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Charge-Control Model for
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The integral charge-control model for bipolar transistors is rederived
with the purpose of elucidating hot carrier effects. In its original derivation
the model contained an additive hot carrier contribulion to the base charge
of possible significance in narrow-base transistors. Inclusion of this term
is shown to be unnecessary. However, careful examination of the potentials
appearing in the formalism has disclosed other hot carrier effects. These
could lower the transconductance of a transistor operaling in or near
saturation, particularly if the base has a low number of impurities per
unit area, but would otherwise be unobservable.

I. INTRODUCTION

The integral charge-control model (ICM) provides an elegant and
compact deseription of the one-dimensional transport physies of tran-
sistors by relating collector eurrent to the junction voltages and total
base majority carrier charge.”'” The original derivation of the model
indicates a possible need for supplementing the base charge in the
ICM relation with a term inversely proportional to the minority
carrier saturation velocity when base widths are very small (~1000 f&).’
It is shown herein that this term is an artifact arising from inappropriate
treatment of the diffusion current contribution to the transport equa-
tion. There are, however, additional hot carrier modifications of the
charge-control relation that have not been included in previous treat-
ments. These originate in the heating of a reverse current by the built-in
field in a junction not supporting a large reverse bias, and should be
manifest only in saturated or near-saturated transistor operation. With
this exception, the standard ICM relation [equation (15) of Ref. 1]
remains valid to the same extent as the macroscopic current transport
equation, even for very narrow base widths.
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II. DERIVATION

Considering a pnp transistor, we integrate the one-dimensional
macroscopic equation for hole transport to obtain the integral charge-
control relation. Our derivation largely parallels that of H. I{. Gummel.'
The essential differences are representation of diffusive transport by
—q¥V (Dp) rather than —¢DVp, and a more detailed treatment of the
potentials. Both diffusion expressions are, of course, identical if D is
coordinate independent. When coordinate dependencies arise from local
carrier heating, the former can be more readily justified by integration
of the Boltzmann equation, and is therefore to be preferred.® Thus,
as a starting equation we take

(9 @)
h = Q(de d.l' ’ (1)

where j, is the hole current density, E is the electric field, and kT,
and 5 are given by

kT = gD/u, (2)
1 = Dp. 6))

In relation (2), T, is the hole “diffusion temperature,” which is defined
from the local diffusion coefficient and mobility by the Einstein relation.
The variable % is the produet of the loeal diffusion coefficient and hole
density.

The full solution to (1) is the sum of the homogeneous solution
for j, = 0, and the particular solution. From the homogeneous equation
we obtain

M = t,‘_‘HJ)P (4)
where

dy _ _ 9 5

de kT, (5)

Note that ¢ is a potential normalized to the local value of kT, , and
is nonconservative in regions where T'; varies. The particular solution
to (1) is
1 _ e .
Ny = _EG ¥ (o) f j,,(x’)e‘”‘ Y de!. (ﬁ)
Thus

n = c—\l'(-‘r) . %}e—tﬂzl f j,,(.l"}e“” d.lf’. (7)
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Equation (7) is now evaluated at x., the outer edge of the emitter
junction, and x., the outer edge of the collector junction. This pro-
cedure yields

/ ; Lire 1 o » nvir’ ' )
nre)e’ " = glee)e’ " = Ef Gux)e” " dat (8)
rE

TFollowing Gummel,' we may account in a erude way for recombination
through the introduection of a quantity @ defined by

I

[ j,,(.l‘)("“” dr = (F]..- [ 0\!(1‘) fl'.lf, (9)
gy Jix
where j. = j,(x¢) is the collector hole current density. Consequently,
@ = 1, and assumes the value unity in the absence of recombination.
Upon substitution of (9) into (8), the resulting equation may be solved
for j. .

. virg) . yire)
n(re)e a(eoet (10

e
y(r)
f e" " dx
IKE

There remains evaluation of the econtributions to (10). At coordinates
xp and 2¢ in the undepleted bulk material of the emitter and collector
there is no carrier heating and the diffusion coefficient has its zero field
value I, . Henee, assuming the emitter and collector have the same
low field mobility,

|

je =

~

p(xy) = D.plxg) (11a)
n(re) = D.p(xe) (11b)
so that (10) may be rewritten
L) e
= l‘?_" IE“)_('—___I : plrcle . (12)
a o
[ e de

