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An Adaptive Echo Canceller in a
Nonideal Environment
(Nonlinear or Time Variant)

By E. J. THOMAS
(Manuseript received October 19, 1970)

In this paper we calculate a lower bound on suppression provided by an
adaptive echo canceller in either a nonlinear or time variant environment.
Specifically, we examine the effects on performance of nonlinear echo paths
described by a Vollerra integral equation [equation (18)] or time variant
echo paths caused by phase jitter on single-sideband suppressed carrier
systems.

I. INTRODUCTION

In a previous paper! we have deseribed the performance of an
adaptive echo canceller in a linear time invariant environment. Qual-
itatively speaking, the environment in which an echo canceller will
operate appears to be mainly linear and time invariant; however,
some echo paths will be nonlinear and/or time variable. Some typical
causes of nonlinearity are the volume dependent gain in compandored
circuitst and harmonic distortion in amplifiers and repeaters. Time
variability, on the other hand, may be caused by spurious modulation
of the carrier of long-haul single-sideband suppressed carrier systems.
This is commonly referred to as incidental FM or phase jitter. In cer-
tain cases these anomalies are of sufficient magnitude to degrade the
performance of an adaptive echo canceller.

In this paper we examine the operation of an adaptive echo can-
celler studied previously in an ideal environment' in a nonideal
environment (nonlinear, time variant). We restrict ourselves to non-
linearities which do not possess infinite memory and to time varia-
bility caused by phase jitter. In both cases we derive a lower bound on
the suppression provided by the echo canceller and empirically verify

t This problem occurs when the compressor portion of the compandor is not
perfectly compensated for by the expandor.
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our results. For the sake of brevity we restriet our discussion to a
digital implementation of the type shown in Fig. 1. However, one can
investigate other implementations of the echo canceller and obtain
similar results.

II. GENERAL CONSIDERATIONS AND NOTATIONAL FORMS

In Fig. 1 we show how an echo canceller would be connected in a
typical connection. The input signal z(¢) produces an echo y(t) cor-
rupted by noise, £(£). An approximation of y(t), y4(¢), is subtracted
from the actual echo and noise producing a cancelled echo e(t). Ex-
amining the echo canceller in a little more detail we find that it is
composed of M digital filters having the set of orthonormal impulse
responses {A;(k)}, and the set of outputs {w;(k)} to input z(k).t
Every tap has associated with it the adaptive network shown for two
taps in the figure. From Fig. 1 we conclude that the gain of the 7th
tap at the k + 1 sampling interval is given by

g:(k + 1) = g.(k) + |K| e(k)w.(k). 1)
Let us assume that the response of the echo path to z(f) may be
given in the following form:

y(t) = x(t) * h(t) + ¥(0). 2
where h(t) is any square integrable funetion, (*) denotes convolution,
and ¢(f)' is any function which is required to make equation (2) correct.
Qualitatively speaking we see from equation (2) that we are breaking
y(t) into a linear component x({) * i(¢) and a distortion term (). In
subsequent sections of this paper we will demonstrate that the nonlinear
or time variant echo paths that we choose to study yield y(t) s of the
form of equation (2). We will therefore first examine the effect of a
system described by equation (2) on the performance of an adaptive
echo canceller. We will then calculate (t) for a nonlinear or a time
variant echo path.

2.1 The Governing Equation

Since we hypothesized that 2(Z) was a square integrable function we
may represent it by a generalized Fourier series

o) = 3 Cot)

i=1

tz(k) denotes the value of z(f) at the kth sampling interval; also, all sam-
pling is assumed to be at the Nyquist rate.
1 4(t) may depend on the absolute time when z(¢) is applied.
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Fig. 1—An adaptive echo canceller.

where
C. = fo " RN dt.
Substituting D2, C;\,(f) for h(t) in equation (2) we obtain
y() = 3 Cand) + 90

where w, (1) = x(l) * A\, (2).
From TIig. 1 we see that
M
ya(l) = El g:(Dwi(t).
Therefore,

M o0

e(t) = 2or(Dw.() + 2, Can(t) + () + () 3)

i=1 i=M+1
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where
r:(t) = C: — ¢.(t). (4)
Combining equations (1) and (4) we obtain

ri(k + 1) = k) — | K [ wi(k)e(k).

