on page 164 of Ref. 6. Thus,

e = Napis ik = 23,13,12, (42)
0% = E@p — 7)° = Naoppu(1 — pi),  jk = 23,13,12,  (43)

Triam = Bl — 1)@m= Tim)] = —Nopishin
ik, Im = 23, 13, 123k = Im).  (44)

One obtains
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As Ny +1
+3oh (\)\Q T :)?\ - 1)) +3 "32(1\;: ot ﬁ)
T T a1t )
S -

. (NN —1) sk ):I} /
+ “( Aahy + (Ns+ DN, + 2V, + 1)

{By'Br' + 305(By'(—1)Br" — 2B;'Bi" + By '(1)B)")
+ dota(Bs'(— DB '(—1) — 2By'Bi' + B3 '(1)BU'(1))
+ +e%(B;'Br(—1) — 2B;'Bi" + Bi'Bi'(1)
+ Yo s(B5 ' (—2)B7'(—1) — 2B7'Bi" + By*(2)Bi'(1)
+ 05a,12(Ba (= DB (—1) — 2B:'Bi" + B;'(1)Br'(1)

+ ols12(Bs (= 1D)B(—2) — 2B;'By + By'(1)B'(2))]) (45)
where
A—‘rg = N3 - 523 _ '1‘13 ’ (46)
,’\-‘-| = N] - im _ i]g ’ (47)
and forj = 3or1,
Bi' = 1/B(N; , \), (48)
Bi'(—1) = By' — 1, (49)
B(-2) = B = 1- 4, (50)
Bi'(l) = Bi' + =—— 7 -|— 1 (51)
B'@ = B + oM. (52)

N; + I NV, + 2V, + 1)

In many cases, PI_A, U4, Y A;} may be sufficiently well approxi-
mated by using B(N, , M)B(N, , A,) for P{A, M A, | A,} since the
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last term in (32) is typically smaller than the preceding three which
are, in turn, typically smaller than the first three.

I1V. DISCUSSION

We tried the method out in a number of examples and found the
dependence analyses to improve accuracy considerably when dependence
is indeed important and to be useful in indicating when the dependence
effect can be safely ignored. This investigation was actually motivated
by a study of the use of a satellite to carry telephone traffic. (This study
will be described more fully elsewhere.) One mode of such use, called
‘“yariable destination,” allocates up-channels (each channel consists
of a number of trunks) from ground stations to the satellite while all
ground stations can receive all that is transmitted downward from
the satellite. An equivalent network for five ground stations (the outer
nodes) is shown in Fig. 3. Between each pair of ground stations there
is an offered traffic; thus, there are 10 (2-way) traffics. For various
choices of the traffies and allocations, the dependence effect becomes
significant and it was important to know when it needed to be taken
into account and when it could safely be ignored (which leads to sim-
plification in the study, particularly the optimization algorithms—an
aspect of the study was to optimize the channel allocations to minimize
the traffic blocked). The method of this paper was found quite useful
in this regard. It should be noted that, although the N, are very large
and results of the form of (1) lead to huge sums, the method was com-
putationally simple.

The approach to dependence given here is one of approximations
motivated by exact results in simple contexts. The results obtained
thus far are promising and encourage further work in investigating
the approximations and in extending the approach. Further experience
is needed to determine the best way to apply the results to large net-

N2 Na

Ny N4

Fig. 3—Equivalent network for satellite variable destination mode.
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works (see the last comment in Section IIT). Observe that improved
accuraey (and, possibly, satisfactory accuracy from a practical view-
point) in large networks can be achieved by considering only two-link
or only two- and three-link dependences (already discussed in this paper).
An inherent assumption that has been used is that the traffics are
Poisson (or close to Poisson). As mentioned in Section I, the analysis of
point-point blocking probabilities in conjunction with the use of the
equivalent random method will be reported in Ref. 1.
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APPENDIX

In Section II, two approximations for P{A, | A,] were given. This
Appendix derives the sum approximations for P,{A, | A.}. In particular,
approximations for the following sums will be obtained:*

Ji = Z (T:')pi?"_‘ (N)\i_iz’) =B [(NAN_EE) '] (53)

The random variable ¢ is distributed according to the binomial law.
One has

)\N_j _ 4_1_‘ z—}\ +i— ! Az dz (55)
(N N 2w !

=Y 1 —N+i-1 e

P e ARt (56)

in which the integration is on a circle around the origin as center.

Let z = re”, then

_L — l i ekre‘”-w—me?ﬁuv—n de

N -l 2 ’

W= e s 57)
Z?— = %r ] et =iy 17‘_ — de. (58)

* The derivations to follow are due to D. L. Jagerman who prepared this Appendix.
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Computing the required expectations from (57) and (58), one obtains

Jl = _1_ e)tru"e—xViS'—Nln r¢(8 —iln ?") dB, (59)
2rJ_.
_ _1__ T hre‘“—NiB—Nlur(¢(B —1 lnr))
J, = o krﬂ ————"1 ST dé (60)
in which the characteristic function ¢(r) is given by
o(r) = Ele™] = (¢ + pe”)". (61)
Thus
Jo= 2 [T g (62)
1 or ), ,
Jo= L [T ag (63)
2 orJ_, y
in which
hi(8) = we'' — Nig — Nlnr+nln(g+ pre’’), (64)

ha(8) = Me® — Ni6 — N Inr +n In (g + pre’®) — In (1L — re’). (65)
The expansions of k,(#) and h,(6) in powers of # are

hi(f) = — Nlnr 4+ nln{g+ pr)

_ _npr_ 3.
+ ()\r N + 7 pr)w
1 pr (_1”_)2} 2,
2{?\?‘+nq pell g 8 + ) (66)

ho(6) = — NInr+nln(g+p) —In(l — 1)

_ npr ro\.

+(M N+q+pr+1—r)w

_1 'pr_(w)z r ('f)}

Q{M_l_nq—!—pr nq—i—pr +1—r+ 1—r o+ '
(67)

Using the method of Hayman (see Ref. 7) the functions h,(8), h.(6)
will be made stationary at 8 = 0 by defining r, , r; as follows:

W — N+ _ 9 68
" +q+p'r1 ! (68)
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_ npra rs__
My — N + <+ pr + -7 0. (69)

Thus the values of r satisfy
zpry + \¢ — Np + np)r, — Ng = 0, (70)
Mpre + (p — p — Np + Mg — Mp)rs
+ (—A¢+ Np — N¢g —np — g)r. + N¢ = 0. (71)
For r, , the following explicit formula is obtained:

_ V(g —Np+np)° + 4Npg — \g+ Np —np_

™ 2}\;0 (72)
For r, , the root between zero and one must be used. Let
SR ) 73
B )\T1+q+p?‘1 nq-l—prl y ( )
2 2
— prg _ ( prﬂ ) T2 ( 79 ) 74
B = et TN TRt =) @
then
M) =N, — Nlnr, +nln(g+pr) — 886 + -, (75)
ho(8) = Mo — NInry+nln(g+pr) — In(1 —r) — 58,67 + -+ .
(76)
Since
l'_ " -3B6* ~ 1
il df = - (77)

in which the approximation becomes the more accurate the larger 3 is,
one now obtains

T =¥ + pr)” \/%rﬁ— , (78)

Iy =" o) 79
2 (g + pro) 0 — /2B, (79)
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