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When Are Transistors Passive?*

By B. GOPINATHt and D. MITRAt
(Manuscript received December 8, 1970)

The paper presents results on the stability and dynamic behavior
under large signal conditions of networks consisting of transistors and
sources connected lo a linear, passive, memoryless subnetwork. The tran-
sistors’ model incorporales various nonlinearities. A characteristic common
to the main resulls of the paper is that they relate to properties of the tran-
sistors alone and, hence, are independent of the passive part of the network.

Sufficient conditions are oblained for asymplotic and bounded input-
bounded output stability. The conditions impose restrictions on some of
the physical constants of the transistors’ model. These conditions have
an interesting physical interpretation in terms of temperature differentials
in the transistor junctions. In particular, any lransistor with the expo-
nential type of static diode characteristic is passive only if the ratio of the
junction lemperatures lies inside an interval determined by the o’s.

In the state space of the network there exisls a well-defined region R
specified by the transistors’ model with the property that constant lerminal
stales in R are independent of initial conditions. The region R is in a
certain sense maximal.

I. INTRODUCTION AND DERIVATION OF THE DIFFERENTIAL EQUATION

The network considered is shown in Fig. 1 and it consists of a number
of transistors connected to a subnetwork composed of voltage sources,
current sources, and linear, passive, memoryless devices such as resistors
and transformers. Sandberg' has analyzed the dynamic behavior of such
networks and has defined a class which exhibit various features of
stability. The results of this paper are essentially different in that they
relate to properties of the transistors alone and, hence, are independent of
the passive part of the network.

The analysis is concerned with certain network-theoretic properties of

* This paper was presented at the 1970 IEEE International Symposium on Circuit
Theory, Atlanta, December 1970.
t The sequence of names was chosen by flipping a coin.
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Fig. 1—General network containing transistors, sources, resistors, and transformers.

transistor models that are assumed in extensively used Network-Analysis
Programs, such as NET 1, CIRPAK, CIRCUS, ete., (see Ref. 2). The
intent of the paper is to study the large signal behavior of transistor
networks using this model and certain generalizations of it. Each transis-
tor is represented by a model of the type shown in Fig, 2 which takes into
account the nonlinear de properties as well as the presence of nonlinear
junction capacitances. Six parameters are associated with the model:
@y, g, T1, Ty, €1, and ¢y, all of which are positive; also a;, @; < 1. The two
nonlinear static diode functions are denoted by f,(-) and f.(-). Initially
it is assumed that f,(-) and f.(:) are monotone, strictly increasing
mappings of the interval (— e, ) into itself; {,(0) = f,(0) = 0, and
71(+) and f.(-) are continuously differentiable on (— », «). Further
assumptions are made about f,(-) and f,(:) in the course of the paper.

Suppose the network has n transistors and with the polarity indicated
in Fig. 2 let vs,_; and v,; respectively denote the emitter-to-base voltage
and collector-to-base voltage of the 7th transistor. Similarly, let 7,;_,

- aylp —=aplf

_/ /
-, —if=fi(v) | Lp=fa(Va)= Lo
s M 2

Fig. 2—Transistor model.
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and 7,; respectively denote the emitter current and the collector current
of the ith transistor. An identical scheme of subseripting is used to
define f.(-), ¢;, and 7, fori = 1,2, - -+, 2n. v, 7, and F(-) are 2n-column
vectors formed by arranging {v:}, {i:}, and {f.(-)} respectively. In
applying the current law to the transistors’ model it follows that

i =400+ TFQ )

where
[CW)]; = cv; + 7:fi(vy)
and T =T, @T.P --- @ T. the direct sum of n 2 by 2 matrices T’; in

which
T — [ 1 _“;}
—ah 1

The subnetwork to which the transistors are connected is assumed to
impose a constraint of the form

i=—Gv+b @)

in which ¢ is the conductance matrix and henece G = 0,* and b is an
element of all real bounded continuous 2n-vector-valued functions of ¢
on [0, «).

From (1) and (2),

forj =1, -+ ,n

%C(v) + TF@) + Gv = b. ®)

The above equation is also derived in Ref. 1. Since all of the ¢; and ;
are positive and each of the f,(-) is continuous and monotone increasing,
C7'(-) exists; obviously C7'(+) is also strictly monotone increasing
and C7'(0) = 0.