Squaring the above equation, summing over the M taps of the echo
canceller, and using equation (3) we obtain

> (k4 1) = i) = ~21 K | 3 r@u( L rew®

i=1

F 3 Co® + 90 + @)

FIK T3 wm( 2 n®u®

0

+ 2 Cow®) + v(®) + r(k))z- )

In order to simplify our notation we make the following three
definitions:

0

o(k) = ‘__;H Cow (k) + k), (6a)
w(k) = Z wi(k), (6b)
o8 = 3 riw(h). 60)

As a result we obtain

2 6k + D — ri(B)

= =2 | K| (*(k) + o(k)o(k) + ¢(k)o(k))
+ | K [*(R) (v*(k) + 6°(k) + ¢*(k) + 26(k)v(k)
+ 2¢(F)(k) + 2¢(k)6(k)}. @)
The above equation describes the performance of the adaptive echo
canceller shown in Fig. 1 in the environment deseribed by equation (2).

However, before we can apply equation (7) to the problem at hand
one final definition is required. We define the average value of a sam-
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pled function f(k) in the interval Qp + 1 =k = (p + 1)Q as

(p+1)Q

=X i p=012:- (®)

k=Qp+1

where @ is the number of samples per interval and is constant. Therefore,
R'p) may be interpreted as the average value of f(k) averaged over the
pth interval containing @ samples. Note that for all p the p — 1 and
p + 1 intervals are adjacent to and do not overlap the pth interval.

2.2 Choices of | K | Which Allow Best Match to the Echo Path Fourier
Coefficients

Let us now apply our averaging technique defined by equation (8)
to equation (7). We will assume that the circuit noise {(t) is zero mean,
with variance o;. Also, we will assume that the noise is statistically
independent of the other variables in equation (7). This is justified by
virtue of the fact that we are assuming that K is small." Furthermore,
we will assume that the number of samples in the pth interval, @, is
large enough so that {(p) and {*(p) are good estimates of the true mean
and variance of the circuit noise. As a result of the above we obtain

1/Q 3 1@ + D + Q) — £(@ + D)
= —2|K [v(p) — 2| K | 0(p)o(p)
+ 2| K |* o(pp(p)u’(p)
+ | K [ w*()’(p) + | K | oi’(p)
+ | K [* E()’(p). )

From (9) it is clear that the sum of the r? is reduced when the right-hand
side of the equation is negative.! In fact, it is continually reduced until
the right-hand side of (9) can no longer be negative. Therefore a suf-
ficient condition for convergence® can be written as

Ap) = | K P [((p) + 6()'w'(p) + oo’ (p)]
— 2| K [((p) + 0(pi(@) <O (10a)

t This may be more easily seen if i 72 is considered to be the magnitude
squared of a veetor whose components are {r:}. In this event the left-hand side
of the equation is proportional to the difference of the magnitude square of a
vector at some instant and @ samples earlier. When the right-hand side is
negative it indicates that the magnitude of the vector is smaller than it was @
samples ago.

tIn this paper convergence is taken to mean the reduction of the sum of the
T2,
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or equivalently

A'p) = | K | (@) + 6()%(p) + ou’(D))]

- 2("(p) + 6(pu(p)) < 0. (10b)
By defining
B(p) = (V(p) + 6®)’U*(p) + a.U%(p),
D) = (Vi(p) + 6() VD),
we find

A@ = |K"B(p) — 2| K | D(p).

From the above equation it should be clear that

Alp) = 0
for
0<|K|<2}%%’
and
D(p) = 0.

