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In this paper we apply the Vollerra representation of nonlinear systems
to the echo control problem and propose a generalized adaptive echo canceller
which compensates for nonlinear echo paths. We prove that the proposed
echo canceller converges and reduces the echo lo zero and finally we suggest
other applications for the system.

I. INTRODUCTION

The Volterra functional representation of a nonlinear system is a
generalization of the well known convolution integral used for linear
systems. The validity conditions for the Volterra model are suffici-
ently weak to be satisfied in many practical applications.

In this paper we apply the Volterra representation to the echo con-
trol problem and propose a generalized adaptive echo canceller which
compensates for nonlinear echo paths. We prove that the proposed
echo canceller converges and reduces the echo to zero in the absence
of noise. We also suggest other applications for the adaptive echo
canceller presented.

II. THE VOLTERRA FUNCTIONAL REPRESENTATION OF A NONLINEAR 2-PORT

For linear systems it is well known that the impulse response com-
pletely determines the input-output relationship. The output signal,
y(t), is functionally related to the input, x(¢), by the convolution
integral,

v = [ et = 9 d, &

where h(t) is the system impulse response. It has been demonstrated
by other investigators™* that nonlinear systems, whose outputs do

2797



2798 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971

not depend on the infinite past, obey a more general functional rela-
tionship,

y(®) = b + [ hu(m)att — =) dr,
+ f"’ fﬂ ha(ry , )zt — m)z(t — 1) dry dre

+Zf-~fm@,~J¢Hm—mmh @)
This is an extension of the familiar power series representation of
a memoryless nonlinear system and provides for the system to have
memory. It is applicable to all nonlinear systems whose outputs de-
pend on the remote past to a vanishingly small extent. For example,
it is not applicable to hysterisis and/or switching systems. The terms
of (2) were first studied by Volterra* and are called Volterra func-
tionals. The kernels, hy(+1, -+ , 7,), are generally called Volterra
kernels.
For the systems that we are concerned with we will assume the
following:

(i) The zero input response, hy(t), is identically zero.
(7i) The system is causal so that h,(ry, 75, - -+, 7,) = 0 for any 7, < 0.
(777) The system is stable so that for all =, .

f-ufmmfanmenum<w
0 1]
| |

Because of ¢ we may rewrite (2) in the form

v = 3 ), ®)

n=1

where

D) = f fh( yr) [Tt = ryar). @
| |

n

III. AN ADAPTIVE ECHO CANCELLER FOR NONLINEAR SYSTEMS

We will now generalize the adaptive echo canceller proposed by
Sondhi® to cancel the echo of a nonlinear echo path for which the
Volterra representation is applicable.
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Since the Volterra kernels are square integrable we may represent
them by an n dimensional generalized Fourier series,*

=

ha.(fl y Toy =0 .Tn) = i E .-i;; Ca’..f,.---.i..

: Fi-(Tl)F|=(TE) T Fu(Tu)! (5)
where {T;(¢)}* is an orthonormal set complete in the L2 space. The
coefficients of (5) are given by

Coriem [ [Chiterare e e

T ()T () -+ Tolr) dry - - - dr, (6)
We will assume that the highest order nonlinearity is of order N. Then
substituting (5) into (3) we obtain

N Ll

y(t) = Z Z i i [ j"“' T..(r)alt — 7)) dn

n=1 i;=1 12=1 in=1 )

-j:w i (ro)x(t — 7o) dry -+ j:'“ T (r)x(t — 7)) dr, . (7

)

Before we proceed it will be convenient to adopt a shorthand nota-
tion. We will define

o0 -]

; ()= 2 2 Z::l (), (8)
Cro=0C i )
and
wi, = [ T T (et — 1) dr ) (10)
Thus, (7) becomes
y(t) = Z 2 Crwws, -, (1

Now consider the system shown in I'ig. 1. It contains N subsystems
designated by the circled numbers. The filters having the set of mutually
orthonormal impulse responses | T, (1)} and the set of outputs |w;,}