II. ASYMPTOTIC STABILITY FOR THE UNFORCED SYSTEM

In this section we show how to prove an intuitively reasonable result
concerning the asymptotic stability of the system. A Lyapunov function
with a simple energy interpretation is introduced and used to prove

* @ 2 0indicates that G is a positive semidefinite matrix. Unless otherwise stated,
G will only be assumed to be positive semidefinite.
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stability. Let

D> fo " 7o) do @)

i=1
Since C;(-) defines the charge-voltage relationship in the nonlinear
junction capacitances, L(v) is the total stored electrical energy in the
network. It is easily verified that (i) L(») = 0, equality holding only
when v = 0, and (1) L(v) — « as ||p|| = «. Thus L(v) is a Lyapunov
funetion if (d/dt)L(v) < 0. For the unforced network

%L@) — _0'TF@) — v'Co, ®)

Clearly if »'TF(v) 2 0 with equality holding only if v = 0 then L(») is a
Lyapunov function since (¢ has been assumed to be positive semidefinite.
It then follows from a well-known result in stability theory® that
v(i) > 0ast— oo,

Note that for constant » the term o'TF(v) expresses the net power
flow into the transistors and if all the transistors are passive then
certainly »'TF(v) > 0. However it is shown later that in certain abnormal
conditions the transistors are not all passive and the judicious choice of
the passive network allows one to extract energy from the transistors.
To show this we first prove the following:

Lemma 1: Given two real 2n-vectors x and y such that z*y > 0, there exists a
G > 0 for which the following holds

y = Gz. (6)

Proof. Define a 2n by 2n — 1 matrix Z such that the columns of Z span
the (2n — 1)-dimensional subspace orthogonal to . Then Z'z = 0.
Sinee by assumption ¥ is not orthogonal to z, y is not an element of the
range space of Z and, hence, the columns of Z together with y span E*".
For these reasons the following construction of (7,

S R
G = ow' + 27, @)

suffices to prove the lemma.
When for some v, , v;TF(v,) < 0 then by Lemma 1 there exists a
G > 0 such that

TF(v,) + Gv, = 0. )

Hence with initial condition »(0) = v, the solution of the network
equation (3) with b = 0 is,
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v(t) = n 9)

and the system is not globally asymptotically stable.

The above results may be summarized in the following:
Theorem 1: If v'TF(v) > 0 Vv # 0 then the network 1s globally asymp-
totically stable. Furthermore, if there exists a v, such that v;TF(v,) < 0
then there exists a G > 0 for which the system is not globally asym plotically
stable.

2.1 Sufficient Conditions for Asymplotic Stability

Consideration is given to the positivity of v'TF(v). Due to the quasi-
diagonal structure of T we need only consider in detail the behavior of

1 - ; i—1\Wai—
'P(Uzi-l }7-'-.’-') = (”'n—l y Uei)[ ) a] fz l( ’ ‘)] . (10)
—a 1 fai(v=s)
For notational convenience ai, ai, ¥zi—1, Var fai-i(+), and fzi(+) are

respectively denoted by e, az, v, 2, f(+), and fa(-).
Note that when 2,0, < 0, ¢(») = 0 and ¢(v) = 0 only if v, = vz = 0.
Let v, # 0, v, = pvy, and p = 0. Then

‘P(‘U) = T)!.fl(vl) - alvlfz(v2) + szz(”z) - azvzfl(vl) (11)

and
o) £ 205 = (1= pa) + Lo, — . (12)
If p = o, then g(p) > 0since 1 — a2 > 0. If p # ay, glp) = 0if and
only if
1 — pay _ falpv)
a—p  Hh) (13)

(1 — pas)/(a; — p) is plotted as a function of p in Fig. 3. The salient
features of the funetion for p = 0 are:

1—pa o 1 40 0<p<a
@, — p (23]
=0 for a1<p§1_l" (14)
Qg
1
< a, for a‘(p(no

Now [f2(pv1)/f:(21)] is a monotone, strictly increasing function of p and
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Fig. 3—Plot of (1 — pas)/(ay — p).

[fa(pv1) /f1()][,-0 = 0. Clearly if

fz(alvl) < 1

and hed el o g (15)

h) =

then no solution of (13) exists. Since g(p) is continuous in p, g(0) > 0,
and g(p) # 0 V p > 0, it follows that g(p) > 0 ¥ p = 0. Hence sufficient
conditions for the positivity of »*TF(v) are:

227

fzi(a;v) l,_
and fz.‘—l(y) ay Vo0 and 7 = 1, 2, e, N, (16)
) S
f2:'-1(aév) =®
Remark:

ffz.-(p(v)) <1 —P22 for 0 < p = a
via (0 a — p Vo#0 (17)

s L—pa o l§p<w
@ — p Qy

is both necessary and sufficient for »'TF(v) > 0. However, the practical
value of such a condition is limited.
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2.2 Necessary and Sufficient Conditions for the Exponential Type of
Nonlinearities

The functions f,(+) in the conventional Ebers-Moll model and in the
charge-control model® are of the following form:

fi(v) = a; (exp A — 1). (18)

Such exponential nonlinearities are subsumed in a class of nonlinearities
with the following properties:

() f:(;) = a;f(\w:), i = 1,2, -+, 2n, where a; and \, are positive
constants.
(#7) {(+) is a monotone, strictly increasing function.
(727) 1(0) = 0.
() lim,,_, f(») = —1.
(v) lim,_, [f(ev)/f(x)] = O for all p where 0 < p < L.

