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Some Comparisons of Load and Loss Data

With Current Teletraffic Theory*

By R. I. WILKINSON
(Manuseript received February 26, 1971)

Data are presented and compared with current traffic loss theory in three
trunking areas: high-usage groups; full (nonalternate routed) groups;
and final groups. Both single hour and average busy season busy hour load-
loss comparisons are made. Methods of estimating offered loads from carried
loads, and from the proportion of calls blocked, are considered. The blocking
which results from offering nonrandom traffic to overflow groups is dis-
cussed. Modifications in the theory commonly applied are indicated in each
case when necessary to obtain satisfactory agreement with observed values.

I. INTRODUCTION

The ultimate test of theory is comparison with reality. The procure-
ment of reliable and reproducible traffic data is relatively difficult
since little control can be exercised over the character and level of the
input to the load carrying system without invalidating the genuineness
of the input. There is then a continuing need to compare the com-
monly used load-loss relations with observations made under a variety
of trunking configurations and load characteristies. Data are presented
here and compared with loss theory in three trunking areas: high-
usage groups; full (nonalternate routed) groups; and final groups. The
various findings are summarized at the end of the paper.

II. HIGH-USAGE GROUP STUDIES

2.1 Loads and Losses on High-Usage Groups

It is commonly assumed that the requirements of a “random” or
Poisson input are met until originating traffic has passed through a
restrictive group of paths or switches. It would be difficult and cer-

* Substantially as presented at the Sixth International Teletraffic Congress,
Munich, 1970.
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tainly impractical in most operational situations to check such an
assumption by examining the call arrival instants or to analyze their
interarrival times, as well as make a corresponding study of their
service times. Since in any event exact conformity with the theoretical
assumptions could not be found, the question would remain as to the
relative adequacy with which they were met.

The traffic engineer’s usual wish is to describe the blocking which
will occur in real-life situations when a given average load is offered
to a group of paths or switches. It will generally suffice then to com-
pare observed load versus loss relationships with those theoretically
derived, rather than attempt an assessment of the agreement of more
basic requirements.

The simplest trunking situation oceurs when a parcel of traffic
arising from an indefinite (but potentially large) number of customers
is offered to a full access high-usage trunk group. A high-usage group
is presumed here to receive calls quite directly from customers without
earlier significant constriction and serves them immediately if paths
are available. If, however, all of the high-usage trunks are busy, ar-
riving calls are alternate routed to other groups in the hierarchy; and
negligibly few calls return to the high-usage group for retrial. Thus the
conditions for the application of Erlang’s loss formula are apparently
well satisfied. How well do observations made in actual exchanges
agree with this theory?

Data of the above character have been obtained on many high-
usage groups, both interlocal and intertoll. For making comparisons,
hourly readings of three recording registers are commonly taken:

() Number of calls offered, m
(77) Number of calls blocked, n
(i#7) Average number of calls seen on trunks during the period by
switches-in-use counts taken every 100 seconds, giving an estimate
of the average load carried in erlangs, {.

Observations made by A. Descloux' indicate that a substantially un-
biased estimate a of the hourly offered load is obtained from

aét’/(l——) (1)

Typical results of plotting proportion blocked, n/m, versus load offered
a are shown in Figs. 1, 2, and 3. Figures 1 and 2 are for interlocal groups
studied at an Arlington, Massachusetts, No. 5 crossbar office, and at
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Kildare (Chicago), a No. 1 crossbar office. Figure 3 data are on intertoll
groups at Memphis, Tennessee, a sectional center in the toll hierarchy.

