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How well can a computer identify a human face which is described by a
person who 1s inspecting a pholograph? We give an account of an inter-
active system that takes advantage both of the human’s superiority in
detecting and describing noteworthy features and of the machine’s super-
torify in making decisions based on accurate knowledge of population
statistics of stored face-features. Experiments using a population of
255 faces and 10 or fewer feature-descriptions showed that the population
containing the described individual could be narrowed down to less than
4 percent in 99 percent of all trials.

I. INTRODUCTION

In a previous report' we described experiments in human-face
recognition which were intended to establish a foundation for extended
study. Those experiments provided a large body of reliable quantitative
data based on 21 feature-descriptions of 255 human faces. These
21-dimensional vectors were shown to be sufficient for accurate indi-
vidual identification, both by human and by ecomputer search.*

The objective, then and now, is to explore new techniques for obtaining
accurate recognition of vectors given imprecise component values. Our
procedures involve searching through a population of vectors to retrieve
one, a ‘“target,” whose components best match a searcher’s imprecise
specification.

There are two obvious kinds of such recognition and retrieval, just
as in fingerprint-file search. One is that of finding the best match
between an unidentified individual and a member of a file population.
The other is that of assigning an individual to one of a number of
mpulation consisted of 255 white males aged 20-50 with no eyeglasses,
facial hair, scars, or notable deformities. A panel of 10 ohservers independently
evaluated 21 features (shown in Fig. 1) for each face. The average value of the
observers’ votes was used as the “official’” description of each face-feature. Although
individual feature-descriptions are restricted to infegral values, averaging the panel’s

votes provides non-integral official descriptions. Reference 1 contains a detailed
discussion of the features and population used.

399



400 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

predefined classes according to some systematic scheme. Ours is the
first approach, matching, though the techniques developed could
readily be used for the second, cataloging.

In our previous work, a subject was given a set of photographs of
human faces and an official deseription of one of them. He was required
to select that photograph which best matched the deseription. In the
experiments reported here, the subject was shown a picture and was
asked to deseribe it to a computer using features from a list given to him.
The computer then searched a population of stored descriptions for
best fit to the description furnished by the subject. In both studies
we ran supplementary experiments employing computer simulation to
establish theoretical limits of human performance under certain model-
ing assumptions.

In the earlier face-identification procedures, isolation was based on a
binary-decision technique. At each step in the search, the population
was progressively reduced by using a quantitative feature-description
to determine which members of the remaining subset would be retained.
On the average, eight feature-descriptions were required to isolate a
face in a population of 255 males; about 50 percent correct identification
was obtained. The binary process, however, obviously insured doom
given just one error in the sequence.

A more lenient process is rank-ordering. If one ranks population
members according to some goodness-of-fit criterion, any reasonably
accurate description can be expected to place the target high on the
rank-ordered list. Such a system can be quite useful in focusing attention
on a small subset of the population that has high probability of con-
taining the target. Population-reduction techniques like this are well-
known to be useful in many tasks, from fingerprint-file search’ and
seript recognition® to document retrieval.®

The present report deals with a real-time man-machine interactive
system for human-face identification. The study has three main objec-
tives:

(i) To develop a decision-making technique which replaces the
earlier error-sensitive binarv-decision selection process by a
more forgiving rank-ordering process,

(i7) To design algorithms for optimizing the man-machine system
so that we can take advantage of both the human’s superiority
in detecting noteworthy features and the machine’s superiority in
making decisions based on accurate knowledge of population
statisties, and

(ii7) To devise simple yet effective measures of performance.
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II. SYSTEM DESIGN

The system design can be understood by considering our experimental
procedure. A subject at a remote computer-terminal is given a photo-
graph of one member of the population. He describes this target face
to the computer using descriptive features chosen from a permitted set.
The aim is to have the computer identify the target from the subject’s
description of it.

Subjects in our experiments used three-view photographs of target
faces (two examples are shown in Tig. 6). The set of features from
which descriptions were drawn is shown in Fig. 1.

In our experiments, features may be chosen by the subject or by
the computer which uses an automatic feature-selection algorithm.
There are three alternative modes of feature selection: the subject
may choose all features, or he may choose some and then let the com-
puter choose the rest, or the computer may choose all features.

After each feature deseription, the computer assigns a goodness-of-fit
measure (a “weight”’) to each member of the population. This weight
represents the similarity of the subject’s description to the official
description of each member of the population. At each feature-deserip-
tion step, the population is ranked by weight. After a predetermined
number of steps, the process is terminated. We evaluate performance
with respect to the target’s rank and weight. An illustrative printout
of one “portrait’’* appears in Fig. 2.

Two aspects of system design are crucial: the weight-assignment
algorithm and the feature-selection algorithm. They are described
below. Following that, we discuss two critical experimental requirements,
stopping ecriteria and measures of performance. The experiments
reported in the succeeding section were designed to show how various
modes of feature selection affected system performance.

2.1 Weight Assignment

The algorithm used to assign weights at each step must maintain
a reasonable balance between penalizing descriptive errors so heavily
that recovery from a mistake is impossible and penalizing these errors
so lightly that no significant reduction of the population is achieved.
The penalties assigned should distinguish between a minor descriptive
error (e.g., medium-long vs long nose-length) from which recovery
should be easy, and a major error (e.g., short vs long nose-length)
from which recovery should be more difficult.

