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Controllability and Observability in
Linear Time-Variable Networks
With Arbitrary Symmetry Groups

By H. RUBIN and H. E. MEADOWS
(Manuseript received May 21, 1971)

This paper presents a unified treatment of linear time-variable networks
displaying arbitrary geometrical symmetries by incorporating group theory
into an analysis scheme. Symmelric networks have their elements arranged
so that certain permutations of the network edges result in a configuration
which 1s identical with the original. These permutations lead to a group of
monomial matrices which are shown to commute with the network A-matriz
and the state transition matriz of the normal form equation. The repre-
sentation theory of groups facilitates the study of those network properties
which are determined solely by symmetry. By using group theory, a simple
arithmetic condition is derived which, when salisfied, implies that the
network 1s noncontrollable or nonobservable because of symmetry alone.
The results allow the determinalion by inspection of linear combinations
of the original state variables which result in noncontrollable variables. It
is shown that networks displaying axial point group symmelry are generally
only weakly controllable.

I, INTRODUCTION

In the past two decades, engineers and applied mathematicians have
devoted a great deal of attention to diverse aspects of linear time-
variable networks and systems. However, one problem that has not
been treated in depth is that of analyzing time-varying networks
displaying arbitrary geometrical symmetries. A symmetric network may
be regarded as a set of identical subnetworks connected in a symmetrie
pattern. Such a circuit may be more easily implemented in an integrated
form than is a nonsymmetric network, especially when the circuit is
time-variable and the construction and synchronization of the variable
elements are major technical problems. Since the trend in integrated
circuit technology is towards large-scale integration, it may soon become
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practically important to consider large networks displaying arbitrary
geometrical symmetries. The present research was undertaken partly
as a possible first step toward developing a modular approach to linear
network design.

While it has long been known that network symmetries can be used
to facilitate analysis, previous work on symmetric networks dealt
mainly with bisection techniques for networks with mirror-plane
symmetry and has not incorporated general types of symmetries into
an analysis scheme. The present work treats arbitrary symmetries by
utilizing the mathematics of group theory, a natural tool for studying
symmetry.

Network controllability and observability are important concepts in
analysis and synthesis, and group theory may be employed in deter-
mining symmetry-constrained noncontrollability and nonobservability
of the network. Furthermore, the determination of these properties may
be made by inspection without writing network equations. The group-
theoretic approach enables us to prove several theorems concerning
controllability and observability of a wide class of symmetric networks.
The theorems would be difficult or impossible to prove, or to state
precisely, without the use of group theory.

The reader who is unfamiliar with the results and notation used in
both the abstract and representation theories of groups can find this
material in Appendixes-A and B in a form consistent with that used in
the remainder of the text. The reader may wish to study the appendixes
before continuing to Section II.

II. GROUP THEORY AND NETWORK EQUATIONS

Symmetric networks have their elements arranged so that certain

permutations of the network edges result in a configuration which is
identical with the original. For example, the geometrically symmetrie
network shown in Fig. 1 is invariant under permutations of the network
edges which result from a rotation of the network structure by = radians
about an axis perpendicular to the plane of the paper or from reflections
in the planes ¢, and o5 .
Definition 1: A covering operaiton or symmelry operalion is a trans-
formation (rotation, reflection, ete.) which will bring the symmetric
object (network) into a form indistinguishable from the original one.
The following is well-known and shown in Ref. 1.

Theorem 1: The set of symmelry operations of an object constilules
a group.’

t See Appendix A for definitions of pertinent group theoretic terms.
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Fig. 1—Network with €2, symmetry.

The effect of each symmetry operation is to permute the network
edges. Specifically, only resistive edges are permuted among themselves,
capacitive edges are permuted among themselves, etc., i.e., only edges
of like type and equal element value or variation may be permuted.
The letter R is used to denote the general symmetry operation of the
symmetry group. Thus, R denotes either E, C; , ¢, , or o, for the network
of Fig. 1, where E denotes the identity, C; denotes rotation by = radians,
and o denotes reflection in the plane o. Thus, the operations {R} form
a group s which describes the symmetry of the network structure.
The following exposition shows how group theory may be incorporated
into the network analysis scheme.

Analysis in the time-domain can proceed from the normal form
equation

&(t) = AWz + BOu), (1)
where z(f) is an n-vector of state variables, u(f) is a k-vector of inputs,
and A(t) and B(l) are time-variable matrices conformable with z and .
In the context of our analysis, it is sufficient to consider A(¢), T. R.
Bashkow’s A-matrix.* The A-matrix contains some information about
the network topology and also determines the natural response of the
network. B. K. Kinariwala® showed that the A-matrix description is
valid for time-varying as well as for fixed networks. The explicit form
of the A-matrix given by P. R. Bryant* may be found in textbooks
such as Refs. 5 and 6.

The A-matrix is derived with respect to a normal tree, i.e., a tree
containing a maximum number of capacitive edges and a minimum
number of inductive edges. It is assumed that the reader is familiar
with the procedures needed to obtain the A-matrix, and the form of the
network equilibrium equations is therefore given below:*

t A superseript ¢ appearing with a matrix denotes the transpose of that matrix;
a superscript * denotes the complex conjugate of a sealar quantity.
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In (2), the subscript ¢ denotes elements in the tree, the subscript ¢
denotes elements in the cotree, and p is differentiation with respect
to time. Submatrices H, through H; express the topological relationship
between elements in the tree and elements in the cotree. The letters e
and j refer to voltage and current sources, respectively, while V and
denote branch variables. In order to obtain the A-matrix from equa-
tion (2), the nondynamic vector variables V, , Vs , 7, , 4, are eliminated
algebraically, thus yielding the equation

A M ] ®
-7 pL+R]L7 e

where j and e are regarded as inputs. For a complete interpretation of
submatrices in the above equations, see Ref. 5. Equation (3) may be
put into the form of equation (1) by choosing capacitor charges (¢ = CV)
and inductor fluxes (¢ = L) as state variables and writing

i A Y i

With reference to equation (2), observe that tree edges are used to
define basic cutsets’ of the network graph and hence current-law equa-
tions, while cotree edges are used to define basic loopsets’ of the network
graph and hence voltage-law equations. Thus, if a symmetry operation
of the network structure permutes an edge in the tree with one of the
cotree, the equilibrium equation (2) will be in a form different from that
of the original equations; such an operation is not a symmetry operation
of the network equilibrium equations. Those covering operations of the
network structure which do not permute tree edges with cotree edges
form a subgroup Gy of the group Gs (if two operations R, and R, do not
permute tree edges with cotree edges, then the compound operation
R.R, also possesses that property), and the group Gy thus contains the
symmetry operations of the equilibrium equations. Since the network
equilibrium equations are being considered, the transformations of edge
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voltages and currents are of importance rather than merely the permuta-
tions of network edges. The operations R of the group Gy may transform
a voltage (or current) into the negative of another voltage (or current).
If the network contains b edges, a b-dimensional monomial matrix?
D(R) may be formed which represents the transformation of the b
voltages and currents under the symmetry operation R. The rows and
columns of D(R) correspond to edge voltages and currents, and the
matrix entries show how these quantities transform under the symmetry
operation. Matrices D(R) form a reducible representation of the group
Gy .
2.1 Commutativity Relations