Therefore we conclude that the echo canceller converges for D(p) >
0 and 0 = | K| = 2D(p)/B(p). However, since | V(p)| is small in
the neighborhood of equilibrium, D (p) decreases quicker than B (p)
and as a result the upper bound on | K | is reduced while convergence
is taking place. Convergence ceases when

_ 2D(@)
- X B(p)

On the other hand for D(p) < 0 there is no positive choice of K
which will allow convergence and therefore the canceller diverges until
D (p) becomes positive and 0 < | K | = | 2D (p) /B (p)|. As a result the
best choice of | K | which will allow the most convergence (the smallest
| D(p)| and therefore the best match to the Fourier coefficients C;) is
the smallest | K |. Ideally | K | = 0 will allow the best match to the
echo path Fourier coefficients. However, the smaller | K | is made the
longer it takes for the canceller to converge, and in practice a com-
promise is required between amount and speed of convergence.

2.3 A Lower Bound on Achievable Suppression

We have shown previously (Section 2.2) that choosing | K| very
small will allow the best match of the tap gains ¢;(k) to the Fourier co-
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efficients ('; . Taking the limit of equation (10b) as | K | goes to zero
we obtain

lim A'(p) = —20°(p) + 6(p)u(p)) = 0

| K|—0

or convergence takes place as long as

v'(p) > —8(Pv(p) (11a)
and equilibrium is reached when
v'(p) = —0@p(). (11b)

A sufficient condition for (11) to be true is

vi(p) = | 0(p(p) |.

From the definition of [-] [equation (8)] and applying the Schwarz
inequality, we obtain

| 8(p(p) | = | 6(pp(p) | = @@NHEP).

From the above two inequalities we see that a looser but still
sufficient condition for (11a) and (11b) to be valid is

) = D)D)

or
'(p) = 6(p). (12)

Equation (12) is a sufficient condition to insure convergence in the pth
interval. We therefore conclude that when | K | is made infinitesimally
small the echo canceller will reduce >, ™, r*(p) at least until:

v'(p) = 6°(p). (13)
We will now use equations (13) and (1la) and (11b) to determine
a lower bound on the achievable suppression. Referring to Fig. 1 we
define the suppression S as

S = 10 log,, AON 14
e (19

From equations (3) and (6) it may be easily shown that

e'(k) = v(k) + 6(k)

or

€ @) = v'(p) + 20p)6(p) + 6'(p).

Substituting equation (11b) into the above equation we obtain

@@) = v + 6@).
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Also, since

€®) = @) | + @), (15)

we can apply Schwarz’s inequality to the above and obtain

€@)" = @) + 6'(p).
Substituting (13) and the above into (14) we obtain

$ 2 10 log, L2 ve _ g (16)
26°(p)
On the other hand, if for a given input signal
v(@)(p) =
we see from (15) and (14) that
S =10 logm F) (p) =8 . (7

Equations (16) and (17) are lower bounds on the achievable
suppression which occurs when | K | is chosen to be infinitesimal. For
any other than infinitesimal | K | the suppression may or may not be
less than the values given by the lower bound [(16) and (17)]. How-
ever, as will be seen in a later section of this paper, for the choices of
| K| which allow reasonable settling times, (16) and (17) do form
lower bounds on suppression.

III. NONLINEAR ECHO PATHS

We will now become more specific and consider the effect of a non-
linear echo path. We will restrict our discussion to a class of nonlinear
echo paths which possess the following four properties:#

(7) They are time invariant.

(72) They are deterministic.

(777) They are “smooth.” Qualitatively speaking by smooth we mean
that the echo path cannot introduce any abrupt or switch-like
changes in the output. If such a change is evident in the output
then it must be due to a similar switch-like change in the input.

(fv) They possess noninfinite memory. That is the memory does not
depend on the remote past.

t For example, this occurs when ¢ and v are independent and one is zero

mean. As will be seen this is the case for systems exhibiting phase jitter.

t Most echo paths encountered in practice satisfy all the conditions except one
and these are handled separately in Section IV.
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Echo paths which possess the above four properties may be con-
veniently characterized by a Volterra integral equation.*™® As a result,
y(t) shown in Fig. 1 is related to x(¢) by the equation given below:

v = [ et = 7 dn,
+ f " fo " bl 72t — )2t — 12) dr dra

+ ifw f:hn(ﬁ ) ’_I'ile(t— pydr, . (18)

n

We may easily place equation (18) in the form of equation (2):

v = a0+ m@+ 3 [ [ hatrn) I 2t — =) dr; .

i=1
M

Comparing the abhove equation with equation (2) we see that

) = ifw f:hn(n ) gx(a— r) dr, .