* A portrait is defined as a description consisting of a set of integral feature-values
assigned by a subject; the subject is said to “portray’’ the target.
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Fig. 1—Set of 21 face-features and their allowable values used for all experiments.
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as the general form of an individual’s weight at step s. For the feature
described at step 7, »; is the individual’s official value, #; is the value
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Fig. 2—Printout of one interactive dialog. Computer requested feature; subject
picked Ewyebrow Weight. Computer printed allowable feature-values; subject voted
thin. Tn next two lines computer displayed calculated weights of the top five in-
dividuals. First four faces, 93 - - - 223, tied with relative weights 1.00. Face no. 159 in
fiftth place was weighted 0.82 relatively. By step three the target (no. 76) was in
fifth place, advancing to first rank hy step four despite deliberately introduced errors
on first two steps. Subjeet changed to AFS at step five, whereupon computer specified
Eye Shade. Nearest neighbors were gradually separated; by step 10 the closest had
relative weight of only 0.19. Portrait automatically terminated at step 10. Summary
compares subject’s assignments with official values (“AVG.”); also displayed is
target’s rank at each step and percentage of population with higher rank.

assigned by the subject, and A, is the magnitude of the difference
between them.

A number of variants of this formulation were tested. In particular
we found that & = 1 yielded results as good as or better than any
other value of k. We also considered the effect of quantization error
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arising from comparing the integral feature-values used by subjects
to the non-integral official feature-values. For each feature description
this error is at most 0.5. Alternative formulations of weight functions
intended to minimize the effect of this error degraded performance.
QOur earliest formulations of weight used an exponential form. While
presently unessential, the exponential has survived in our computational
algorithms. Consequently, with £ = 1 and with no compensation for
quantizing effects, the weight assignment is

W = exp (—2 A‘»)-

2.2 Automatic Fealure-Selection

As noted above, features may be selected either by the subject or
by the computer. The two methods have complementary advantages:
The subject possesses exhaustive knowledge of the face he is portraying,
but he knows very little about the characteristics of the population
stored in the machine; conversely, the machine does not know who the
target is, but it does possess the official descriptions of all population
members and their goodnesses-of-fit to the target deseription.

We wish to find if the advantages of human and of computer feature-
selection ean be usefully combined, where the human can take advantage
of exireme features, while the computer can utilize discriminating
features.

An exireme feature of a target is a feature whose official value is
near an extreme of that feature’s range; e.g., long hair, short nose,
small mouth. This classification does not depend on the target’s other
feature values or those of the population. It depends only on the fea-
ture’s value and range.

Conversely, a discriminating feature is a purely relative concept,
based on the population and the target description up to any given
step. At each step, we refer to a feature as discriminating if its deserip-
tion will distinguish among those individuals whose official desecriptions
mateh the partial portrait well (i.e., the individuals who have large
weights). Whether a feature is diseriminating depends on the statisties
of feature-value distribution over the population.

We wish to develop an automatic-feature-selection procedure that
chooses the most discriminating feature available as the next one to
be described in a portrait. How can we decide when a feature is dis-
criminating?

Consider the two hypothetical distributions of official feature-values
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_Fig. 3—Two types of distributions of official feature-values: (a) Relatively uniform
distribution represents discriminatingfeature. (b) Relatively non-uniform distribution
indicates a nondiseriminaling feature.

shown in Fig. 3. If feature b were used, and if the target’s value happened
to be ., then the target would be well separated from the rest of the
population. It is mueh more likely, however, that the target’s value
would be z,, in which case the separation of population members
would be poor. If feature a were used, one would always obtain some
intermediate amount of population separation. In the extreme, if all
members of the population had the same value of a particular feature,
say very long ears, then the use of that feature would not lead to
population separation. Conversely if the values were uniformly dis-
tributed over the population, maximum diserimination and most
effective separation would be obtained.

In considering feature-value distributions, it is undesirable to utilize
the official description of every member of the population for all unused
features. Not only would this increase cost, but it would degrade
performance. This can be seen from the following argument: The aim
of automatic feature-selection (AFS) is to find a feature which will
decrease the number of individuals who are described well by the
portrait thus far. The distribution of feature values among those
individuals may be completely different from the distribution in the
whole population. If AFS considered all individuals, the distinguishing
characteristics of the high-ranking individuals would be obscured by
those of the overwhelming number of low-ranking individuals. To avoid
waste of one’s knowledge of the partial portrait, AFS considers the
distribution of feature values only in the subset of the population
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which the portrait describes well, although the feature chosen will be
used to rerank the entire population. This subset should include the
individuals who could easily attain first place in the rank-ordered
population. In practice, we found that to consider all individuals with
weight = 0.7 times the weight of the first-ranked one, but at least
10 individuals, was effective.

As a result of the above arguments, we implemented an AI'S procedure
which chooses as the next feature that one for which the distribution
of the feature-values of the high-ranking individuals is most nearly
uniform. This will be the most-discriminating feature in the sense of
efficient identification. Analytical details of the procedure are given
in Appendix A.

2.3 Stopping Crileria

The portrait composition must continue for enough steps to insure
accuracy. On the other hand, too many steps lead to subject fatigue
and boredom. The rule which governs when portrait composition stops
should satisfy both these requirements.

A stopping rule may be dynamic and depend on the ranks and/or
the weights at each step, or the rule may be static, e.g., stop after a
predetermined step. Our earlier experiments, employing a human
binary-search process,' showed that, on the average, fewer than eight
features were used when a target was successfully identified. One might
conjecture that with 5-valued features some 2.3 bits of information could
be available at each step, and so the present experiments should require
fewer than 8 steps for isolation, and not less than log, 255/log, 5 = 3.5.