In (2), denote the column vector of edge currents and voltages by f,
the column vector of current sources and voltage sources by ¢, and the
coefficient matrix by N. Thus, equation (2) becomes

Nj=2g. (5)

Consider the new arrangement of sources and edges obtained by operat-
ing on the network with symmetry operation R, i.e., consider the equi-
librium equations for the case

= D(R)g
= DR)]. (6)

Since the operation R yields a network configuration, including the
choice of tree, which is identical to the original one, it must be that

Nf =g 7

= QY »

Hence,
ND(R)] = D(R)¢ = D(R)N}, 8

where use is made of equations (5) and (6). For a network of b edges,
b linearly independent vectors f may be specified such that the current-
law and voltage-law equations are satisfied. Furthermore, b values
of § are then obtained such that for each f chosen, the terminal relations
of the network elements are satisfied. Thus, equality of the first and
last members of (8) implies that

ND(R) = D®)N,
or 9)
D' (R)ND(R) = N.
Thus the monomial representation D(R) commutes with N.

* A monomial matrix has only one nonzero entry in any row or column. The
nonzero entry is restricted here to the values +1 or —1.
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Equation (3) shows how elimination of nondynamic variables in
equation (2) reduces N to a new matrix

N=i:pC-I—G T }
-7 pL+R

and reduces f and ¢ to the vectors

[ o

The algebraic operations have eliminated from N the rows and columns
corresponding te submatrices G, , R. , T, , and D, in equation (2).
The elimination of rows and columns of D(R) which correspond to
G, ,R., T, ,and D, results in a group of matrices D(R) which show only
how tree capacitive voltages and cotree inductive currents are trans-
formed under the operation R. By expanding equation (9) in terms of
the submatrices of equation (2), it is possible to show’ that D(R) satisfies
the following commutativity relation:

D (R)ND(R) = N,
or (10)

D_,(R){pC+G T JD(R)=[;DC+G T }
—7" pL+R —T*  pL+R

where D(R) commutes with [§ 7] and with [¢7. z]. Thus, the following
may be stated.

Theorem 2: For a symmeiric network, construct the monomial represen-
tation D(R) of the symmetry group Gy , where D(R) shows how the tree
capacitive voltages and cotree inductive currents are transformed under the
symmelry operation R. The monomial representation D(R) commules
with the network A-mairixz based either on voltages and currents or fluzres
and charges as state variables. That is,

D' (R)AWD(R) = A(t), forall ReGy.

The commutativity relation given in Theorem 2 establishes a basic
connection between group theory and the network analysis problem,
and allows group theoretic methods to be applied to linear networks
displaying arbitrary geometrical symmetries.

The state transition matrix ®(f, 7) is the matric solution to the
homogeneous part of equation (1) which satisfies
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&(r, r) = I, (11)

where [ is the unit matrix of appropriate order. ®({, 7) is given in
series form® as

Mhﬂ=§ﬁﬂﬂ, (12)
where
ity ) = [ A, 7) do (13
o, = 1.

Theorem 3:  For a symimetric network, the monomial representation D(R)
of the symmelry group (/y commules with ®(L, ), .e.,

D' (R)®(l, r)D(R) = ®(t, 7).
Proof:  From (12) and (13),
DT(R)®(t, ) D(R) = g DT'(R)&.(t, 7) D(R).

An induetion proeedure shows that D(R) commutes with each term
¢,(!, 7) in the above sum.

DR, ) DE) = [ (D@ AG) DRI dp

[ Alp) dp = @,(t, 7).

vr

Assume that D(R) commutes with @.(¢, 7). Hence,

D (R)®,, \(t, 7) D(R)

[ (04 DD @06, 7 D) dp

vr

Il

[ Ao, ) dp = it .

Jor

Thus, the theorem is proved.

111, EXPLICIT FORM OF TRANSFORMATION & TO REDUCE A (1)

In Appendix B, a procedure is given for the construetion of a unitary
matrix a from the irreducible representations of symmetry group Gy
and representation D(R). The important property possessed by the
transformation « is that it transforms the state space to a new basis
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in which D(R) appears in block diagonal form and in which 4 (t) appears
in block diagonal form.” For the remainder of this paper, it is important
to determine the positions of zero elements in the matrix . Thus, the
characterization of a in an explicit form is undertaken at this point.
The following definition is adapted from group theory in a way useful
to network analysis.

Definition 2: A symmetric network is said to be transitive if there is at
least one group operation which transforms a given state variable into
any other state variable (with plus or minus sign). The network is
intransitive if it is not transitive.

Since an inductor and a capacitor cannot be permuted by any sym-
metry operation, general RLC symmetric networks are intransitive.
The state variables can be partitioned into sets such that the group
operations permute among themselves only those variables in the same
set. Hence, each set is transitive, and the state variables are said to be
partitioned into transitive sets.

Theorem 4: For a symmetric network, the number of transitive sets into
which the state variables may be partitioned is equal to the number of times
the totally symmetric irreducible representation [i.e., D (R) having all
group operations represented by unity] appears in Dy(R), the permutation
representation obtained from D(R) by replacing each —1 entry in D(R)
by +1.

Proof: This result follows from a theorem given by W. Burnside
(Ref. 10, p. 191) which states that

gs = 2m, (14)
where g is the order of the group, n the number of symbols (state
variables) operated on by the group, s the number of transitive sets in
which the n symbols are permuted, and », the number of group operators
which leave exactly r symbols unchanged.

Let ¢ denote the number of times that D'’ (R) appears in D,(R)
and x the trace of D. From (52) in Appendix A,

&= 5 = xR x(®)

_;1) > () (15)

since x"(R) = 1 for all R. Because D,(R) is a permutation representa-
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tion, x,(R) is precisely the number of state variables left unchanged by
operation R, and hence is an integer from zero to n. The group operators
can be partitioned such that all operations in a given set leave unchanged
the same number of state variables. It is now evident that (14) and (15)
are identical sums, and ¢} is equal to s.