As a result we conclude that the bounds given by equations (16)
and (17) are applicable to any nonlinear system possessing the prop-
erties outlined in the beginning of this section. We need only replace
6 (k) by

o0

ok) = 2 Cawi(k)
TED o RS R XGRS | AL AR

In this case, 6 (k) is composed of that part of the linear portion of
the echo path which the echo canceller cannot compensate for due to
its limited number of taps and the nonlinear portion.

IV. TIME VARIABILITY

In this section we are specifically interested in time variability of
the type predominantly found on single-sideband suppressed carrier
systems and commonly referred to as incidental FM or phase jitter.t

t We use incidental FM and phase jitter interchangeably.



2788 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971

We will show that the effect of incidental FM on suppression can be
calculated directly from' the index of modulation, 8, which is easily
measured.

4.1 Carrier System M odel—A ssumptions

In Tig. 2 we show a block diagram of a typical single-sideband
suppressed carrier system whose output will be eorrupted by phase

my(t)=cos [w t+ge (L] ma(t)=cos wct

=0 [ o Geyew [Ty [ poyeens [y |y

Fig 2—Single-sideband suppressed carrier system with phase jitter.

jitter. We will begin by making the following practical assumptions:
(¢) The input signal z(t) is bandlimited to w,. That is,
X(w) = ({X@) for |o| <o,
0  otherwise.
(72) The filter hz(t) is a low-pass filter bandlimited to wp,
Ha) = JHB(w) for |w| < wp; where wp > w, + w;
0 otherwise.
(7ii) The incidental I'M is narrow-band FM,
| B(t) | < w/2 Vi
and
¢(l) = cos w;t w; <K w,

(iv) The filter A, (t) is an ideal bandpass filter, at carrier frequencies,
which passes the upper sideband,
< < ,
H.(w) = Il for w, 2 |o|fw +w +w,w >ws

0 otherwise.

T Capital letters are reserved for functions of frequency, small letters for functions
of time.
= z(1) has the Fourier Transform X{w) .
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(v) The filter hy.(t) is a low-pass filter bandlimited to wp,
Hy o) = {HB-(w) for |m | < wy where wp > w, + w;
0 otherwise.
4.2 Dertvation of the Relationship Between x(t) and y(f)

Consider Fig. 3 for a moment. H.(w) is an ideal, not physically
realizable, filter which passes only positive frequencies. That 1s,

How) = {1 w=0 20)
0 w<O.

cos [w t+po ()] e~duct

| .
T .Pﬂ_)@c_(‘i@ﬂ‘i H, (o) P Re [z (1) TN Hg (1) gt

Fig. 3—Mathematically equivalent to Fig. 2.

and Re(-) signifies the real part of (-). It may be verified by the
reader that Fig. 3 is mathematically equivalent to Fig. 2 as far as x(f)
and y(f) are concerned. Therefore, we will use it for our analysis
ginee it reduces the manipulations required. From Fig. 3,

C(t) — b(t) [ Jlwet+Balt)) + _(lwr£+ﬂ¢(!))] (21)
and
d(t) — _l%t)_eiﬁélf) + .()t) e*l.ﬁé(t)e—;"‘w:t (22)

Sinece the second term in equation (22) is a high-frequency term and
its effect will be filtered out by the filter hg () we will disregard it.
Using the assumption [B¢(t)| < =/2 we expand e/**Y) obtaining

a® = "2 (1 + jge(r). 23)

Continuing, we obtain for z(¢)*
P AN

() = 3a() + j a(0] = 20— B6OND (0D 4 B6OVD)."

t The reader is referred to Ref. 7 for the proof of equation (24).
-] denotes Hilbert transform of [-].
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Therefore,
AN
6(t) = 1/4(b(t) — Bo(D)b(D)) (25)
and
N
y(&) = 1/40)*hs- (&) — Bl@(b(®))*hs-(8))- (26)

Comparing equations (2) and (26) we conclude that they are of the
same form:

h(t) = 1/4hs(t)*hs.(E)
and
Pl
V() = 1/4B(@(Ob()*hs (D).
As a result the bounds given by equations (16) and (17) are applicable
with #(¢) given by

- ' A~
() = Zl Caw() — 1/48(@(1)b(t) * hg.(f). (27

i=m+

However, unlike the nonlinear problem, we may simplify the above
results considerably as shown below.