This argument, and information from trial runs indicating that
fatigue and boredom commenced after the subject judged about ten
features, were used to arrive at a static stopping-rule of ten steps.
Experimental results have shown this to provide adequate accuracy.
The data we obtained permitted us to formulate an efficient dynamic
stopping-rule for future use; it is described in Section IV.

2.4 Measures of Performance

A binary search-procedure may be evaluated by whether and at what
stage the target is ultimately isolated, or at what stage the target is
rejected and the size of the smallest subset that contained the target.
Meaningful measures of performance for a rank-ordering procedure are
less obvious.

One useful measure, population reduction, can be transferred directly
from binary search to rank ordering. We can consider the size of the
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subset of the population with rank greater than that of the target, and
how rapidly the population is reduced to that size. The eoncept of
absolute isolation is thus replaced by one of relative identification.

We measure the population reduction at each step by the rank of
the target. Since his rank usually changes from step to step, we use
as an overall measure of performance the mean rank of the target
from the sixth through tenth steps. The first five steps are not included
because the target’s rank then is usually large and changing rapidly.

Population reduction shows whether the target is separated from
the rest of the population. It does not reveal, however, the extent of
that separation. To do this, a “confidence’”’ measure was introduced.
It is based on the weights of the individuals in the ranked list, as
follows: If the target is ranked first, his confidence is the ratio of his
weight to that of the second-ranked individual; otherwise, the target’s
confidence is equal to the ratio of his weight to that of the first-ranked
individual. A confidence value less than 1.0 denotes failure to place
the target in first rank; confidence values greater than 1.0 correspond
to varying degrees of success. Obviously, the magnitude of the con-
fidence measure depends on the weighting function being used.

Confidence and rank are useful in evaluating a single portrait; their
averages can be used to compare several sets of portraits. A third
measure we find useful is the rank cross-section; this is meaningful
only for comparing sets of portraits. For a set of portraits, the rank
cross-section is the frequency with which targets reach or exceed a given
threshold rank (e.g., first rank, or top 2 percent of population, ete.)
at each step of a portrait. This indicates the average speed and extent
of a target’s rise in rank.

However, a target does not necessarily always rise in rank. A faulty
feature-judgment may worsen his position. The weighting scheme is
forgiving in that it permits recovery from a subject’s error in feature
judgment. Another way of viewing this is that once the target is en-
trenched in first place, i.e., has a large confidence, it takes a large error
in judgment to displace him.

We can express this quantitatively as follows: Suppose the target
is in first rank; let him have confidence ¢, and let the next feature
judgment for him have an error A. Suppose that the error for the
second-ranked individual is 0. Then with the weighting scheme that was
adopted, we find that if A > In ¢, the ranks will be reversed. Thus,

when confidence ¢ £ 1.6 27 45 74 122 20.0
reversal occurs if A > 05 1.0 15 20 25 3.0
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Data on subject error (see Section 3.1.1.1) show that 95 percent of the
time A £ 1.0. Thus a first-ranked target with confidence 2.7 or greater
is rarely dislodged.

III. EXPERIMENTS

3.1 Human Experiments

An interactive experiment was run to evaluate the effectiveness of
our overall system and to test the relative utility of three different
modes of operation.* In one mode the subject selects every feature he
deseribes to the eomputer, using first those he considers most extreme
for the target. We shall refer to this mode as “NO AFS” (i.e., no auto-
matic feature-selection). In another mode, termed “ALL AFS,” the
subject simply assigns feature values for each feature specified by the
computer which is operating in the automatic-feature-selection mode
described earlier. A third mode, termed “MIXED,” requires a subject
to select features until he decides there are no more he considers out-
standing, then to invoke AT'S.

We expected subject selection of extreme features to enhance separa-
tion, at least for the first few features, for many members of the popu-
lation. When there are no extreme features to use, then computer
selection of discriminating features should facilitate target separation.
We expected that the mixed mode of operation, taking advantage of
the best capability of both human and computer, would yield best
results as measured by confidence and rank.

Fifteen subjects were used (13M, 2F). Twenty-one features were
made available, as illustrated in Fig. 1. Each subject participated in
three separate sessions, one in the NO-AFS mode, one in MIXED,
and one in ALL AFS. Each of the 15 subjects, portraying 15 targets,
provided us with 225 portraits. Five targets were portrayed in each
session. Fifteen different targets were used; each subject thus portrayed
all targets. The targets were individually selected at random from our
population of 255; as an ensemble they were shown to preserve the
feature distributions of the entire population. To minimize possible
effects of learning, we randomized the order in which subjects used the
three modes of feature selection and the order in which they portrayed
the targets.

At the beginning of the experiment each subject was given 20-30
minutes of verbal instruction to familiarize him with the feature set.
This used a collection of sample faces that were not employed in the

* The program which was used is described in Ref. 5.
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Fig. 4—Cumulative distribution of differences between subject votes and official
values. The difference was never greater than 1.0 for 95 percent of the votes.

experiment. The subject then observed the experimenter portraying
one target.

At the beginning of each session, the subject portrayed one practice
target using the same mode of description (NO AFS, MIXED, or
ALL AFS) to be employed in the experimental session. In all cases
the subjects viewed the target’s photograph while describing his features.