The column vectors a,,, , @ = 1, --- , ¢, , of the matrix « are given
in (56) in Appendix B and repeated here for convenience. They are
¢, linearly independent (and orthonormal) columns of

G» = Y D™(R)*, DRI, (16)

R

where [ is the unit matrix and pme are indices defined as follows. The
index p denotes one of the distinet irreducible representations of the
symmetry group, the index 7 runs from 1 to [, and denotes a row of
the matrix D™ (R) [so that the dimension of D®(R) is 1,], and the
index a denotes one of the ¢, appearances of D’ (R) in D(R). Thus,
a has the form

a = [aut:"':aplla Uty Oule,y Ty Cuxy T ) Qe ] (17)

We consider a typical column vector «,,, corresponding to the #th row
of D(R). Let e, be the vector containing all zeros except for unity in
the mth row. From (16), e,,. may be considered to result from (we
delete the normalization factor)

Cprm = 2 D (R)%, D(R)e,, . (18)
R

If ¢, is less than or equal to ¢} , the number of transitive sets into which
the state variables may be partitioned (Theorem 4), the ¢, values of the
index m can be chosen such that each vector e,, corresponds to a different
transitive set. The operation D(R)e,, results in a new vector e, where
m and k are in the same transitive set. Thus, the ¢, vectors «,,, chosen
above are necessarily linearly independent if they are not zero. If any
choice of m yields a zero result in (18), merely choose a value of m
corresponding to a different transitive set; ¢, linearly independent «,, .,
must be obtained in this way since the matrix G has rank c,."'

Lemma 1: If the vectors a,,, are chosen as outlined above, only one of
the vectors having indices p and w can possibly have a nonzero result in
row r, namely, a,,, where r and p are in the same transitive set.

The rth component of a,,, is denoted by «f,, . The group operators
may be partitioned into the set {R]} and its complement {R]], where
{R;} consists of all group operations which take the pth state variable
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into the rth state variable. Thus,
Quxp = Z D(")(R)f, D(R)en
R

ZNWMJﬁM+ZW@MJ®M

=Z&WWH& ZNW)D@M, (19)
where ) is +1 or —1 as R; transforms state variable x, into state
vanable r, with positive or negative sign, respectively. Hence, except
for a scale factor,

Wrp = RZSS D™ (R} - (20)

In determining whether the rth component of vectors a,,, is zero, there
may be some ambiguity in choosing the index p in the same transitive
set as r. The following lemma eliminates any ambiguity in this choice.

Lemma 2: A mecessary and sufficient condition for a,, to be zero for
all p in the same transitive set as r is that aj,, be equal to zero, i.e., that

; st D™ (RD*, = 0. (21)

Proof: Consider the subgroup X of the group Gy , where X consists
of those group operations which transform the rth state variable into
itself with either positive or negative sign. The subset H of & which
transform the rth state variable into itself with positive sign forms a
subgroup of index two in x.'* Thus, X may be partitioned into cosets
with respect to H as

x = H, PH, (22)

where P is an operation of % not contained in H, and thus transforms
the rth state variable into itself with minus sign. The group Gy may be
partitioned into cosets with respect to X as

Gy = H, PH,R’'H, R°PH, --- , R:H, RPH,

where R denotes a group operation which transforms the rth state
variable into the 7th with plus sign. It is clear from the above that if
any group operations transform any symbols (state variables) with
negative sign, there must exist an equal number of group operations
which transform the symbols with positive sign. Hence, for each transi-
tive set of symbols (state variables) operated on by Gy , the subset of
group operations which permutes the symbols with positive sign forms
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a subgroup of index two. Therefore, there exists a one-dimensional
irreducible representation D'*(R) of Gy in which each group operation
which transforms the symbols with plus sign is represented by 41,
while each operation which transforms the symbols with minus sign is
represented by —1."* Thus, in equation (20),

s, = DP(R)). (23)

The orthogonality relation (51) for irreducible representations requires
that

[

2. DP(R) DV (R)%, 8 = 0 (24)

l

T

if @ # p. Notice that if D(R) is a permutation representation, then
g = 1, and DV (R) is the totally symmetric irreducible representation.
Let the transitive set to which » belongs be denoted by M, consisting

of {r, p, - -+, n}. Hence, the set of group operations may be partitioned
into {R]}, {R?}, ---, {R?}, and from equations (23) and (24),
2 DP(R) DU (R)Y, = X st DY (R)E. + X st DY (R)Y,
R R Re?
+ o+ D s! DW(RD%, = 0. (25)
Now, the matrices D’ (R) are unitary, and {R?} = {[R:]™"}, ---, {R]}
= {[R;]"'}. Hence, if a],, = -+ = a,, = 0, then by virtue of (20),

equation (25) implies that «f,, = 0 as well. This proves necessity.

There are two cases to consider in proving sufficiency, namely,
c. = clandc, > .

Case (a) ¢, < ¢} :

In this case ¢, linearly independent vectors a,,, may be obtained by
choosing vectors e,, in (18) so that each m corresponds to a different
transitive set. Suppose e, is chosen corresponding to the set M, . The
addition of e,,, to the set thus results in a dependent set. Furthermore,
by eonstruction, all vectors except a,., are zero in positions where a,,, is
nonzero. Thus, a,,, and «,,, are proportional, i.e., if af,, = 0, then
a,,, = 0. The last result holds true for all p ¢ M, , and sufficiency is
established for Case (a).

Case (b) ¢, > ¢} :

In this case, it may be possible to choose more than one index in the
transitive set 1/, such that the «,,, vectors obtained from equation (18)
are linearly independent. A direct argument shows that a contradiction

r

results if o),, = 0 while a],, # 0; namely, more linearly independent
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vectors than is actually possible can be obtained from equation (18)
by using indices m corresponding to the transitive set M, . Thus,
sufficiency for Case (b) is proved.

Hence, it has been established that for any indices p and m, the
vanishing of the rth component of a,,, is completely determined by the
matrices D*’'(R?), where the only group operations involved are those
which transform the rth state variable into itself. This result will be
used in the next section.

IV. CONTROLLABILITY OF SYMMETRIC NETWORKS

The concept of controllability relates to the degree to which the state
of a system is affected by the application of some input. The following
definition may be found in Ref. 13.

Definition 3: The system (1) is completely controllable on an interval
(t. , t,) if for any state z, at ¢, and any desired final state z, at ¢, , there
exists an input u(t) defined on (¢, , {;) such that z(t,) = 2. .

The system (1) is totally controllable on an interval (t, , t) if it is
completely controllable on every subinterval of {, , ).

For networks with sufficiently smooth time-variations, controllability
of the linear time-varying system (1) may be characterized by the
controllability matrix"®

Q. = [PoPy -+ Pooi], } @)
Pk —A(t)Pk-l-I_Pk-lyPu:B
and n is the order of the system.
The following theorem is a paraphrase of Theorem 4 of Ref. 13.