When the transistors’ static diode characteristics fall under this class
then the following is true:

necessary and sufficient conditions for v'TF(v) = 0 ('TF() = 0
only when v = 0) are

=< (19)

fore =1,2,---,n

Sufficiency follows from the definitions and (16). For the necessity
part consider the case when v,;., — — o with the remaining 2n — 1
variables fixed. It is necessary that the coefficient of v,,_, in the expansion
of »'TF(v) approach a nonpositive value, i.e.,

lim {f2ia@) — aifei()) =0 (20)
fort: =1,2 -+ ,n
Similarly,

lim [f2:0) — aifoia@)} = 0 (21)
fori = 1,2, ---, n. Hence

— Q21 T C'f:ﬂz.' =0
and,

— 0y + a0y = 0



2842 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971

or
£ Ao ;- 1

af £ 2 (22)
Q2 2]

fori=1,2, - -+, n Toobtain the remaining conditions consider equation

(12) in the notation of this section. By property (v),

: fi(pv2i—1)
lim [E2el _ g
vﬂ.-ir.!lw fza'—l(ﬂzf—l)
for all p such that p < 2%‘—1 and ¢

24

1,2, --- ,n.

Hence, a necessary condition for the positivity of o' TF (@) is: 1 — pai > 0
is implied by p < Ag;-1/Ag; ; iee,

Azicg < l
Ny T a’; (23)
fori = 1,2, ---, n. Repeating the argument with the roles of v;,_, and
v,; interchanged yields
of < P2 (24)
hve

fori = 1, 2, --- , n. This concludes the proof.

Remark 1: It is clear from the derivation that the conditions stated
in equation (19) with the ratios replaced by the appropriate limits
are necessary for the positivity of »'TF(v) when {f.(-)} are general
monotone, strictly increasing funetions.

Remark 2: If condition (19) is violated then there existsav, , || v, || < <,
such that »;TF(»;) < 0. The proof is as indicated below.

Consider equation (12) and say A;/A; > 1/ay; then for p such that
1/ay < p < \/A, it follows from property (v) that there exists a V such
that for v, > V, g(p) < 0. Likewise, for a,/a, > 1/a, and p(p > 0) such
that (1 — oy(as/a,)) + pla./a;, — ;) < Qit follows from property (zv)
that there exists a ¥ such that for », < V, g(p) < 0. For the remaining
possibilities the proof follows by interchanging the roles of v, and v, in
the definition of g(p) and proceeding as above.

III. PASSIVITY

This section is devoted to a discussion on condition (19) which has
been shown to be both necessary and sufficient for the passivity of
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transistors for which the static diode characteristics are of the form
fi(w:) = a;(exp \v; — 1) (25)

in which a; and A; are positive constants. When the temperature in the
transistor is uniform, then from the well-known physical model,® \; =
(¢/KT) where g, K, and T are respectively the electron charge, Boltz-
man’s constant, and temperature. However, when a temperature dif-
ferential exists in the transistor junctions, for instance in a p-n-p
transistor the temperature in the neighborhoods of the p-n and n-p
junctions are respectively T) and T, then the same physical model
holds® and

= —i_ P q
Mo = o, ad M = o
so that
Aoy Tz.
e T (26)

Hence when the ratio of the temperatures at the base-collector and
emitter-base junctions of at least one transistor, say the 7th, lies outside
the interval [« , 1/ai] then there exists a 2n-vector v, such that v; TF (v,)
< 0. Furthermore, by Lemma 1, there exists a positive definite matrix
@ such that the solution of the network equation (3) with b = 0 and
initial condition v, is v(t) = v, . Then,

power delivered to the} = Gy = —TF@) > 0.

passive subnetwork

The temperature dependence of the a,’s may similarly be exploited to
deliver power. The phenomenon of differential heating of transistors as
described above is the basis of the thermocouple effect and thermo-
electric generators.’

IV. BOUNDED INPUT—BOUNDED OUTPUT STABILITY

It is shown in this section that for a positive definite matrix G, bounded
inputs, and passive transistors there exists a bounded neighborhood of
the origin which, loosely speaking, is sure to contain the forced response
of the network. The norm used is the Euclidean norm.