* Some typical sets {T(t)} are the impulse responses of tapped delay lines or
Laguerre networks.
t Note that w;, is a function of ¢ although it is not explicitly shown.
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due to the input z(t) are common to all the subsystems. Subsystem 1
produces the output of the filters taken one at a time. Subsystem 2
produces all possible combinations of the product of the filter outputs
taken two at a time (i.e., w; w,,), and subsystem N produces all possible
combinations of the filter outputs taken N at a time (i.e., w;,w,, W * -
w;,). Every output tap of every subsystem has associated with it two
multipliers and an integrator connected in the configuration shown in
Fig. 1 for only three taps. Other quantities pertinent to the discussion
below are also defined in Fig. 1.

We will now show that the tap gains, Gr,(t), of the system converge
to the generalized Fourier coefficients C;, of (6) and, consequently,
that 7(¢) converges to y(f) so that the residual echo, z(f), vanishes.

We first define

Ri,(f) = Cry, — Gy, (1) (12)

Then, by inspection, the equation governing the gain of each of the
taps of the pth subsystem is

N
dG (1) (t) = | K| w,w, - w, Z R (Dw;w,, -+ w,, . (13)
di a=1 In

From (12) we see that
afvpit) @) (14)

Also,

dRy (1)
dt

Applying (14) and (15} to (13) we obtain

dR7,(t) _
dt - 2R1f(t) (15)

2 N
dB1,(1) = =2 | K | B (hwi,w:, - - w, E Z R, (w; w;, -+ w;, .

dt n=1 In
(16)

Summing over all the taps within the pth subsystem, and over the
N subsystems, yields

g& ; IER?p(t) = -2|K| (Z ERI,(t)wnwn 'wz'n)z‘ 17

n=1 Tpn

Note that the right-hand side of (17) is always negative or zero.

* Where the set (s *** %) are the components of Ip.
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Also note that

¥(t) = Z ,Z Ri(t) = 0. (18)

Thus, we have a nonnegative function, whose derivative is always
nonpositive, and conclude that ¢(f) must be noninecreasing. It is
strictly decreasing whenever

N

> 3 Ri(wiws, - we, 0.

n=1

Since, in general
wi, Wy, W, # 0,

it is clear that

lim ¢(t) = 0. (19)

t—e0

Since every term in ¢ (t) is positive, we further econclude that

imR(#) =0 for p=1,2,---,N. (20)

t—ro0

Applying (20) to (12) we see that

limit Gjﬁ(t) = C}', ) P = 1, 2, e ,N. (21)
i—o0
Thus we have shown that the tap gains converge to the generalized
Fourier coefficients of A,(r,, -, 7,), which is what we set out to
prove.

The reader can no doubt appreciate that solving (17) for anything
but the final value would be difficult and would only be valid for a
specifiec x(t). The solution for even a very simple input signal may
not be tractable. We will not attempt such an analysis here. However,
from (17) we see that the larger we make |K| the quicker the echo
vanishes. However, |K| cannot be made arbitrarily large because
doubling talking periods™ will cause divergence problems.

IV. EFFECTS OF CIRCUIT NOlskt AND OTHER CONSIDERATIONS

The previous analysis assumes a noiseless output signal y (¢). When
circuit noise, n(t), generated in the echo path is present equation (17)
would be written as

* Doubling talking is said to occur when both speakers in a telephone con-
versation are speaking simultaneously.
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d & ) x 2
X LR = 2K (Z 2 Ri(ywiwi, - w)
i=1 Iy n=1 “
(Z 2 RO, - w)

By choosing |K| small so that the rate of change of the Gy, is small,
it is reasonable to assume that n(f) is statistically independent of all
other variables in the equation. Then, assuming n(f) has zero mean,
upon taking the ensemble average of both sides of the above equation
we obtain

= —2|K| <(Z > R (Dwiw, - )2> (22)

n=1

The same argument used before then yields

lim 2 > Ri(t)> = 0. (23)

t—m \i=1 Ip
Of course, before this limit is reached our statistically independent
assumption would no longer be valid, but at least we may conclude
that convergence will take place until the noise power becomes com-
parable to the echo power.