Theorem 5: For the system (1) assume that A(t) and B(t) together with
their first n — 2 and n — 1 derivatives, respeclively, are continuous func-
tions. System (1) is totally controllable on the interval (¢, , &) 1f and only if
Q. does not have rank less than n on any subinterval of (t, , t1).

Il

where

Lemma 3: The system described in partitioned form by

Z, 0 A, lZ 0
is noncontrollable (i.e., not completely controllable).

A sufficient condition for noncontrollability is given in the above
lemma. This section is concerned with determining conditions in which
symmetry alone is sufficient to cause the network to be noncontrollable.

Definition 4: A symmetric network is said to be NCS (possess the NCB
property) if it is noncontrollable because of symmetry alone.
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In (4), if only k of the inputs [] are nonzero, the equation can be
rewritten using the k-vector of inputs, u(t). Thus,

i = A(f)z + Bu(f) (28)

where B is an n X k constant matrix and z = []]. By making the unitary
change of variable! Z = afr, we arrive at the block diagonal system of
equations

[z |4 1 2]

d i . 1e .ll t

| 28| = A% Z: |+ aBu(®), (29
zi,l L A1, 1LZ0, |

where Z is shown partitioned according to the submatrices A * . Con-
trollability of the network reduces to that of all of the subsystems
corresponding to the A* ., From Lemma 3, the network is noncontroll-
able if a submatrix of a'B corresponding in its partition location to one
of the A* is zero. This occurrence is due solely to symmetry; we now
investigate this condition more closely.

First consider the case where a single input is coupled only to the
rth state variable, i.e., in (28), B = e, and u({f) is a scalar. From « given
in (17), it is evident that the submatrix of a'e, corresponding to A * is
simply the ¢, X 1 partition consisting of the rth components of the
vectors e, 1, -, @urc, - As mentioned in Lemma 1, at most one of these
vectors can have nonzero entry in row r. Using the notation developed
previously and Lemma 2, the following theorem has therefore been
established.

Theorem 6: A symmelric time-varying network having a single input
coupled only to the rth state variable is noncontrollable by virtue of ils
symmetry (i.e., is NCS) if and only if there is a u such that D™ (R)
appears in D(R) and

2 s DYR)Y, =0
BT
for some value of .

Tt is clear that if a table of irreducible representations is available, the
arithmetic computation involved in the above theorem is quite simple.
For any g, all values of # = 1, --- , [, should be checked to determine

* The complex conjugate transpose of the matrix « is denoted by af.
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which state variables are uncontrollable. For most cases of interest,
I, = 1,2, or 3; the point group of the regular icosahedron has irreducible
representations of order five."

If the irreducible representation in (21) is one-dimensional, the
quantities D’ (R),, are unambiguous. However, for irreducible repre-
sentations whose dimension exceeds unity, any representation which is
equivalent to D'*’(R) may be used to form the matrix @ which reduces
the system of (28) to that of (29). Clearly, although the block diagonal
form of (29) will be essentially the same under transformations produced
from equivalent irreducible representations, the matrix a will be dif-
ferent depending on which irreducible representation is used to construct
it. Hence, for multidimensional irreducible representations, it is possible
for o'B in equation (29) to have a zero submatrix if D" (R) is used to
construct @, whereas nonzero submatrices may result if a representation
equivalent to D“'(R) is used to construct the transformation a. The
above discussion shows that for multidimensional irreducible repre-
sentations,

> sI DHP(R)E, # 0

is not sufficient to conclude that the network is not NCS. The inequality
to zero of the sum in (21) must be shown for all representations equiva-
lent to D (R). In most cases of interest, the set {R;} consists of very
few elements, and it may be quite easy to determine an irreducible
representation which satisfies (21). The points mentioned in the above
discussion will be illustrated by example in the sequel.

As an example illustrating the use of Theorem 6, consider the network
of Fig. 2. The network has C,, symmetry, and a table of irreducible
representations of the group is given in Fig. 2. By utilizing (52), it is
determined that the monomial® representation D(R) contains D' (R)
three times, D'*’ (R) zero times, and D’ (R) and D"’ (R) each one time.
If a current source I(f) is placed in parallel with the capacitor associated
with state variable r, , the following calculations can be made with
regard to Theorem 6. The group operations which leave r, invariant
are & and ¢, . Thus,

RZ DURN, =1+ 10

S DPR)E, =141#0

&t ‘
=1—1=0.

2. D(R)%,

t D(R) is a permutation representation in this case, so that s," = +1.
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Fig. 2—Network with C;, symmetry, including symmetry operations, irreducible
representations, and transformation matrix «.

Hence, if the excitation is coupled solely to state variable z, , the basis
function corresponding to D‘“’(R) will be uncontrollable. Indeed, the
block-diagonal system has the form

- A R

rz,j e b ¢c 0 0z 1
20 d e f 0 0]z 0
d . 1
qilz= =19 h i 0 Oz |+ 5 0 I(7). (30)
24 0 0 0 3 0z 1
L25] L0 0 0 0 FKllas] L0

It is seen from the matrix « in Fig. 2 that z; = r, — x,, and it is this
linear combination of the original state variables which is uncontrollable
in the present example. Note that since D’ (R) does not appear in D(R)
in the above example, no basis functions are associated with it, and
hence a computation is not made for this irreducible representation.

The next example serves to illustrate some complications that arise
when the symmetry group possesses irreducible representations of
dimension greater than unity. The network shown in Fig. 3 possesses
symmetry Cs, . Two equivalent two-dimensional irreducible representa-
tions are given, and two transformation matrices «, and a, are shown
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SYMMETRY GROUP Cay SYMMETRY OPERATIONS
E=(N(2)(3)  c&=(123) o = (13)
Ca=(132) o, =(23) oy = (12)

IRREDUCIBLE REPRESENTATIONS
R E Ca c2 o o, o
DR | 1 1 1 1 1 1
p@R)| 1 1 1 -1 -1 -1
s olllL_E][Lr Bl o[- B[ B
Dm(R 2 2 z 2 z7 2|2z 2
) o il E_L|[E _tllo |- B-L]|E_L
2 2 2 2 2 2 2 2

som|[s e Y[s 1B e[ S[% o]

TRANSFORMATION ay TRANSFORMATION az
usiNG D)(R) using DPI(R) NOTE :
12 ! 2T -j2T
l'_'S-i 'TE o I:I 1 ®e=e3 e*=g" 3
S I R =L l s -
=51 7 =gt £ @ DPYR) anp B@I(R)
a4 . . ARE EQUIVALENT
' EREE T [ £ F
o"(r) DP(R) p(r) BY(R)

Fig. 3—Network with Cy, symmetry, including symmetry operations, irreducible
representations, and transformation matrix .

which will transform the differential equations to block diagonal form.
It is determined that the irreducible representations D’ (R) and
D™®(R) are contained one time and zero times, respectively, in the
permutation representation D(R), while the two-dimensional irreducible
representation is contained once in D(R). The transformation matrix
a, is constructed using the real two-dimensional representation while a;,
is constructed using the complex two-dimensional representation. Both
a, and a, are given in Fig. 3.