We know that over a long period an equilibrium load of a erlangs will
show a significant hour-to-hour variability in offered loads.” Also, when
such variable loads are offered to a trunk group, we should expect the
individual hour losses to tend to fall on the convex side of an arithmetic
plot of the long-run theoretical load-loss curve, since when aggregated
their average loss should just meet the theory. To examine this phe-
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Fig. 1—Comparison of Erlang’s loss theory with observations on interlocal
high-usage trunk groups: busy hour, Arlington, 29 days; and busiest 3 hours,
Kildare, 20 days, 1958.
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Fig. 2—Comparison of Erlang's loss theory with observations on interlocal
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Fig. 3—Comparison of Erlang’s loss theory with observations on intertoll high-
%slageltn:lnk groups, Memphis, 1957-1958: 5 trunks to Milwaukee, 11 trunks to
eveland.
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nomenon under controlled conditions two simulations were run with a
designed offer of 1.50 erlangs comprised of 180-second exponential
holding time calls. The actual average offer observed was @ = 1.485
erlangs to 1 trunk for 400 hours, and 1.409 erlangs to 4 trunks for 100
hours. The results are displayed on Fig. 4. The individual hour losses,
while conforming generally to the shape of the theoretical curve, appear
to be slightly more linearly disposed. As longer summary periods are
used, the observed values would be expected to approach the Erlang
loss eurve. This is seen clearly in the simulation results. A slight sem-
blance of this tendency is seen on Figs. 1 thru 3, but it is considerably
obscured by other fluctuations.

0.8
0.7}
a=1.485
E=o0.601
0.6
SIMULATION

400 HOURS ™
\N57

ERLANG

- 36
0.8 THEORY

0.4

0.3

PROPORTION OF CALLS BLOCKED

0.2

ERLANG
THEORY

o4 = 10 5MULATION

== 100 HOURS

~~50 2-HOURS

| 1

0 0.5 1.0 1.5 2.0 2.5 3.0
OFFERED LOAD IN ERLANGS

Fig. 4—Load vs loss simulation, with equilibrium offered loads, results summarized
by 1- and 2-hour periods. (Numbers at points show hours of data averaged; 4 and
are mean values for all hours.)
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We are directed to the conclusion that although Erlang’s loss theory
is properly applied only to a system operating in statistical equilibrium
over a long period of time, for engineering purposes it is suitable for
describing conversation type traffic load versus loss results summarized
by periods as short as one hour (summary period =20 average holding
times).

2.2 Kstimation of Hourly Offered Loads from Switch Counts

It is customary to furnish only a switeh counting device on high-usage
trunk groups, and to depend on the accuracy of Erlang’s load-loss rela-
tion,

a’/x!
l+a+a*2!'+ -+ +a/a!’
to estimate the corresponding offered load by solving for a in
t = all — E, .(a)] (2)
where z is the number of trunks in the group. Descloux® has shown
that a certain amount of bias occurs by this method. The reason for
this is made clear by examining Fig. 5.

Figure 5a shows the loads offered, as estimated by equation (1), to
three 1-trunk groups during the 3 busiest hours of the day for 20 busi-
ness days. The load carried (= occupancy here), as determined by
switch counting, is plotted as the ordinate. The Erlang relation is
drawn as the solid line.

The points comprise a correlation scatter diagram. The classical
regression line of “y on z,” that is, the average value of carried load
for a selected average offer, would be expected to agree with the
Erlang loss relation, since the latter is derived on the basis of offered
load as the “independent variable.” The “y on z” regression line gen-
erated from the data is indeed seen on Fig. 5b (dashed broken line) to
conform nicely with the Erlang theory.

Unless there were perfect correlation, the “x on y” regression line
could not be expected to agree with Erlang’s theory, and this is
corroborated by the observed regression (solid broken) line on Fig. 5b.
At lower than median occupancies (and offered loads) this regression
line lies slightly below the Erlang theory, and for larger than median
occupancies, it lies consistently above. Thus when estimating offered
loads from carried loads by Erlang’s loss formula [equation (2)] we
should expect the values to be smaller than true for lower than aver-
age occupancies, and greater than true for larger than average occu-

E, . (a) =



0.7

0.6

0.5

OCCUPANCY

0.4

0.3

0.2

0.7

0.6

0.5

OCCUPANCY

0.4

LOAD AND LOSS DATA

2813

LN -] - \

~ _ERLANG LOSS
RELATION

< _ERLANG LOSS
RELATION

(b)

1 ] 1 | | ] ] | | ] 1

1,0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
AVERAGE LOAD OFFERED IN ERLANGS

5.5

6.0

Tig. 5—Carried vs offered loads, data on three 1-trunk high-usage groups,
Kildare, 1958, 3 hours per day, 20 business days. (a) scatter diagram, (b) observed
regression lines.
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pancies. For example, for one trunk at an observed load carried
(oceupaney) of 0.75 erlang, Erlang theory would predict an offered
load of 3.0 erlangs, while the observed regression line would more
nearly suggest an offer of 2.64 erlangs, a difference of 14 percent.