3.1.1 Results

3.1.1.1 Feature-Judgment Reliability. Our 15 subjects, making 2250
total judgments (15 subjects X 15 targets X 10 features), were in
excellent agreement with the official feature-values. This can be seen
in Fig. 4 which displays the cumulative distribution of magnitudes
of the differences (A) between the subject judgments and the official
values. In 95 percent of the 2250 judgments, the A was < 1.0 (the
maximum A is 4.0 for a 5-valued feature).* No judgments were as
much as 3.0 off, only two were > 2.0 off, and only 24 of the 2250 judg-
ments were different from the official values by more than 1.5.

Standard deviations were computed for the distributions of subject
judgments, feature by feature. In both the ALL-AFS and the NO-AFS
experiments, the standard deviation ranged from 0.42 to 1.1. The
standard-deviation values for each feature are similar for ALL ATS
and NO ATS, indicating no significant difference in subject accuracy as
a funetion of whether feature selection is active or passive.

3.1.1.2 Identification Accuracy. The confidence and rank data,

~ * With the exception of two three-valued features. The data of Fig. 4, which
include all 21 features, are not significantly changed by deleting the contributions of
the two three-valued features.
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averaged over all subjects and all targets, are shown in Fig. 5. For
the combined 225 portraits, the mean confidence at step 10 was 5.65, and
the mean rank over the sixth through tenth steps was 4.12, For 75
MIXED portraits, the mean confidence and rank were 6.79 and 2.75
respectively, while for 75 ALL-AFS portraits the corresponding figures
were 4.41 and 6.71. The results of the 75 NO-AFS experiments were
intermediate; mean confidence was 5.74, and mean rank was 2.91.

Subject performance varied considerably. Both the average confidence
and the average rank had a range of 6:1 (from best to worst subjects).
One subject’s performance was consistently poor. When his scores are
deleted, the average rank improves from 4.12 to 3.70, and the average
confidence improves from 5.65 to 5.80.

To test for improved performance with practice during the course
of the experiment, the data for each subject were examined according
to their temporal sequence. No trends were observed.

The 15 targets received a rather wide range of performance indices.
Number 99 had an average confidence measure of 20.3 (compared to
the 15-target mean of 5.65), and his average rank was 1.39 (compared
to the 15-target mean of 4.12). At the other extreme, no. 19 had a
confidence measure of 0.88 and a rank of 9.16. These two individuals
are depicted in Fig. 6.

NO AFS MIXED ALL AFS COMBINED
CONFIDENCE 574 6.79 4.41 5.65
RANK 29 2,75 B6.71 412
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Fig. 5—Two measures of performance summarized for all subjects and targets.
MIXED mode is clearly superior, while ALL AFS is markedly poorest. Combined
results for all experimental data show that the average target, with a rank of 4.12,
was in the upper 1.6 percent of the population over the sixth through tenth steps.
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NO. 99

Fig. 6—Targets which produced two extremes of performance. No. 19 was difficult
to retrieve, obtaining confidence 0.85 and rank 9.16, while no. 99 was outstandingly
easy nht‘umnp; confidenee 20.3 and rank 1.39.

The reasons for the different success with the two targets are clear.
In general, no. 19 is much closer to the population mean than is no. 99
who has a larger number of more extreme features than has no. 19.
All ten subjects who portrayed no. 99 in either the MIXED or the
NO-AFS mode started their portrait with hair texture; no. 99 has the
curliest hair in the population. All ten also described his light hair-shade
and thin upper lip, and all five NO-AIF'S portraits included his small-
to-medium mouth width. By contrast, only one of no. 19’s features
received unanimous mention: his medium-to-wide eye opening.

3.1.1.3 Performance Differences Among NO AFS, MIXED, and ALL
AFS. The differences in performance among the three modes of opera-
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tion are clear and consistent. This can be seen first by noting the average
rank of the target at each feature step. Figure 7 illustrates this by a
plot of the percent of the population with better rank than the target
at each step. Overall, the population reduction in early steps is quite
rapid.

It is clear that at any step the ALL-AFS mode places the target
about twice as far down the ordered list as does either of the other
two modes. This suggests that knowledge of the population statistics
is not as effective as knowledge of a target’s outstanding features.
Both the MIXED and the NO-AFS modes are roughly equal and are
superior to ALL AFS. From step seven on, with the MIXED and
NO-AFS modes, the population having better rank than the target
was reduced to 0.68 percent. We have seen (Fig. 5) that the confidence
in the MIXED experiments is 18 percent higher than that in the
NO-ATS experiments and 54 percent higher than that in the ALL-AFS
experiments. Similarly, the rank results are superior for MIXED, being
11 percent ahead of NO AFS and 59 percent ahead of ALL AFS. Even
for ALL AFS, however, the average rank was better than seventh place;
i.e., 2.2 percent of the population had better rank than the target.

The plots of rank cross-section (see Section 2.4), displayed in Fig. 8,
also make evident the relative inferiority of ALL AFS. The asymptotic
levels of NO AFS and MIXED are virtually identical. For both MIXED
and NO ATFS, half the targets reach first place by step five, and by
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Fig. 7—Comparison of how three modes of system operation affect the percent
of the population having better rank than the target. MIXED mode is clearly
superior in early steps; with eight feature-steps ALL AFS reduces the population
to 2 percent, and both other modes reduce it to 0.68 percent.
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Fig. 8—Rank cross-section at each step, ALL-AFS mode is obviously inferior.
Performanees from NO AFS and MIXED are essentially alike. By step five, roughly
half the targets reached the top in MIXED and NO ATFS; by step 10, better than
70 percent reached first place.

step ten in both modes 99 percent of the targets are in no worse than
tenth rank. And 96 percent are in no worse than fifth rank.