There are several other difficulties associated with the echo can-
celler. Recall that we represented the nth-order Volterra kernel by an
“n” fold infinite summation [equation (5)]. Obviously, if such a sys-
tem is to be implemented it cannot include an infinite number of
elements and (5) can only be approximated by

Bolry o, T R Z Z Z Gioinoee i Dm0 Dy (12) -+ Ti(m),
(24)

where the J's are finite and as small as possible for an adequate descrip-
tion.

Furthermore, even if the J’s are small the system shown in Fig. 1
requires a large number of components. However, one point may not
be obvious. It can be shown that the Volterra kernels are symmetrical.®
As a result it may be verified that all the C,,.,...;, are equal for any
permutation of a specific set of numbers 7,, &, - - -, 1,. For example,

CIER = Cz.'u = C.‘ll2 = Cz[a, ete..
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Since the set of gains, G;,...;,, for any combination of a specific set of
integers 7, - - - 7, are the result of the same physical operations, only
one tap is required to account for all such terms. For example, consider
the w,w, tap and the ww, tap. From Fig. 1,

Gie = [ wanly) — 9]t

Gar = [ wanly(®) — 9] d.

It is obvious that
Gu = G
The contribution of G, and @, taps toward 7(t) is given by
D@ |12 = Graw,w, + Gowaw, = (G + Ga)wyy = 2G510,,.

Thus, the G,» and (5, taps may be replaced by a single tap. Any set
of taps, G.,....,, for any permutation of a specific set of numbers,
%, ++* 1,, can be replaced by a single tap. This considerably reduces
the total number of taps required.

V. OTHER APPLICATIONS

Although we have stressed the echo cancellation application, these
ideas may also be useful in other areas. Two possible uses are described
below.

5.1 Compensator for a Nonlinear System

Assume that we wish to linearize the nonlinear system shown in
Fig. 1, such that the resulting output, z(t), can be expressed by the
linear convolution integral,

zw=fmmm—mmp @5)

This can be done by first allowing the adaptive system of Fig. 1 to
converge long enough so that the members of the set {G.,(f)} can be
considered to equal the corresponding members of the set {C},} [equa-
tion (21)]. After convergence, the members of the set {G;,} are forced
to zero while the members of the sets {Gy,} , 7 # 1 are fixed at the values
determined previously. As a result the compensated output will satisfy
equation (25).
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5.2 Nonlinear System Synthesizer

Suppose one wishes to study the electrical characteristies of a non-
linear system which cannot be brought into the laboratory. He could
do this by making input/output tape recordings of the system, and use
these as an input to a computer simulation of the adaptive system of
Fig. 1. A good choice of an input signal would be white noise or any
other easily generated broadband signal. By allowing the simulation
to converge and then fixing the tap gains (;, at their final value, the
nonlinear characteristic can be identified. Then it ean be determined
how the field system will behave for any arbitrary input by applying
this input to the computer simulation with the tap gains fixed at the
values determined previously.

VI. SUMMARY AND CONCLUSIONS

The Volterra representation is a concise method of characterizing
nonlinear systems with memory when the output does not depend on
the infinite past. It is a generalization of the convolution integral
used in linear analysis, and many familiar concepts may be extended.
Using the Volterra representation, we have proposed a generalized
adaptive echo canceller capable of nonlinear compensation. A dis-
advantage of the proposed echo canceller is its complexity. The pursuit
of these ideas would be greatly enhanced if an efficient means of meas-
uring the Volterra kernels of an unknown network could be found.
The author and other researchers are presently working toward this
end and several ideas have been proposed. To date, unfortunately,
they all suffer from the complexity problem.
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