An appropriate theoretical expression for the “x on y” regression
in this circumstance is difficult to generate, depending partially as it
does on the day-to-day distribution of the offered loads, and this last
becomes a matter of observation of customer characteristics. Since the
regression lines may be decidedly nonlinear, the theoretical approaches
of simple correlation theory are inadequate. In the face of such dif-
ficulties, one reverts to the reduction of data taken in the field for
practical estimating results.

Figure 6 shows the ratio of two estimates of the offered load, as/a; ,
versus observed occupancy of several 1-trunk groups. Here a, is the
assumed unbiased estimate from equation (1), and a» is from equation
(2), the latter making use only of the carried load measurement. In
spite of the rather wide differences in loading among the five groups
shown, the a»/a; ratios are quite similar and one would not have too
much difficulty in drawing a central ratio line through the field for
general correction of a, values.

Figure 7 shows a similar chart for three trunks, indicating the ten-

OCCUPANCY

. Fig. 6—Ratio of estimates of single hour loads offered to 1 trunk. Estimate e
1fs frorf switch and call counts, estimate a. from switch count and Erlang’s loss
ormula.
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Fig. 7—Ratio of estimates of single hour loads offered to 3 trunks. Estimate a:
is from switch and call counts, estimate as from switch count and Erlang’s loss

formula.

dency for the ratios to approach 1.0 with increasing trunk group size.
Figure 8 shows a rough summary of the occupancies at which the
ratios would exceed 1.05 with various-sized trunk groups. Thus one
might conclude, for example, that estimates by Erlang’s loss formula
of hourly offered loads on 12-trunk groups would not be acceptable
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Fig. 8—Median occupancy (load per trunk) beyond which ratio as/a: for
single hours exceeds 1.05 (approx.). Kildare data for 3 morning hours.
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without correction (that is they would over-estimate by more than
5 percent) for occupancies greater than 0.75.

2.3 Estimation of Average Overflow Load from Average Offered Load During
a Busy Season

When an offered load a varies from hour to hour in excess of the
amount expected in 1-hour segments of a longtime load in statistical
equilibrium,” the average overflow @ over a period of time will exceed
that estimated by entering the Erlang loss relation with a, that is,
& > a-E, .(@). This result is caused by the always concave upwards
shape of the offered load, overflow load curves. The amount of such
excess will depend strongly on the magnitude and character of the
offered loads; in any event as a gets larger, the effect decreases for a
given size of trunk group.

Numerous studies have shown that day-to-day busy hour variations
in the busy season tend to follow a Type III Pearson distribution,

0(a) = Ka'e ", (3)

in which the constants are determined from the mean @ and variance
v of the data, as
h=am—1

¢ = af
and K is the normalizing coefficient, ¢"+*/T'(h + 1). Typical is the
example shown in Fig. 9 for a 9-trunk interlocal group in which @ =
5.72, Var(a) = 1.61, yielding h = 19.20, ¢ = 3.55.

Again, there is found a considerable correlation between the day-to-
day variance and the mean of such a distribution. Figure 10 shows on
a log-log plot the field of variances versus means of loads offered
during 3 hours each day for 20 days on 72 high-usage interlocal groups
at Kildare office. Summaries at other exchanges in the United States
confirm a similar association of variances and means. The general
line of regression of variance on mean for the corresponding scatter
diagrams is shown by the solid line, whose equation is approximately

Var (@) = 0.31a. (4)

(A dashed line has also been drawn to approximate the major axis of
the elliptical pattern of points. Its equation is

Var (a) = 0.13a"". (5)

It will be referred to in a later section.)
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If the Erlang loss formula can be used to estimate the proportion of
calls which overflow a high-usage group during a single hour, the average
load overflowing, &, over a series of hours is then calculable from

&= f m ok, (a)6(a) da. (6)