Although ALL ATS does not produce results comparable to those of
the other modes, more than half the targets reach first place by the
tenth step, and more than three-quarters of them reach fifth place or
better.

The confidenee measure (see IMig. 5) also indicates the relative infer-
iority of ALL ATS, Unlike the other measures discussed here, confidence
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shows MIXED to be superior to NO AFS in separating the target from
the rest of the population.

3.2 Computer Experiments

How does human performance compare with that of an “ideal”
subject? The major variables in subject performance are the set of
features selected, the accuracy with which they are judged, and the
order in which they are described. Since the subject is constrained to
use integral feature-values, the best judgment he can make on any
feature is the nearest integer to the target’s official description; we shall
refer to this value as a “rounded” judgment. For each target there is a
sequence of features which gives the largest confidence at step 10, and
there is one which gives the best average rank. Either of these could
be regarded as the optimal sequence chosen by an ideal subject. How-
ever, there is no easy way to find such optimal sequences; therefore the
ideal subject was defined as follows:

For each target the sequence of features to be used by the ideal
subject in a computer simulation was selected on the basis of feature
“oxtremeness.” The extremeness of an individual’s feature is the
magnitude of the difference between his official value and the feature’s
population mean. Our ideal subject, modeled on how our human sub-
jects were instructed, was defined to be one who selected features in
descending order of extremeness and used, for each feature’s value, the
rounded value of the official deseription.

This ideal subject was used to portray the 15 targets employed in the
human experiments. The distribution of the step at which the target
first achieved rank one and remained there through step 10 is

Step 1 23 4567 89 10
Frequency 2 4 4 3 1 0 0 0 0 L

For all targets, the average number of steps is 3.27, and the average
rank (over steps 6 through 10) is 1.01 (i.e., virtually perfeet). The
confidence at step 10 ranged from 1.00 to 95.6 with an average of 21.5
and a median of 16.1.

These results are markedly superior to the results of the human
experiments summarized in Fig. 5. Are the differences due to subject
judgment-errors or to less-than-ideal feature selection owing to the fact
that the subject does not know the population statisties?

To explore this question, three additional computer studies were
performed with the same 15 targets used in the human experiments.
The results of all four computer experiments are summarized in the
tabulation below and are contrasted with the NO-AFS human experi-
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ments. Experiment no. 1is that described above, using the ideal subject.
In the second experiment, the NO-AFS human experimental data were
modified by replacing the subject judgments with rounded official-
values. Third, the extreme features chosen by the ideal subject were
used with human judgments. In the last computer experiment (no. 4),
four random sequences of features were used with rounded feature-
judgments. Finally, the results of the NO-AFS human experiments are
shown,

Besides displaying confidence and mean rank (averaged over steps 6
through 10), the table shows the number of targets on which confidence
was greater than, approximately equal to, and less than the confidence
obtained by the ideal subject.

Feature
Exp.  Selection  Judgment Conf. >

IR

< Mean Rank

1 Extreme Rounded 21.5 0 15 0 1.01
2 NO AFS  Rounded 10.6 4 6 5 1.23
3 Extreme Human 8.25 1 2 12 1.68
4 Random  Rounded 408 0 2 13 1.76
5 NO AFS  Human 574 2 0 13 2.91

The confidence and mean rank show the performance of the ideal
subject (exp. no. 1) to be better than that obtained in the experiment
using NO AFS and rounded official-values. Notice, however, if one
examines confidence for the ideal case and NO ATFS rounded, target by
target, then it is seen that NO AFS is better about as many times as
it is worse. Since the only variable was feature selection, this indicates
that the humans were almost as good as the ideal subject in their
choice of features. The use of extreme features with human judgments
(exp. no. 3) gives worse performance in rank and confidence than does
NO AI'S with rounded judgments. This shows that the advantage of
extreme-feature selection was not sufficient to overcome human errors
in judgment.

It might be argued that any feature sequence would produce good
results. But the random experiment shows that perfeet feature-judg-
ments alone are not sufficient; feature seleetion is important.

In summary, humans are nearly ideal in feature selection while
considerably less than ideal in feature-value assignment.

IV. EXTENSION TO LARGE POPULATIONS AND TO OTHER PROBLEMS

The procedures we have deseribed for identification and retrieval are
applicable to problems other than the face-recognition tasks we have
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so far explored. Such searches as medical diagnosis and telephone-
directory lookup also deal often with noisy data where probabilistic
identification is made. With what generality can the procedures we
have evolved be applied to tasks where descriptive components are
imprecise and populations are large?

First, however, there are questions of economic feasibility. The
storage and computing requirements in the present experiments are
modest. For a population of 255, we require 1500 words* of disk and
14,400 words of core storage. Memory requirements grow at a rate
of 7 words/face. The interactive computation process (slowed enor-
mously by the human at a remote terminal) takes about 5-10 minutes
real time (~5 seconds central-processor time) and costs $2.50 on the
average. A key question for extended applications is: How do these
numbers increase with population size?