If a current source I(f) is placed in parallel with the capacitor asso-
ciated with state variable z, , the block-diagonal system has the form
(using the transformation «;)

Zl a 0 O zl 1/(3)'
% al=10 b ofa|+|2/0 10,
23 0 0 b 23 0

while if @, is used as the transformation matrix, the block-diagonal
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system has the form
2 a 0 0 2 1
—|z| =10 b 02|+ |1|I).
25 0 0 blz 1

The network is uncontrollable as shown with «, above. Uncontrollability
of the network may be determined by inspection by using the real
two-dimensional representation in Theorem 6. The set {R;} consists
of {E, o}, where r = 1.

The following corollary results from a trivial application of Theorem 6,
but is by no means obvious without the use of the theorem.

Corollary 1: Given the assumptions of Theorem 6, if there is just one
group operation that leaves the rth stale variable invariant, then the network
cannot be NCS.

Proof: The lone group operation must be the identity, and D" (E),, =
1 for all x and .

An interesting and important result of Corollary 1 is that a network
whose only symmetry operations are rotations (i.e., C, groups) cannot
be NCS except in the special case treated in Corollary 2 which follows.

Corollary 2: If the symmetric network contains a slale variable which
is tnvariant under all the group operations, and if the single input 1is
coupled solely to this state variable, the nelwork vs NCS.

Proof: Since {R]} is the entire group, equation (51) yields

S DY) = L DPR DVBI. =T o:=0, uFE
Re" R &

The network of Fig. 2 may also serve to illustrate Corollary 2. State
variable z; is invariant under all the group operations. If an excitation
I(t) is coupled only to z; , the block-diagonal system has the form
(g = 1 since D(R) is a permutation representation)

2] [a b c o0 0ola] O

2 d e [ 0 0fa 0
%za=ghi0023+1[(t). (31)

ol 000 oz |o

| 25| 0 0 0 0 kllz] 10
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Corollary 8: The state variables associated with D™ (R) represent an
always excitable portion of the network, i.e., these variables are never
NCS. If & # 1, basis functions corresponding to D'"' (R) are always NCS.

Proof: Trom (22), the subset of group operations which transform
the rth state variable into itself with plus sign forms a subgroup of
index two in the group & of operations which transforms the rth state
variable into itself with either plus or minus sign. Hence, the quantities
s" in equation (21) form an irreducible representation D‘”(R) of the
group %. Thus, for the basis functions corresponding to D™ (R),
equation (21) becomes

> s DPR)* = >, DP@R) DPR)* =k #0,

~ ~
where k denotes the order of the group %. Likewise, D'"’(R) forms an
irreducible representation of & since the totally symmetric representa-
tion is an irreducible representation of any abstract group. Thus, for
the basis functions corresponding to D' (R), equation (21) becomes

> si DV(R)* = > DRI D (R)* = 0.
k" R:r

Thus, the corollary is proved.

Corollary 3 is illustrated in (30) and (31) where the excitation is coupled
to the state variables associated with D'V (R). (Matrix D(R) is a permu-
tation representation for the example of Iig. 2, so that 7 = 1.)

The applicability of Theorem 6 is extended somewhat by considering
the case where the single input is coupled to more than one state vari-
able. For the moment, it is assumed that only two state variables are
coupled to the input so that in equation (28)

B(t) = Ih()e, + ha(t)e; , (32)
where h,(t) and h.(t) are scalars.
Corollary 4: A symmetric network having a single input coupled only
to the rth and jth state variables is NCS if and only if a proper value'
of u exists such that for some value of m,

S s DPR):, =0 and ) si DV (R)%, = 0. (33)
R Rl

Proof: Tor v and j in the same transitive set and ¢, < ¢!, the partition
of a'B in equation (29) corresponding to A} can have nonzero terms
only from*

t A proper value of p is one for which DW(R) is contained in D(R).
# A normalization factor is not included in the vector ey, .
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(@) B = ha(1) ;ﬂ D™ (R)%: + ho1) RE st DY (R . (34)

Provided that h,(f) and h,(f) are not specially chosen to cause (34) to
vanish, Lemma 2 implies that (34) vanishes if and only if

> st DY(R)%, =0
=

(only one of the sums in (33) need be computed in this case).

For the case where ¢, > ¢}, the possibility exists that a,., and a,.;
are linearly independent. This linear independence also occurs when
r and j are in different transitive sets. Thus, for these cases, the possible
nonzero terms in the partition of a'B corresponding to A * in (29) arise
from (a,,,)thi(t)e, and from (a,,;)'h.(t)e; . From Lemma 2, (a,.:)e; is
zero if and only if

> ss D¥RN:, =0, k=rj.
Rk

Thus, the proof is complete.

The above method may be extended in a fairly obvious manner to
treat the case where any number of state variables are coupled to the
single input. A separate statement is required for each set of variables
in a given transitive set.

At this point, we consider the problem of determining general condi-
tions which guarantee that (21) will or will not be satisfied for some
proper value of . Thus, the summations for all values of p need not be
computed. A partial solution to this problem is offered in Theorems 7, 8,
and 9 below. It is assumed that the single input is coupled only to the
rth state variable; the results can be extended to the case of multiple
couplings by utilizing the reasoning in Corollary 4 above.

Use is made of the following well-known properties of finite groups'’.

(7) The order of a group (G which is transitive on k symbols is mk
where m is an integer giving the number of group operations which leave
any given symbol unchanged.

(75) If a group @ is intransitive on & symbols, the symbols may be
partitioned into transitive sets M, , M, , - -- . If the operations of ' are
allowed to operate only on symbols in the transitive set M, (i.e., permu-
tations of symbols not in M, are simply ignored), (¢ reduces to a new
group (7, . The result is that

g = §:07 (35)

where the lower-case letters indicate the orders of the appropriate
groups, and G is the invariant subgroup leaving fixed all symbols in M, .
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A general intransitive symmetric network is considered in which the
state variables are partitioned into the transitive sets M, , M, , --- .
The set M, contains the rth state variable, z, , and the number of state
variables in M, is denoted by k, . The following theorem is a simple
application of property (i) above; it guarantees that the rth state variable
is left unchanged by only one operation of the network symmetry
group, (.