Similarly, the day-to-day variance of the overflow loads is determined
from

@

Var (@) = f aE, .(@)]8(a) da — &. )
Curves have been caleulated by numerical integration, using the regres-
sion relation of Iig. 10, which give the ratio of & to a; , the latter being
the overflow corresponding to an offer of @, found according to

a; = (i-E].,(li)- (8)
Values of @/a, are given on Fig. 11. At constant loads on the last

trunk (shown by dashed lines for 100 call seconds per hour, or CCS)
the ratios @/a, are relatively constant; hence a simple table, Table I,
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Fig. 9—Variations in day-to-day busy hour loads, Kildare group No. 67, 9
trunks, 20 days.
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Fig. 10—Day-to-day variance vs average load in clock hours, 72 interlocal high-
usage groups, 3 hours, Kildare, 1958.

using the last trunk load as the index is adequate for many working
purposes. An example of the need for correcting by the factors of Table
I is shown in Fig. 12, In the left diagram, uncorrected «, values are
plotted against average overflow loads, &, , calculated by the believed
generally unbiased procedure

__Zf

9
i=1 1-— nl/m ( )
where s is the number of hours summarized for each group. [Compare
with equation (1).]
After correction the overflow estimates are shown in the right diagram
to be in much better agreement with the &, values.

2.4 Fstimation of Average Offered Loads from Average Loads Carried

To obviate the labor of caleulating individual hourly estimates of
the offered loads from observed hourly carried loads on high-usage
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Fig. 11—Correction required in a4 to estimate a.

groups (which would in turn require a correction as discussed in Section
2.2), the carried loads ¢ are commonly averaged first, and this average
{ is then entered in Erlang loss theory curves or tables to obtain a; from

= afl — B .(a). (10)
One needs then to compare a; with the true offer a. This is done as
follows. Choosing a value of @ as the offer to z trunks, & is obtained
by correcting a, employing the appropriate factor from Fig. 11. One

then obtains ¢ from
{=a—a& (11)

TaBLE [—CORRECTIONS IN a; TO ESTIMATE &

Range of Corrections Corrections to ag
Load on the Last Trunk Seen in Fig. 11 for Practical Use
CCs erlangs
8 0.22 1.32-1.37 1.33
10 0.28 1.22-1.28 1.25
12 0.33 1.16-1.21 1.20
14 0.39 1.11-1.16 1.15
18 0.50 1.05-1.09 1.08




2820 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971

B 20 2.0
g . :‘ (3
i . 2
& ~ 15 s
3 o o
w o o
2 . 5

w (8]
& 1ol @ 40 y
Z o .' o«

C
5 = 8 '
0 [} (] 5]
05 I 0.5 D
E 2,
g . I
(1 .
[ .
i 0 ] 1 1 0 | 1 ]
0 0.5 1.0 1.5 2.0 o 0.5 1.0 1.5 20

@y = AVERAGE OF INDIVIDUAL HOUR OVERFLOWS IN ERLANGS

Fig. 12—Effect of corrections by Fig. 11 on estimates of overflows from high-
usage groups of Kildare Tandem No. 1, 9-10 A.m.

since that load which does not overflow must naturally be carried.
Relation (10) then gives a; . A field of values of @/a; have been caleulated
and form the curves of Fig. 13. We see that the ratio is sensitive both
to proportion of overflow and to the number of trunks.

Corresponding data for Kildare groups are shown on I'ig. 14. Similar
forms of probability density distributions are observed.

It will be noted that there is a generally maximum ratio on I%ig. 13
which tends to oceur roughly at E, .(a) = 0.2, that is, at an expected
overflow of 20 percent. It is interesting that this maximum correction
required on a7 occurs squarely in the middle of the most common
economic high-usage group operating levels.