Now

'TF@) >0 Vo0 (27)
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and let
@) || = K. (28)
L(v) is as defined in equation (4). For the forced system, » £ 0,
% L@) = —v'TF@) — v'Gv + v'D
< —v'Go + | v'D |
< —'Gv+ K ||v || by Schwarz’s inequality (29)
< Ml I+ K [[0]

where Ap;, 18 the smallest eigenvalue of & and is positive by assumption.
Hence when |[[v]| = K/Anin, (d/dt)L(») < 0. Thus there exists a T' such
that fort > T,

K
)\min

o) || <

V. A PROPERTY OF TRANSISTOR NETWORKS

Let R = v/ | (' — o)'T[F(') — F(»)] > 0 Vv £ ¢'}. Then: (1) if @
is positive definite, ¢/ and b’ are constant vectors such that TF(»') +
Gv' = UV, and ¢" ¢ R, then for all inputs which approach b’ as ¢t — w0,
the state vector approaches »” independent of initial conditions; (¢7) there
exists a passive subnetwork for which the overall network is such that
if the terminal state corresponding to an input approaching a constant
vector is not in R, the closure of R, then there exists another input
approaching the same constant vector for which the terminal state is
different.

Remark: Tt has been pointed out by Sandberg' that the independence of
the steady state from initial conditions is a basic property, and in Ref. 1
it has been proved that if (T, ) belongs to a certain class then the region
R in statement 7 extends to the entire state space of the network. How-
ever, the region R defined here is independent of G.

In switching circuits with “memory” the dependence on initial
conditions is a salient feature. Statement (z) observes that the design of
such circuits be such that the steady states lie outside the region R, i.e.,
the steady state bias voltages violate the conditions which define the
region K. Of course, the fact that the transistors are passive merely
implies that R is non-empty, and their use in switching circuits with
“memory’’ is not precluded. Statement (7z) states that in a certain sense
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the region R is maximal.
Proof: (1)

TFQ) + Gv' = b (30)
and

%C@) + TFG) + Go — b =T;i£tC(v) — o)

+ TIF@) — F@)} + G — )

=b(t) — ¥ (31)
from (3) and (30). Define
PE =, (32a)
@) £ CE) — Co", (32b)
and
F@) = F@) — F@'). (33)
From (31),
(%C-'(ﬁ) + TF®@) + Go = b(t) — V. (34)
Note that C,(-) fori = 1, 2, -+, 2n are monotone, strictly increasing

mappings of the real interval (— e, =) onto itself and C.(0) = 0;
also there exists C7'(-). Since v’ ¢ R, #'TF(7) > 0. Also by assumption
for any € > 0 there exists 7' such that

0@ — b || € Apiae for 2T (35)

where A.;, is the smallest eigenvalue of . On applying the results on
bounded input-bounded output stability, as stated in Section IV, to the
system deseribed by equation (34) it follows that there exists a T’ such
that for ¢t > 77,
- 12 )\mine
19 11 = o) — o' 1] < 322 = ¢ (36)
and the proof is complete. )
(#i) Tt will be shown that if v, ¢ R then there exists a ¢ > 0 such that

TF(vy) + Gve = by, (37a)
TF(v,) + Gv, = b, , (37b)
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and
U # V) . (37¢)

In (37a) v, denotes the terminal vector corresponding to an input
approaching the constant vector b,. The solution of the network equa-
tion (3) with b = b,, and initial condition v, is v(f) = v,.

The proof is by simply observing from the definition of R and Lemma, 1
that there exist v, and G > 0 such that

T{F(ve) — FQ)} + Glve — ') = 0. (38)

At least when the static diode characteristies are of the conventional
exponential type the region R is easily obtained as shown below:

W — )'T{F@') — F(v)} = #'TD, F(%) (39)
where
=0 —v
and
= diag (exp A\p], exp A0}, *+ , eXP Azalhn).

The necessary and sufficient conditions for the positivity of 'TD,.F ()

-1 'I.n 8,2}
el Az

& Vai-i
N,
\ i N a
" 1n agiaf 1 { 2l ]»
Kg[’q i~y 2l aaL Iaz
3zl
)\ZL {aaL 1&%}

Fig. 4—Region R for the ith transistor (exponential diode characteristics).
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are, from (19),

o < Naia ;- €XP ()\eg'—l');i-l) < _17 (40)

= N as; exp (ens) e
fori = 1,2, -+, n (40) is equivalent to

1

= 1
Aas oy

i
9,04 do;
In {' * } = (Ma‘—lvéi—l - }\21'?)5&) = ln{ — i}
(1 Py Aoi—102

1,2, -+, n. The region R is plotted in Fig. 4.

)2:'—1 <

lIA

i
241

(41)

Il

for 7
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