In the earlier model of the binary-search identification process,' we
showed a logarithmic growth of the number of steps (features) required
to isolate a target. For a particular condition we found useful, the
model predicts that an average of only 13.5 feature-descriptions will be
required for a population of 4 million. If the actual growth of the
number of steps required to isolate in the present rather different rank-
ordering process is close to our model’s prediction in the binary-search
process, then a nonlinearity very important to economic treatment of
large populations will be at hand. That this may indeed be so can be
seen in Appendix B.

To investigate the effect of population size on the number of steps
required for isolation, comparable runs were made with population
sizes of 128, 255, and 510 individuals." The first feature in all portraits
was chosen at random, and all subsequent features were chosen by AFS.
(Since the number of individuals used in the AFS computation is a
function of each partial portrait, the cost varies from target to target.)
The dynamic stopping-rule deseribed at the end of this section was used.
Feature judgments were drawn from the panel of observers whose
averaged judgments comprise the official values. Randomly chosen
observers supplied portraits. The data for each population size were
averaged over five portraits of each of 15 randomly chosen individuals
(75 portraits total). The results of this experiment are summarized
below.

* The computer is a time-shared Honeywell-635 having 36-bit words.

t The 128-individual population is a randomly-chosen subset of the 235-face one.
The 510-individual population is composed of the original 255 individuals plus 255
“new’’ pseudo-faces created by randomly shuffling the feature values of the old
population.
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Population Size

128 255 510

Mean stopping step, std. dev. 9.5, 3.9 10.6,4.2 11.7,43
Relative total cost 1.00 1.98 4.56
Relative cost/step 1.00 1.77 3.76

While the mean stopping step appears to increase logarithmically
with population size, P, the cost per step increases roughly in proportion
to population size. That is,

Total Cost/Step ~P

and the logarithmic growth of the mean stopping step with population
size gives

Total Cost ~P In P.

The mean stopping step increased very slowly with population size,
from 9.5 to 11.7 for populations of 128 and 510. The final rank of the
target rose on the average from 1.4 to only 2.5, less than a twofold
increase for a fourfold increase in population size. Experience with
MIXED and ALL AFS indicates that the corresponding figures for
MIXED would be markedly better than those above, which were
obtained with ALL AFS,

The cost of the AFS algorithm is linear with respect to the number of
faces used to determine the next feature. Figure 9 shows that this
number converges rapidly to a minimum. It is seen that, at most, less
than 35 percent of the population is used in the AFS computation at
step two and less than 15 percent at step three. I'rom step four on
(with but a slight exception at step five), only 3.9 percent is used; this
is the minimum possible given our (arbitrary) convention of considering
all individuals with relative weight = 0.7, but at least 10 faces (10/255 =
3.9 percent).

Several kinds of algorithmic corner-cutting look attractive and are
under consideration. The results displayed in Fig. 10 show that for a
given performance level only some minimum proportion of the popula-
tion need be considered at each step. For example, if flawless perform-
ance were required while operating in the MIXED mode, no more
than half the population would need to be considered in steps three
and four, and from step five on, at least 75 percent of the population
could be ignored. In 95 percent of all trials, the target was in the top
10 percent of the population from the sixth step on. The computational
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Fig. 9—Extent of AFS computation. For empirically determined rule of consider-
ing only those population members with weight equal to or greater than 0.7, or a
minimum of 10, extent of computation drops rapidly. With but very slight exception,
at and after step four no more than 10 individuals have weights above 0.7, indicating
efficient separation of top members.

savings with such a limited-depth search would thus be considerable.

Another possible economy might be some form of individual or
feature clustering. One could divide the population into small groups
of “look-alikes” and create a ‘‘super-description” for each cluster
whose official deseription was the mean of the individual descriptions.
One could then order these clusters according to their resemblance to
the target description and then search the clusters’ members in that
order to find a good individual match to the description. This scheme
assumes that such a clustering can be achieved and that the cluster
deseriptions would be non-trivially different.

In a sense the 255 individuals we have dealt with comprise a cluster
of the general population. Our 255-member subpopulation was delib-
erately chosen to be homogeneous (see footnote on page 399) to make
isolation more difficult. Consequently, several highly reliable features
(e.g., gender, race, age) could be added to our feature set for use with
a more universal population. We might guess that the general population
represented by the mnonrepresentative subpopulation used in these
studies is on the order of several thousand individuals.

An Empirical Dynamic Stopping Rule

An empirical dynamic stopping rule was developed using the data
gathered from the 75 NO-AFS portraits. It is based on the concepts
of confidence and rank and on tradeoff between the frequency and
accuracy with which the rule stops portrait composition.
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Fig. 10—Minimum envelope needed to capture the target with several probabil-
ities at each step. P = 1.0 corresponds to the worst rank observed experimentally.
After step five, target was in top 10 percent of the population for all cases except
ALL AFS,

We consider first the confidence, which measures the degree of separa-
tion among population members. To formulate a stopping rule, we will
use o variant “pseudo-confidence,” the ratio of the weights of the
first- and second-ranked individuals. (Note that this ratio is always
=1.0). The experimental data show that when this ratio exceeded 3.5
at any step in the portrait, the target was then ranked first in 32 of
the 34 cases, and the first-ranked individual was subsequently unseated
in only two of 34 cases. We adopt this threshold as one component in our
dynamic stopping rule: Whenever the pseudo-confidence exceeds 3.5,
stop portrait composition.
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Unfortunately, such a high pseudo-confidence occurs in fewer than
half of the portraits. Another possible stopping eriterion is an extended
tenure-of-first-place by the same individual. Consequently, we adopt
as the second component in our stopping rule: If the same individual
has been in first place for the last six steps, stop regardless of the value
of the pseudo-confidence. In only one of 37 cases did an individual
change rank after holding first place for six or more consecutive steps.