For practical use we have constructed the traces of the 3-dimensional
surface of Ilig. 13 which correspond to several values of ‘“‘economie
CCS on the last trunk.” (For a discussion of economic CCS, see Ref. 3,
Section 7.6.) The theoretical d/a; ratios for 8, 14, 20, and 25 CCS on
the last trunk are shown on Iig. 15. Comparison with data taken on
a number of intertoll high-usage groups at Memphis, Tennessee, is
shown in Fig. 16. Although the dispersion among individual groups is
considerable, the grouped average values show reasonable agreement
with theory. Table IT shows the values of corrections to a; required
to best approximate the true offer @ for 20 days of data, for the four
selected last-trunk CCS. A brief study indicates that when the busy
season includes fewer than 20 days, the required correction is somewhat
smaller.
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Fig. 15—Practical correction of az to estimate @, with dependence on engineering
level of load on “last trunk.”
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Fig. 16—Comparison of theory and data in corrections of az to estimate &, intertoll
data at Memphis, 1957-1958.
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TaBLE II—AvERAGE CORRECTIONS TO BE APPLIED TO a; TO OBTAIN
ImprOVED ESTIMATES OF @

(¢ determined as 20-day average)

No. Trunks Correction Factors for y CCS on the Last Trunk
y = y = 14 y =20 y =25
1 1.16 1.14 1.11 1.07
2 1.10 1.09 1.08 1.06
3 1.07 1.07 1.07 1.05
4 1.05 1.06 1.06 1.05
5 1.04 1.05 1.05 1.04
6 1.04 1.04 1.05 1.04
7 1.03 1.04 1.04 1.04
8 1.03 1.04 1.04 1.04
10 1.03 1.03 1.03 1.03
12 1.02 1.03 1.03 1.03
15 1.02 1.03 1.03 1.03
20 1.02 1.02 1.02 1.02
25 and up 1.01 1.02 1.02 1.02

2.5 Estimation of Average Offered Loads from Average Overflow Ratios

To monitor the level of traffic flow in some systems, a pair of
registers which count numbers of calls offered m, and numbers of calls
blocked n, are provided instead of the more common carried load
meters. The value n/m is called the overflow ratio. Descloux® has
shown that, under the condition that the observation period is long,
say 20 holding times, little bias exists in estimates made of individual
hourly offered loads to high-usage groups when a is determined from
the Erlang loss relation

E, .(a) = n/m. (12)

To increase the reliability of such estimates, the overflow ratios for
a number of hours are commonly averaged and entered as for a single
hour in equation (12). We inquire whether the estimate of average
offer, a,;;; , so obtained is unbiased, or requires correction. The expected
loss probability when a load a, varying from hour to hour according
to 8(a), is submitted to xr trunks is

B, (a) = fnm E, .(a)6(a) da. (13)

When a constant load equal to the average load a is offered to x trunks,
a loss probability E' will result,
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B = E (). (14)
In general £ will be different from Z.

Suppose that actual busy hour overflow ratios are observed over
a period of days, and averaged giving n/m. If @ is estimated as @,
through equating n/m to E in equation (13) we should expect @, to
be unbiased sinee both n/m and I contemplate the presence of day-
to-day variations, the first in reality, and the second by the inclusion
of 8{a) in equation (13). However estimating & through substituting
n/m for E' in equation (14) will yield a7 , containing a certain amount
of error since it merely determines the single hour load corresponding
to the average loss.

A range of offered loads to trunk groups of size 1-24, covering the
cases of 8 to 18 “CCS on the last trunk,” has been studied and a/a;;
plotted against the numbers of trunks. This is shown in Fig. 17. For

1.20—1(8r
NUMBERS IN CIRCLES ARE

e APPROXIMATE CCS ON THE
LAST H.U. GROUP TRUNK

118

14—

1z

T

o

@
I

4] 2 4 6 8 10 i2 14 16 18 20 22 24
NUMBER OF TRUNKS IN HIGH USAGE GROUP

Fig. 17—Correction required in offered load estimated from averaged n/m
readings.
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one and two trunks the estimation procedure based on equation (14)
considerably underestimates the average offered load; but beyond
four trunks, overestimates of the true average offer are generally made.
The cause of the inversion in the correction required lies in the shapes
of the Erlang load versus loss curves in the ranges of interest. The
one- and two-trunk curves are predominantly concave downwards
(see for example T'ig. 1), while for the larger trunk numbers the curves
are concave upwards. Only for the one-trunk case are the corrections
sufficient in most practical situations to warrant their making. Here
a median correction is about 1.18.