4.3 Simplification of Bound for Systems Displaying Ficidental FM
If we assume that the basis set {A,(k)} is complete we obtain from
equation (27) that
AN
8(t) = — 1/4 Blo(O)b()*hs- (D).

For the situation where incidental FM is present we have found experi-

mentally that quantity v(p)6(p) [see equation (6)] may be safely assumed

to be zero. Therefore the bound 8, given by equation (17) is applicable.
For bandlimited signals sampled at the Nyquist rate,

—— i llfnﬂtdt
yZ(p)NT}E::ﬂ /T 0 y() )

O® i 1/r, f " 6%(0) dt

T340

Since the effect of incidental FM on the circuits that we are dealing
with is a second-order effect and is quite small, it is reasonable to
assume that

- NG
[ b(2) * ha-(t) | > | B@(B)b(®)) * ha(2) |
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Therefore,

lim 1/7, f V() dt & (llm 1/ f (b(D) * hy.(1))* dt)

T1—%0 T1—v0

resulting in

THONES Eﬂ”nﬁjﬁ*wmr _%[WW&@“
e lim 1/, f C1ObQ) * heOF dt [ s do
(28)

where S,(w) and Sj(w) are proportional to the power spectral density
of y(t) and 6(¢t) respectively.
We will now show that the two integral expressions in (28) are
approximately equal. In the frequency domain we have
S,w) = | B@) [ | Hs(w) [,

N
| 5le()bOH @) [ (29)

N
| Fle(Ob@] | | Hp(w) [*.
The Hilbert transform does not affect the magnitude of the Fourier
transform. As a result we obtain

Sa(w) = | Fle®)b(@)] | * | Hpo(w) | *. (30)
We will now apply assumption iz and assume that the phase jitter
function 4 (t) is a cosine wave,}

So(e)

¢(t) = cos w,;t

where o; is typically either 60 Hz, 80 Hz, or 120 Hz. Equation (30)
then becomes

Se(w) = 1/4 | Blw — w;) + B(w + w;) |2 | Hp (w) |*. (31)

Since the effect of ¢(¢) is only to shift the spectrum B(w) to the

right and left a very small amount® relative to its bandwidth}® it
should be clear from equations (29) and (31) that

Wyt wij wygtwj
f S du f 8y(w) do. (32)
t §[@(1)b(2)] indicates the Fourier transform of ¢(1)b().

*In practice this is a good assumption.
§ Recall w, > w;. Typically w, is 3500 Hz and w; = 120 Haz.
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Using equations (28) and (32) in (17) we obtain

1’

B
Equation (33) is what we have been striving for; it relates achievable
suppression to the modulation coefficient of the unwanted incidental
FM for an echo canceller with a complete basis set.

S = 20 log,, (33)

V. EMPIRICAL RESULTS

5.1 Time Variant Systems (Incidental FIM)

Sinee it is difficult to accurately create a desired amount of ineci-
dental FM on a working L ecarrier system, an analog simulation
was used. For all practical purposes it is identical to a real system.
The only difference is that it allows a controlled amount of incidental
FM to be inserted.

We chose flatly weighted noise bandlimited to 4 kHz as our input
signal. A digital tape was made of the input and output of the L
terminal simulator and this tape was used as input to a computer
simulation of the adaptive echo eanceller shown in Fig. 1. The results
are shown in Fig. 4.