We now have two eriteria which would have terminated 80 percent
of our experimental NO-AT'S portraits. It was decided to use them as
points on a linear stopping rule combining p, the pseudo-confidence,
and s, the number of consecutive steps in which the same individual
has been first-ranked: If s 4+ 2p > 8, stop. This is the dynamic stopping
rule used above to compare costs for various population sizes.

This empirical stopping rule was applied to the data from the rest
of the experiment, and it provided another means of comparison (the
mean stopping step) among the three types of portraits. The table
below shows the results of applyving the dynamic stopping rule to the
NO-ATS, MIXED, and ALL-AFS runs.

NO AFS MIXED  ALL AFS

Decisions
(Number of portraits terminated
by stopping rule) 55 56 43
Correct decisions 49 (899) 48 (869%) 30 (709%,)
Mean stopping step, std. dev.
Decisions only 6.8, 2.1 6.6, 2.2 7.7, 1.8
All portraits 7.7, 23 74, 24 87, 1.8
Mean rank of target
Decisions only 14 1.6 3.6
All portraits 2.3 2.4 5.1

The number of decisions is the number of portraits (out of 75 in
each case) which met the requirements of our stopping rule at or before
the tenth step. A correct decision is one in which the target was in first
place at the stopping step. The mean stopping step and its standard
deviation are given for both the portraits which the stopping rule
terminated (‘““‘Decisions only”) and for all 75 portraits, considering the
stopping step to be 10 for portraits in which no decision was made. The
mean rank of the target at the stopping step is also given for both cases.

The data show the performance of MIXED and NO AFS to be
almost identical. Both are superior in all respects to ALL AFS. The
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mean stopping step and mean rank of the target are in the ranges one
would expeet from Fig. 7, which shows the progression of the average
rank of the target. The stopping rule usually was satisfied soon after
the position of the target had stabilized.

If this dynamic stopping rule had been used in our experiments, the
average stopping step for a portrait would have been 7.9 instead of 10,
a 21-percent saving with virtually no loss of accuracy in identification.

V. SUMMARY

An interactive system for the description and retrieval of multi-
dimensional objects has been developed. This paper describes the
system and its performanee in face-identification experiments.

The system permits flexible description of target items using features
chosen by either the user of the program or an automatic-feature-
selection algorithm. At each step, ALFS selects the feature which is
most likely to be discriminating. It makes this choice on the basis of
the partial portrait and the population statistics. Population members
are ranked at each step on the basis of weights which reflect the match
between the portrait deseription and each individual’s official value.
Performance is measured by two indices, confidence and rank.

The system was evaluated using 21 features, a population of 255 faces,
and three modes of operation (NO AFS, MIXED, and ALL AFS),
There were four principal results:

(7) The population was quickly and effectively reduced by all
modes of operation. Over all trials, the population was reduced
to less than 4 percent more than 93 percent of the time, and
the target was successfully “isolated” (i.e., was in first place by
portrait’s end) 67 percent of the time (see I'ig. 8). In 95 percent
of all trials, the target remained in the top 10 percent of the
population from the sixth step on.

(#7) The MIXED mode was the most effective in separating the
target from the rest of the population as measured by confidence
(see Iig. 5).

(477) MIXED and NO AI'S were equally effective with respect to
population reduction, as measured by rank. The performance of
these two modes was considerably superior to that of ALL AT'S
(see I'igs. 5, 7). In the NIXED experiments, the population was
reduced to less than 4 percent over 99 percent of the time, and
the target was isolated 70 percent of the time (see Fig. 8).

(tv) The extent of the AFS computation drops rapidly with step
number, reaching its minimum by step four (see Fig. 9).
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These results ean be summarized as follows: even in the worst case
there is fair performanee in singling out a target and good performance
in narrowing down the population; and in the best case the population
reduction is excellent.

This rapid population-reduction and the slow growth of the mean
stopping step with population size (using the dynamic stopping rule)
make the extension of these experiments to larger populations feasible.
To process very large populations, say on the order of a million, new
approaches would undoubtedly be needed. With the cost-cutting
modifications we have deseribed (dynamic stopping rule, limited-depth
search), the present system could economically accommodate a popula-
tion on the order of 5000.
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APPENDIX A

Automatic Fealure-Selection

As discussed in the text (Section 2.2), the automatic-feature-selection
algorithm selects, at each step, the most diseriminating feature for the
subject to describe next. The purpose of this Appendix is to formalize
what is meant by a diseriminating feature.

The AFS algorithm uses a subset of the population whose members
are well-described by the subject’s description of the target. In order
to give greater importance to those members of the subset with high
weight, each member’s official feature-values were considered in propor-
tion to his weight. The most discriminating feature, for that subset,
thus is the one for which the distribution of the weighted feature-values
is most uniform. Since the distribution of feature values may span
different parts of the permissible feature ranges, distributions are shifted
to facilitate equitable comparisons among features.

We shall define, for any shift, the deviation of the distribution of
weighted feature-values from a uniform distribution. Formulae for the
best shift and corresponding deviation are then derived.

Consider the subset of the population whose members are well-
described by the subject’s deseription of the target. Let the members of
this subset have weights W, , - -+, W, . The sum of the weights is W .
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Let us concentrate on one feature. For convenience, scale its range
to be from 0 to 1. Let the (scaled) official values corresponding to the
above weights be v, , -+, v..