Available data for groups having call and overflow counters, while
showing considerable dispersion, confirm the shape and location of
the correction curves of Fig. 17.

ITIT. GROUPS WITHOUT ALTERNATE ROUTES

There has long been interest in the different theoretical formulas
used by American and European administrations for engineering inter-
local trunk groups. The former have relied on the cumulative Poisson
while the latter have favored Erlang’s loss formula. What do data
taken on such groups indicate?

In 1959 data were taken on some 30 direct trunk groups terminating
in the Arlington, Massachusetts, No. 5 crosshar office. Hourly observa-
tions comprised numbers of calls offered to each group, the number
blocked, and, by switch counting, the average load carried. Illustrative
of these is group No. 26 with 32 trunks observed for 4 hours a day for
20 business days. Offered loads were estimated for each hour by equa-
tion (1). The load versus blocking relationship observed for 116 hours
is shown in Fig. 18. Superimposed is the Erlang loss relation. The
agreement is seen to be very good.

On Fig. 19 are shown only the twenty-nine 10-11 s.m. busy hour
loads of Fig. 18. The agreement with Erlang’s theory is again under-
standably excellent. Other group data comparisons were nearly as
satisfactory. We are led to conclude that Erlang’s loss formula de-
scribes quite well the hourly blocking for conversation traffic on direct
groups which do not have alternate routes. Apparently the return of
blocked calls here was of a nature that caused little disturbance of
the Poisson character of the offer—or perhaps they contributed to it!

In the lower section of Fig. 19 is shown a distribution of the busy
hour loads offered to group No. 26 as they varied from day to day
over the 6 weeks busy season. For the average offer of @ = 21.37
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Fig. 18—Comparison of load vs loss data with Erlang’s theory: full group No.
26 of 32 trunks, Arlington, 4 busiest hours of each day for 6 weeks, 1959.

erlangs, a variance Var(a) = 20.3 was observed. Since the probability
of loss curve in this range is concave upwards, the average loss for
all the hours tends to exceed the loss at the average load. Thus the
theoretical single hour loss at 21.37 erlangs offered is 0.0074. However
the observed average loss was found to be 0.0197 when hourly losses
were given equal weight (as in American practice). (If the losses had
been weighted by the corresponding offered loads, the average loss
would be still greater at 0.0267.)

Clearly, if Erlang's formula describes well the losses for individual
hours, it will not usually give an adequate estimate of the average loss
over a series of busy hours. However, when the more conservative
Poisson summation values,

od - _—a

P(,a) = > “%,

r=z T!

are laid on Fig, 19, they are seen to pass directly through the (un-
weighted) average loss point, indicating that at least for the amount
of day-to-day variation present in this sample of hours, the Poisson
provides just the right amount of “improvement” to Erlang’s loss
formula.
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Fig. 19—Comparison of load vs loss data with Erlang’s theory: full group No.
26 of 32 trunks, Arlington, 10-11 A.M. busy hour each day for 6 weeks, 1959.
(Numbers at points are hours averaged.)

There is then a particular variance of day-to-day busy hour loads
which when applied to Erlang’s loss formula will just produce the
average loss of the Poisson formula. Figure 20 shows a field of curves
indicating the Var (a) required for average loads, 4, such that at the
loss levels given, the Poisson summation will closely relate the average
busy season busy hour loss to the average offer. On the same field are
shown the actual variances versus averages observed for the trunk
groups in the Arlington study mentioned above. It is seen that the
variances found in practice are such that at commonly used interlocal
average busy season busy hour grades of service, 0.005 to 0.03, the
Poisson summation provides an excellent means of specifying group
average capacity. It may be noted that in American practice, the
objeetive grades of service are set to be met by the average (unweighted)
blocking in the busy season busy hours.

The dashed line on Fig. 20 is a centrally located eurve which describes
the general relation seen between day-to-day variance and average
load offered. It is interesting — and reasonable — that its equation is
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Fig. 20—Variations in time consistent hourly loads on 32 direct groups of
trunks: Arlington, 4 busiest hours of each day for 6 weeks, 1959, compared with
“Poisson assumption.”