Sinee the normalized potentials in (12) are, in general, nonconserva-
tive, it is convenient to introduce a conservative electrical potential
J(x) which is everywhere normalized to the lattice temperature T, .
Then in regions where the holes are not heated, their coneentration is
given by

p(r) = e (13)

where n, is the intrinsic carrier conecentration and ¢,(x) is the hole
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quasi-Fermi level normalized to T,. Equation (13) can be invoked
at zz and 2, , yielding

VEEIE ) enlzr) _ baor-de) pes(ze)

_quD, e e

a zc A .
f e'i'(z)—#'(:)_e\#(:) dx

TE

(14)

Je

The relationship between y(z) and y(x) is arbitrary to within a
constant, permitting a choice of the coordinate at which ¥(z) and ¥(z)
coincide. Although (14) is implicitly “gauge invariant,” its explicit
form will depend on the choice made. The most symmetrical appearance
is obtained if one relates ¥(z) to ¢(z) by

o) =~k [ B+ 4, (15)

where z, is any coordinate in the base. Then (14) becomes

eplzE) __ vplzc)
jn -_— WI'—Da 'Y(xE)e — 'Y(xc)e (16)
a4 f y(@)e’ ) dx

IE
where
gf(T, — T,)

dz. 17
kT, (a7

v(z) = e\!«(z)—»'?(r) _ expf
ES]

The function y(x) provides a uniform treatment of the hot carrier
effects in (16), which all arise when hole current is drifted in the direc-
tion of the field, and power absorption from the field raises the hole
diffusion temperature 7'; above T, .

The ICM relation follows from (16) if the quasi-Fermi level for the
electrons in the base may be regarded as constant. This implies the
absence of substantial de base majority carrier current, such as would
arise if there were both high-level injection and poor current gain.*
For a constant electron quasi-Fermi level ¢,;, one has

n(x) = ne’ e (18)
and
kT
Veb = 7“ (‘;Dz:(mE) - Sanb)a (193")
kT,
Vrb = (Qﬂp(xc) - ﬁanﬁ)J (lgb)

q
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where V,, and V., are respectively the applied emitter-base and col-
lector-base voltages exclusive of ohmic drops. Insertion of (18) and
(19) into (16) results in

aVer/kTa

nigD, v(xe)e " — y(xo)e

a [ r@nt ar

TE

je =

Letting A denote the active cross-sectional area of the transistor, and
defining an effective base majority carrier charge by

Ic
0 = g4 [ 2@ d, (21)
ITE
one arrives at the ICM relation for the collector current I, .
2 . aVer/kTo . aVer/kTa
I = _(qn:A)°D, y(zgle y(xc)e ) 22)
a QF

If one neglects carrier heating, y(x) = 1 for all z and Q% reduces to Q, ,
the total majority charge (within the active region) that communicates
with the base terminal. Equation (22) then becomes identical to the
integral charge-control relation derived by Gummel.'

I11. DISCUSSION AND CONCLUSION

We have shown that inclusion of the diffusion coefficient within the
gradient operation in the current transport equation automatically
eliminates additive contributions to the defining integral for the base
charge in the ICM. However, careful examination of the nonconserva-
tive potentials appearing in the formalism discloses other hot carrier
contributions that have not been previously considered. In equation (22)
these are embodied in v(xz), v(z¢), and Q% . For forward operation
of the transistor, y(zz) = 1 because the holes do not absorb power
from the emitter junction field. On the other hand, carrier heating
can oceur in the collector junction and, in accordance with (17), result
in y(z) > 1. However, this effect would be discernible only for rea-
sonably large values of exp (¢V.,/kT), requiring the transistor to be
in or near saturation. Heating must then be produced by the built-in
field. Similar considerations apply to the effective charge defined by
(21). Reverse bias of the collector causes the Boltzmann tail of n(x)
to fall off very fast within the collector junction and make little con-
tribution to the integral. Saturated or near-saturated operation of the
transistor is therefore required for carrier heating to affect Q% . Further-
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more, the number of impurities per unit area of the base must be low
for the Boltzmann tails within the junctions to make any significant
contributions to the total base charge. Since v(x) > 1 within the
collector junetion, Q% will exceed @, . Therefore, by increasing v(z.)
and the effective base charge, carrier heating in the collector junction
tends to decrease the collector current for a given set of applied voltages.
The diminution in [ is plausible in view of the decreased effectiveness
of the collector junction as a sink for the minority holes diffusing across
the base when their mobility within the junetion is lowered by carrier
heating.

A number of important effects, such as impact ionization and base
crowding, have not been included in this treatment. High current gain
has been assumed. The question of the ultimate validity of the macro-
scopic transport equation in inhomogeneous high-field regions has not
been addressed.
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