Let

pi =W,/ Wr.

We may interpret p, as the probability that individual 7 is the target.
When the sum of these probabilities in any interval is equal to the
length of that interval, then the distribution of weighted feature-values
is uniform. That is, if the interval is (r, , x;), then
> opi=a— .
I1SvisSIy

This is equivalent to
1.

2: p: =0, 0

0<viZv

IIA
IA

v

The deviation from uniformity can be measured by integrating the
square of the difference between the left and right sides,

1 2
f(Zp.-—*v) dy.
0 Ogvi=y

If we define F(v) by

then the last formula becomes

f L F@) — 0 dv.

Figure 11 gives a typical plot of F(v) where F(v) = 0 for v < a and
F() = 1forv = b. Now shifting F(v) to the left or right [as long as
neither a nor b is shifted out of the interval (0, 1)] does not change the
essential shape of F(»). It is reasonable to shift F(v) to give the best
approximation to ». We therefore define E(s) to be the mean squared
error when F(v) is shifted by s; i.e.,

‘ .
E(s)=f (Fo—s) —1)*dv for —a<s<1—b.

Then we redefine the deviation from uniformity by

F = min E(s).

8

We derive the minimizing shift in the following lemma.
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Fig. 11—A graph of a hypothetical F(v), the cumulative distribution of P; (the
normalized weights) versus v (the scaled feature value). No individual has a scaled
feature value less than a or greater than b.

Lemma: Let
B9 = [ Fo—9 -0,
and let
¢ = f ARG,
Then for —a < s < 1 — b, E(s) is minimized for

J'—a if

s=31%—¢ 1f —a <
ll—b if 1—b<ji—e

£ —a

R
|
[

=1-10

(S
I
)

Proof: To avoid needless mathematical complexity, let us suppose
that F(v) is a differentiable function. Then

E'(s) = —2 f "Fo— ) — )F'w — ) do

1

= —F(1 —§) + F(—s) + 2[ v dF(y — s).

0

The first term is — 1 since b < 1 — s. The second term is 0 since —s =< a.
The third term is easily shown to be 2(e + s) by using the substitution
u = v — s and the facts that —s < aand b £ 1 — s. Thus

E'(s) = 2(e + s — %).
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E(s) is minimized by having e + s as close to § as possible since E’(s)
is negative (positive) if e + s lies to the left (right) of 3.

APPENDIX B

Population Size and Identification Speed

We wish to show that the number of steps in the identification process
grows at most logarithmically with P, the population size. More pre-
cisely, let r, denote the rank of the target after the subject has given
the kth feature value. It will be shown that under reasonable assump-
tions, given below, the expected value of r, , for large k, satisfies

E(r) < P-c¢* = exp (InP —kn %) ,

where 0 £ ¢ < 1, and ¢ is a function of the distributions of the official
values and the subject’s errors in judgment. Thus, to achieve a given
expected rank, the number of steps, k, need grow no faster than In P.

While we believe that these several assumptions lead to a reasonable
model of our experiment, we expeet them to provide only a qualitative
indication of the growth of rank with population size. A quantitative
analytical model is unobtainable at this point since the data we have
are insufficient to extract the necessary statistical parameters. The
assumptions are as follows:

Fach of the P individuals in the population can be considered to be
a vector ¢ = (i, , 72, --- ) whose components are the official feature-
values. We assume that these feature values are independent, identically
distributed random variables and that the individuals are independent
vectors. The subject describes the features of the target ¢ = (t,, 6, - --),
and his judgments of the features are in error by e, , e;, - - - . We assume
that the errors are independent, identically distributed random variables.

By convention, the components of each vector are ordered in the
sequence in which they are described by the subject.

Using the above notation and our definition of weight, the target
has weight

k
(510 )
=
while an individual, 7, has weight

CXP(“Z}“:“FQ—@'; *)
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If we define
i, i) =t +e — 4| — e |,

then 7’s weight is larger than ¢’s weight if

k

3 a(t,7) < 0.

Let
o3
o) = )b Zwt) <0
IO otherwise.

Define 7, , the rank of ¢, as the number of individuals with weight larger
than ¢'s weight. We then have
re = 2 st 9).
T,
The expected value of r, is
E(Tk) = E E S,,.(t, 'f/).
1,17t

In s,(t, 1), each summand (¢, 7) has, for fixed ¢, a distribution which
clearly is a funetion of t. However, we are taking an expectation over
all targets and populations. Thus, in this context, the x,(¢, ) (for ¢ # 1)
are independent, identically distributed variables since the t's, as well as
the #’s and e’s, are independent, identically distributed variables. Hence

E@ry) = (P — DE(s(t, 7)) = (P — 1) Pr {s,(¢,2) = 1}
-P-1 Pr{fj 2(t, 9) < 0}-

i=

Let the z.’s have common mean m and standard deviation ¢. We
apply the Central Limit Theorem to the last probability to obtain

l. [5 at i) - |
Pr{z;x,-(t,i)<0}=Prl’Z=;If/;U km<—x/EaﬂJ
~ &(— 'k m/o)

where @ is the cumulative normal distribution. For large values of
v m/e, the asymptotic formula* for @ gives

1 =232
¥*Aszr — o, ¢(~x)wﬁ—
™

T
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1 ()—km’/?a’

Vo VI m/a
< Ple™ ) = Pe*

E@r) ~ (P — 1)

for k sufficiently large.
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