Var (¢) = 0.13 @’ where r = 1.538, identical with that of the central
axis line drawn through the high-usage group observations on Fig. 10.
The dotted line on Fig. 20 results from choosing r = 1.50; it corresponds
nicely with Poisson blocking of 0.01 for loads of 10 to 100 erlangs.*

* It may be noted that Bell System traffic capacity tables for nongraded groups
carrying random and nonrandom offers have been generated at several blocking
levels, and contemplate the following hour-to-hour load variations: Single hour
blocking; “low” hour-to-hour wvariation (r = 1.50); “medium” hour-to-hour
variation (r = 1.70); “high” hour-to-hour variation (r = 1.84). At loads of one
erlang, these several traffic tables contain the same allowance for day-to-day
variations. Below one erlang the theoretical day-to-day variations, while inverted
from their relative positions at loads above one erlang, are small compared with
the momentary variations inherent in random traffic. ' .
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IV. FINAL GROUPS

Much has been written in the past on estimation of the effect of
the nonrandomness (peakedness) of overflow traffic from high-usage
groups upon the trunking requirements in final groups.® Studies have
also been made (as in the previous section) showing the added trunks
required to accommodate the increased demand on groups whose
offered loads show significant day-to-day variations.

The two effects will usually appear simultaneously in the engineer-
ing of final groups. Moreover, loads offered to final groups may be
expeeted to show generally larger day-to-day busy hour variations
than do loads to high usage and direct groups not having alternate
routes. Figure 21 shows a field of variance versus average loads
offered to 28 interlocal final groups in which negligible first-routed
traffic was present. A central fitting line, having the equation

log, Var (a) = 1.8404 log,, @ — 0.8861, (15)

has been drawn through the points, or equivalently,

Var (a) = 0.13a"*. (16)
When this variation is assumed, the carrying capacities of 6 to 15

o
o
<)

. FITTING LINE IS
LOG1o VAR (3) =1.8404 LOG|p @ -0.8861—

(4]
Q
o

N
[=]
[=]

o
°

20

VAR (&) = DAY-TO- DAY BUSY HOUR VARIANCE
bt
[P

| L1 | 11
_ 4 6 810 20 40 60 100
d = OFFERED LOAD IN ERLANGS

° o
- N

LL']

Fig. 21—Variations in busy hour loads offered to final groups in 28 interlocal
alternate route systems.
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trunks at an 0.02 average blocking are shown illustratively on Fig. 22.
For 10 trunks, for example, the erlang capacity for random traffic is
reduced from 5.08 to 4.47 erlangs, a drop of 12 percent resulting from
the day-to-day variations,

Similarly, if day-to-day variations are not introduced, but instead
a nonrandomness, characterized by a peakedness factor P.F. =
(variance) /(mean) = 1.5, is assumed, the capacity of 10 trunks is
reduced from 5.08 to 3.96 erlangs, a reduction of 22 percent.

When day-to-day variations and nonrandomness are jointly intro-
duced, the capacity of a group is further reduced; thus the 10 trunks
will now accommodate an offer of only 3.57 erlangs, a reduction of
30 percent from the basic Erlang loss formula value. It is clear that
each cause can produce substantial reductions in trunking capacity.

When the offer to a final group contains a significant fraction of
first-routed traffic, both the peakedness factor and the day-to-day
variations will commonly be lowered; the trunking requirements will
then be correspondingly reduced on hoth accounts.

An illustration of the importance of using theory which considers
both day-to-day variations and the peakedness of the traffic is given
in Fig. 23. The results are shown of observations on a Kildare final
group of 59 trunks, with 62 subtending high-usage groups plus 4 first-
routed traffic items. From high-usage group load and trunk configura-
tions the estimated peakedness factor of the final group offered load
is 1.93. The load-loss characteristies observed for the 20 days are:

Hour Average Day-to-Day Average
of Offer Variance of Blocking
Day (erlangs) the Offer Observed
9-10 A 26.5 28.5 0.001197