From Fig. 4 we see that there is good agreement between the
empirical results and the analytical results for peak-to-peak phase
jitter angles above 4 degrees. Below 4 degrees the echo canceller per-
formance is limited by the fact that it utilizes a finite number of
taps. Recall in our derivation of equation (33) we assumed that the
echo canceller employed a complete basis set (i.e., infinite number of
taps). This assumption begins to fail in the vicinity of 4 degrees peak-
to-peak phase jitter and the performance of the echo canceller be-
comes limited by the incompleteness rather than by the incidental FM,

5.2 Nonlinear Syslems

In order to verify our results we simulated the nonlinear echo path
shown in Fig. 5. We used various combinations of input signals and
feedback gain constants |[K| and in all cases the results were com-
parable to those shown in Table I for a white noise input.

A word of explanation is needed to clarify Table I. Suppression was
calculated according to equation (14). The sampling rate was 0.1
ms and the averaging interval, @, consisted of 501 samples, i.e., a
50.1-ms interval.* Forty such averages were computed during the two-

t 8 must be in radians.
t See equation (8).
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35 I |
\<—-——EQUAT|0N (33)
ao N
m
Z 25 T | T
z SIMULATION WITH
o WHITE NOISE INPUT
@
& 20 | | N ~]
& | | 4
o
¢ ~J—
@ INCIDENTAL FM —~——
FREQUENCY=80HZ
15 NUMBER OF TAPS=M =100
|K|=5.1 x10-3
SETTLING TIME =1.0 SECOND
10 | | | |
0 2 4 6 8 10 12 14 16 18

PEAK-TO-PEAK PHASE JITTER IN DEGREES

Fig. 4—Time variant simulation.

second time period after the settling time had elasped. The minimum
and maximum suppression shown are those of the forty calculated
suppressions, and the average suppression shown is the ensemble
average of the forty calculated suppressions.

For all variation of input signals and feedback gain constants
tested, we found that S, was 3 dB closer to the actual suppression
than 8; and within 5 dB of the actual suppression. However, as ex-
pected, the echo canceller always performed better than either bound.

VI. CONCLUDING REMARKS

We have obtained lower bounds on the suppression provided by an
echo canceller in either a nonlinear or time invariant environment.
Although theoretically the bounds are only valid when an infinitesimal
feedback constant is used, we have found empirically that they apply
for any practical choice of feedback gain constant. If one were able

x(t) LINEAR | Z (1) | oit) | inear ylt)
— | FILTER I TR ——

3 a, =0.684

o)y =Y a, [Z(t):ln ap = 0.021

n=1 a3 = 0.0361

Tig. 5—Nonlinear simulation.
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TasLE I —WHITE NoisE INPUT SI1GNAL

Feedback gain |K| 5.1 X 103
Settling time 1.0 second
Actual achieved suppression in dB Min, = 18.2, max. = 22.1, ave. = 20.4
Bound 8, [equation (16)] Min. = 10.6, max. = 15.1, ave. = 13.7
Bound S, [equation (17)] Min. = 13.6, max. = 18.1, ave. = 16.7

to measure the time variability of echo paths or to measure echo paths
and then to separate the response into the linear and nonlinear por-
tions [equation (18)], one could predict the minimum achievable
suppression. Measurement of nonlinear echo paths has been the subject
of study of others.®®

For a nonlinear environment we have found that the nonlinear
portion of the response and hence the lower bounds are dependent on
the input signal. As a result, if this method is going to be used to pre-
dict the performance of an echo canceller for a speech input signal,
it will be necessary to design an interrogation signal which possesses
some of the same properties as does speech (syllabic rate, power
level, peak-to-rms ratio, ete.)

The derived equations which relate the effect of incidental FM on
suppression for the single-sideband suppressed carrier systems are
sufficiently general to provide lower suppression bounds for different
or more complex systems which exhibit incidental FM. One must
merely know an effective index of modulation, 8, measured between
the input and the output. The calculations for more complex systems
are rather involved and have been omitted.

Laboratory simulated echo cancellation for a nonlinear echo path
and for an echo path with incidental FM produced cancellations some-
what better than the calculated lower bounds. Knowledge of the type
of nonlinearity or time variability in the echo path environment may
permit one to empirically increase the lower bounds derived in this
paper.
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