Theorem 7: If G is isomorphic with G, and if k. is equal lo the order
of G, the network is not NCS.

Proof: Since @, is necessarily transitive on the k, symbols of M, ,
property (i) above implies that g, = mk, . However, g, = g since
and @, are isomorphie. Thus, g = mk, . By hypothesis, k. equals the
order of G; m must be unity. Hence, only one group operation of G leaves
the rth state variable invariant, and the NCS property is impossible as
shown in Corollary 1 to Theorem 6.

Theorem 8: Lel G be an azxial point group and let G, be a proper subgroup
of G. The symmelric network with symmetry group G is NCS.

Proof: Since G, is a proper subgroup of (7, equation (35) implies that
gs is greater than unity. For the axial point groups excluding D, groups,
only the identity and a reflection plane ¢, (a rotation C'; about a two-fold
axis perpendicular to the prineipal axis may be included instead of a
reflection plane) can have an invariant effect on any given state variable.
For D,, groups, in addition to £ and o, , a C; operation and a o, operation
can have an invariant effect on a given state variable. Furthermore,
at most only one symmetry plane o, (rotation C) can leave a given state
variable unchanged. Hence g; = 2, or possibly g; = 4, for a D, group.
Thus, the subgroup G; in property (i7) above is either {E, a.}, {E, C},
or {E, o, , Cy, o1}, and these operations leave invariant all variables in
the transitive set M, .

To show that the networks considered in this theorem are NCS, a
proper value of p is determined for use in (21); we compute ¢, , the
number of times D* (R) is contained in D(R), using (52). To facilitate
the computation of ¢,, the n state variables are partitioned into h,
transitive sets of two variables each, h, transitive sets of three variables
each, - -+ , h,, transitive sets of k, variables each, ete. Thus,

n=2h, +3h;s + - + bk, + - . (36)

In D®(R), all o, and C, operations are represented by —1 while E
and o, are represented by +1."* Hence, ¢, is at least
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C, =

% =X ®)

é[n — hok), for C. , D.,D,, symmetry

=1 or (37)

é [n — hek, + hik, — ki k], for D,, symmetry.

In general, ¢, is not zero, and (21) is satisfied for p = 2 since [{R’] =
{E, ¢,} or |E, C,}, or {E, o, ,C,, 0.}, and
> s D®R)*, =1—1=0, for C,,D,, or D, groups

Re™
and
> s D”R)*, =1—1+1—1=0, forD,, groups.
Re"

Thus, these networks are NCS.

As an example illustrating the use of Theorems 7 and 8, consider the
network of Fig. 4 which includes the operations of the symmetry
group C,, for this case. A table of irreducible representations of C,, may
be found in Fig. 2. There are two transitive sets, namely, M, = {z, , 2,}
and M, = (&, z3, ¥s, ¥s}. By allowing the permutations of G to operate
only on state variables in M, , @ reduces to

G, = {E, ¢}
where

E = (1))

¢ = (14).

SYMMETRY GROUP C,y
SYMMETRY OPERATIONS
E=(1)(2)(3)(a)(5)(s)

———op  Cp=(14)(25)(26)
oy = (14)(23)(58)

o2= (25) (36)

Fig. 4—Network with C's, symmetry and symmetry operations.
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By allowing the permutations of G to operate only on state variables
in M, , G reduces to G, ~ @ (i.e., G; and G are isomorphic). Furthermore,
the number of state variables in M, is equal to the order of . Thus,
by Theorem 7, no symmetry constraints are placed on controllability
if the input is coupled to one of the variables in the set M, . However,
from Theorem 8, if the input is coupled either to x, or to z, , the network
has the NCS property. The above statements are verified by computing
the sum in equation (21) for each case.

Theorem 9: Let G be an axial point group having at least one irre-
ducible representation of dimension two. A nelwork possessing symmetry
group G is NCS.

Proof: Let D" (R) be an irreducible representation of G of dimension
two, and let ¢, be the number of times that D (R) appears in the
monomial representation D(R). Since the character x“ (R) of all
group operators, excluding ¥, that can possibly have an invariant
effect on any state variable is zero (see tables of irreducible representa-
tions in Ref. 12),

6 = 1 T xORR) = L xPEE) = 1201,
g "k g [

Hence, D (R) is contained in D(R). From the proof of the previous
theorem, {R!} = {(E, o,} or {E, C;} or {E, o, , C;, o)}. A table of
irreducible representations'® shows that D‘’(R) is equivalent to a

representation in which
D“l)(E) |:1 OjJ

D(l‘-)(a ) or D(.u) (02) [
eo-[1
Therefore, equation (21) is satisfied for # = 1 (or 7 = 2if 5] = —1),
and the network is NCS. The theorem is proved.

An example illustrating Theorem 9 has already been given in the
discussion following Theorem 6. The example concerned the network
displaying C's, symmetry shown in Fig. 3. Since all C,., , Dn, Dna, and D,y
groups of complexity Cj, or greater possess two-dimensional irreducible
representations, Theorem 9 shows that the general symmetric network
displaying axial point group symmetry is NCS.
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The single-input case, considered extensively here, assumes an added
significance in view of the following definition found in Ref. 14.

Definition 5: A k-input system is said to be strongly controllable if it
is controllable by each input separately while all others are zero; other-
wise it is weakly controllable.
From the discussion of the present section, it is observed that a sym-
metric network is generally only weakly controllable. Thus, several
inputs are required to control the state of a symmetric network in
general. The results of the present section can be used to determine the
number and placement of inputs to insure that the network is not NCS.
The previous results of this section may be applied to the multiple-
input case by means of the following.

Theorem 10: The k-input system of equation (28) with symmetry group
Gy 18 NCS if and only if a proper value of p exists such that for some
value of m,

2 s DV(RY:, =0, =71, ]

Ra®
where ¢ 1s an tndex denoling all nonzero couplings of the inputs to the
state variables in the k columns of B.

Proof: 1t follows from Theorem 6 and its Corollary 4 that if the above
conditions hold, the submatrix of a'B in (29) corresponding to A ! is
identieally zero. Thus, the network is noncontrollable due to symmetry
constraints. From Theorem 6, the above conditions are also necessary
for the NCS property.

The discussion just concluded shows that simple arithmetic computa-
tions involving the irreducible representations of the network symmetry
group can be used to detect noncontrollability which is due solely to
symmetry. For an input coupled to a given state variable, the NCS
property is determined completely by those group operations that leave
the given state variable unchanged. The interpretation of (21) is
obtained from (52), in which the generating matrix G’ is obtained by
analogy with the projection operation PY’. If the input is coupled to
the rth state variable, then, by Lemma 2, condition (21) is equivalent
to the statement that the projection of the input onto the invariant
subspace associated with the «th row of D' (R) is zero.