10-11 A 44.0 180.3 0.04570

As scen on the figure, the simple Erlang loss values (dotted lines) are
an order of magnitude below the observed losses. Although allowance
for nonrandomness (dashed lines) makes a marked improvement, it is
still far from describing the actual losses. Nor is the Poisson model
(dots on Fig. 23), which might be expected to compensate partially
for day-to-day variations in the 0.01 to 0.03 loss range, a nearly
sufficient improvement. But employing the typileal day-to-day vari-
ance magnitudes of Fig. 21 in conjunction with the estimated peak-
edness of the offer, the solid line load-loss curves for 58 and 60 trunks
exactly bracket the average loss values seen for 20 days for the 9-10
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Fig. 22—Final trunk group engineering with various assumptions as to the
character of offered loads. Average blocking = 0.02.

AM. and the 10-11 a.mM. hours on the 59-trunk final group. Construc-
tion of such load-loss relations 1s described in Ref. 4.

V. SUMMARY

Examples have been given comparing observation, simulation, and
theory in various areas of traffic flow on trunks comprising direet and
alternate routed plans. Particular attention has been drawn to the
need for developing adequate relationships between offered, carried,
and overflow loads, both single hour and average busy season, suitable
to each operating condition. Where possible, a physical understanding
of the principal factors is followed by statistical theory which may re-
quire approximate numerical calculations. Further insight may be
gained from controlled simulations. In order for the relationships de-
veloped to be useful, they must finally be found to agree with the flow
of traffic in real situations.

The following particular results have heen determined:

(?) Single hour load-loss relationships on high-usage groups are
found to be well described by Erlang’s Eq,, (a) loss formula. Com-
parisons are made with data and simulations (Figs. 1, 2, 3, 4).

(77) Estimating single hour loads offered to high-usage groups from
observed carried loads by use of Erlang’s loss relationship yields too-
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large values at the heavier occupancy levels, and slightly too-small
values at low occupancies. This is explained and illustrated by re-
course to regression theory (Fig. 5). The magnitude of the corrections
needed are indicated in Figs. 6, 7, 8.

(#%7) If busy season busy hour carried loads are first averaged and
this value entered in Erlang’s E;-relation the average offer will be
underestimated. Corrections required for a 20-day busy season are
given in Table II and Figs. 13, 14, 15, 16.

(fv) Estimates of the average offer obtained from averaged hourly
bloeking proportions show that both positive and negative corrections
may be required (Fig. 17). Except for the 1-trunk case, however, the
corrections indicated are small.
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Fig. 23—Comparison of blocking theories with performance of Kildare final
group No. 1, 62 high-usage groups plus 4 first-routed items, 59 trunks, P.F. =
1.93, 20 days, October-November 1958.
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(v) When a series of busy hour loads is submitted to a high-usage
group, the true average overflow load will exceed that estimated by
entering Erlang’s relation with the average offer. Corrections are given
in Table T and Fig. 11.

(vi) For full groups (i.e., those without alternate routes) it is found
that Erlang’s formula describes well the load-loss relation for single
hours (Figs. 18, 19).

(viz) When busy hour loads offered to full groups are averaged for
the busy season, the corresponding average loss will usually be better
estimated by the Poisson summation formula, if the loss values are
in the common range from 0.005 to 0.03 blocking.

(viit) Loads offered to final groups will normally be nonrandom
(peaked) and hence require special procedures for engineering. Ex-
amples are given in which both peakedness and day-to-day busy hour
variations are present. Unless both influences are allowed for, the
average load-average loss estimate may be far from that actually
observed (Fig. 23).

REFERENCES

1. Descloux, A., “On the Variability of the Proportion of Unsuccessful Attempts
in Loss Systems,” Proc. Fourth Int. Teletraffic Congress, London, 1964.

2. Riordan, J., “Telephone Traffic Time Averages,” B.S.T.J., 30, No. 4 (October
1951), pp. 1129-1144.

3. Wilkinson, R. I, “Theories for Toll Traffic Engineering in the US.A.,” BS.T.J.,
85, No. 2 (March 1956), pp. 421-514.

4, Wilkinson, R. 1., Nonrandom Traffic Curves and Tables for Engineering and
Administrative Purposes, Traffic Studies Center, Bell Telephone Labora-
tories, 1970.