In the application of Theorem 6, if equation (21) is not satisfied,
the network may be controllable. The nonsatisfaction of equation (21)
amounts to a necessary condition for controllability of a symmetrie
network. The transformation a obtained using group theory then enables
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us to test controllability of several smaller subsystems [equation (29)]
rather than that of system (1).

V. OBSERVABILITY OF SYMMETRIC NETWORKS

The concept of observability relates to the degree to which the past
state of a system may be determined from knowledge of the system
outputs. The following definition may be found in Ref. 13.

Definition 6: The system (1) is said to be completely observable on an
interval (1, , t,) if any initial state r, at {, can be determined from knowl-
edge of the system output over (4, , 4,).

The system (1) is said to be fotally observable on an interval (t, , t,)
if it is completely observable on every subinterval of (¢, , {,).

For networks with sufficiently smooth time variations, observability
of the linear time-varying system

i = A(d)xr + BOu())

(38)
y(t) = C)x
may be characterized by the observability matrix "*
Qo = [SeS1 - - Sn—l] (39)

where
S = A(‘Sk—l + Sk—l y So = C'

and n is the order of the system.
The following theorem is a paraphrase of Theorem 5 of Ref. 13.

Theorem 11: For the system (38), assume that A({) and C({) and their
first n — 2 and n — 1 derivatives, respeclively, are continuous functions.
System (38) is totally observable on the interval (t,, t,) if and only if
Q, does not have rank less than n on any subinterval of (t, , t,).

The results of this section are completely analogous to those obtained
for controllability. Hence, only some theorems will be presented; their
proofs follow exactly from their counterparts in the previous sections.

Lemma 4: The system described in partitioned form by

i T

Mz, Lo 4.2,

(@) = [Cy O]{Z*}

1s unobservable (i.e., nol completely observable).

(40)
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Definition 7: A symmetric network is said to be NOS (possess the
NOS property) if it is nonobservable because of symmetry alone.

To examine the NOS property, we reduce A(f) to block-diagonal
form; for Z = afz, equation (38) becomes

7! i 7!
: K 0 l

% zt| = a Zt |+ a'Bu(t) (D)
. 0 .
1Z5,] L A 78,

y(t) = C(t)a| Zx |-

8
_Zlgg

Hence, if a submatrix of C(f)a corresponding to Z! is zero, these vari-
ables will not be observed in the output. In analogy to Section IV,
first consider the output in (38) to be a function of a single state variable,
z, . Thus, C(t) is [e,]’, and C(f)a in (39) is the rth row of a.

Theorem 12: A symmelric time-varying nelwork whose output s a
function of the rth state variable only is NOS if and only if there exists
a proper value of u and a value of = such that

> s DY(RD)* = 0. (42)

Corollaries 1-4 of Theorem 6 carry through directly for this case
with slight and obvious changes of wording (i.e., “NOS” replaces
“N(CS”, ete.), and they are not repeated here. Of course the other
results of Section IV follow for observability with slight modification

of the wording.

VI. APPEARANCE OF BASIS FUNCTIONS IN ®(t, 7)

It may happen that one or more basis functions of the normal form
differential equation do not appear in the expression for component
6.:(t, 7) of the state-transition matrix ®({, 7). In the case of fixed systems,
this condition corresponds to one in which certain modes are cancelled.



532 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

The present section investigates the use of symmetry in predicting
such cancellation of basis funetions in a symmetric network.

In Section II, it was shown that the monomial representation D(R)
of the group Gy commutes with ®(¢, 7) for a symmetric network. Hence,
&(¢, 7) is reduced to block-diagonal form by the same transformation

a which reduces D(R) and A(t), and we can write

®(t, 1) = ad(t, '1')0tT

) _
0
é1
=a 5 o, (43
0 &l
L i,
where ¢* is a ¢, X ¢, matrix which does not depend on =.! Hence,
¢fi(ty ™) = [a:Il y 1t va;ﬂ PR ;a;rcu y 1 :a;!.uca]
E: 1
rﬂ{u I
&1 0
" . a:;rl
X ki : (44)
- Qurcy
0 1
i
L&B1gcp_|
8
L 15

It is evident from (44) that basis functions associated with D“(R)

t In Ref. 2 it is shown that submatrices A,# of the A-matrix of (29) do not depend
on =. Hence, submatrices ¢,* given above are independent of .
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will appear in ¢,;(t, 7) if
i i ¢ i : .
Ku = [ﬂ‘fpll ) " oy @urey g T Qual g Ty Qumeu g TT T 5 Qury T, a“‘"""]

- X
anll

i
Xurcy

i
ap'rl

X s ©o| %0, (45)

i
au:rc,.

L 1,

i
anf,l

i
Ll e, ]

where K, is used to denote all terms corresponding to D’ (R) in (44).
From Lemma 1, only one of the ¢, terms a},, (or «.,,) can possibly be
nonzero, a = 1, -++ ¢, ;m =1, .-+ [ I, . Thus, using the results of
Section II and excluding a scale factor, we have

K, = @) Z [ sl DYRYLAT ) DU (R)..]  (46)

if 7 and j are in the same transitive set, or

Ly

K, = @)a 2 [ s DVRIEIL s; DY(R)..]  (46b)
if 7 and j are in different transitive sets.? In (46), ($)s. and (@4),. are
components of the matrix ¢* , and are removed from the r-summation
because they are independent of x. Thus, the following theorem has
been established.

Theorem 13: Basis functions corresponding to D (R) will not appear
n ¢,;(t, 7) as a resull of the symmetry if and only if

2 [2si DYR)LIL s} DV(R)..] = 0. (47)

+If ¢, > ¢, equation (46b) may apply even if 7 and j are in the same transitive
set. See Lemma 2.
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The following corollaries to the above theorem may be established;
some of the corollaries are similar to those following Theorem 6.

Corollary 1: All basis functions corresponding to D' (R) appear in
every ¢:;(t, 7) (if all the s} equal unity, g = 1).

Corollary 2: 1If there is just one group operation taking the ith stale
variable into the jth state variable, basis functions corresponding to D (R)
appear in :;(t, 7) if x"™ (R = 0, where x"“'(R) denoles the trace of
D(u) (R).
Proof: The hypothesis requires that only one group operator leave
the 7th state variable invariant.'® This operator must be the identity,
and D* (E),, = 1 for all values of u. Hence, equation (46a) becomes
(s* equals unity for the identity operation)

K, = @) 2 DPR).r = @)™ (RY). (48)
Thus, basis functions corresponding to D*'(R) appear in ¢.(t, ) if
x" (Ri) ## 0.

Corollary 3: If no group operation transforms the ith state variable into
the jth stale variable, the types of basts functions which appear in ¢.;(i, 7)
are those which are common to ¢.;(t, 7) and ¢;;{t, 7).

The proof of Corollary 3 is a straightforward application of Theorem 13.

Corollary 4: If the kth state variable is invariant under all the group
operalors, the only basis functions appearing in $.(t, ) are those which
correspond to D'V (R).

With regard to Section IV (Section V) the following statement can
be made about noncontrollability (nonobservability) due to symmetry.

Theorem 14: A symmelric time-variable linear network with a single
input coupled only to the rth state variable (output proportional only to
the rth state variable) is NCS (NOS) if there exists a proper value of p
such that basis functions corresponding to D™ (R) do not appear in
é.-(t, 7).

Proof: 1If the basis functions corresponding to D’ (R) do not appear
in ¢,,(¢, 7), Theorem 13 shows that

Zr‘, [; 8 D“”(Ri)f.][; sy D™(R))..] = 0. (49)

Since the squared magnitude of the bracketed term appears in the
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above equation, it is necessary that
2. s; DU(BYE, = 0. (50)
Re"

Under the conditions of the present theorem, the network is NCS (NOS)
by Theorem 6 (Theorem 12).

VII. CONCLUSION

We have presented a unified treatment of linear time-variable
networks displaying arbitrary geometrical symmetries by incorporating
group theory into the analysis scheme. Symmetric networks have their
elements arranged so that certain permutations of the network edges
result in a configuration identical with the original. The complete set
of such permutations constitutes a group G's , the symmetry group of the
network structure. A group (/y of monomial matrices may then be
determined, and it was shown that these matrices commute with the
A-matrix and the state transition matrix of the normal form equation.
The commutativity result establishes a basic connection between
group theory and the network analysis problem and allows group
theoretic methods to be employed in the study of networks with arbi-
trary symmetries. The group (7y may be a proper subgroup of G5 , since
(v contains those operations of (/g which do not permute edges in
the tree with those in the cotree.

Group representation theory makes it possible to obtain information
about properties of the network differential equations without writing
or solving them. For the case of a network with a single input coupled
to only one of the state variables, an extremely simple arithmetic
condition is derived which determines whether symmetry alone causes
the network to be noncontrollable. The condition involves only those
group operators which transform the state variable in question into
itself. It is equivalent to the algebraic statement that the projection
of the input vector onto a subspace associated with an irreducible
representation of the group be zero. The results allow a determination
by inspeetion of linear combinations of the original state variables
which result in noncontrollable variables. It was demonstrated that
a network with axial point group symmetry is always noncontrollable
if its symmetry group possesses an irreducible matrix representation
of dimension two. This result agrees with intuition in that the network
will be noncontrollable if the symmetry is high enough. Thus, networks
with axial point group symmetry are generally noncontrollable because
of symmetry alone. The case where the input is coupled to more than



536 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1972

one state variable and the multiple input case were also treated. Further-
more, dual results were stated for network observability.

By utilizing the symmetry, a transformation may be constructed
which transforms the A-matrix into block-diagonal form. The original
differential equation is thereby resolved into several differential equa-
tions of relatively low order. Hence, there results an appreciable economy
of effort in obtaining solutions for symmetrie networks.

APPENDIX A

This appendix provides some basic definitions and results from the
abstract theory of finite groups and the corresponding representation
theory. A more detailed treatment of concepts mentioned here may be
found in Refs. 10 and 15, 16.

Definition 8: A set of elements ¢ = {A,, Ay, A5, -+~ } is a group if

() for A, , A, e (/, A,A, ¢ G (closure)
(i) for A, , A, , A, e G, (4,A)4, = A,(4,A,) (associativity)
(i77) there exists F e (¢ such that A,E = EA, = A, (identity element)
(7v) there exists A,' ¢ (¢ such that A4'4, = A,A;Y = E (inverse
element).

If the number of distinet elements of the group is finite, the group is
said to be a finite group; the number of distinet elements in a finite
group is called its order.

Definition 9: Two groups (7 and (/ are said to be isomorphic if there
exists a one-to-one correspondence (denoted ~) between their elements
such that products correspond to produets, i.e., if A ~ A" and B ~ B,
then AB ~ A'B’.

Definition 10: If among the elements of a group (¢ there exists a
subset H of elements satisfying the definition of a group, then H is
said to be subgroup of the group (.

Consider a subgroup H of (7, where the order of H is /i while that
of (i is g. Now consider any element ., of (7 which is not contained in H,
and form the product ,H. That is, multiply every element of H on the
left by r, . Since r, is not in H, the resulting set of elements is different
from H (H contains the identity, 2, and hence x H contains r,). The
set of elements » H is called a left coset of (i with respect to the sub-
group H. A coset is not a subgroup since it does not contain the identity
(H does not contain r,'). If there are any elements of (x not contained
in H or x,H, choose one of these elements, r; say, and form the coset r,H.
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Continue in this manner until all elements of G' are exhausted. Thus,
a partition has been effected of the group G into left cosets with respect
to the subgroup H.

G=H,nH, 2,H, ---, z,_,H.

A similar partition could be effected using right cosets, defined anal-
ogously. The quantity I = g/h is an integer'® called the index of H in G.

Definition 11: 1If H is a subgroup of G and z ¢ G, then ™ 'Hz is called
a conjugate subgroup of H in (. If H coincides with all its conjugates
(ie., 2 'Hz = H,forall re @), then H is said to be an invariant subgroup.

Consider the set of n symbols a, , ., --- , a,. A rearrangement of
these same symbols into the order b, , b, , - - -, b, is called a permutation.
Here, the symbol a, is replaced by b, , a, by b, , ete. One way of indieating
this permutation is

[alaz R /
blbg et b"

so that each symbol on the upper line is replaced by the symbol appear-
ing below it. A more convenient notation is to write the permutation
as a set of eyeles. To do so, begin by choosing any symbol on the top
line, say g, writing it followed by the symbol r on the bottom line which
replaces it. Now find where r appears on the upper line, obtain the
symbol which replaces r and write that. This procedure is continued
until we arrive at the symbol which is replaced by g, the first symbol in
the cycle. This step completes a cycle. If any symbols remain unused,
a new cycle is written by choosing as the leading symbol any one of
those which did not appear in the first eycle. This procedure is continued
until all symbols are exhausted. The cycles are enclosed in parentheses.
Thus,

[123456

4 3 51 2 6

where 1 is replaced by 4, 4 is replaced by 1, ete. Cycles composed of
a single symbol, such as (6), need not be written. In examples of sym-
metric networks, the cycle notation may be used to make easy the
identification of matrices D(R) (Section II) by inspection.

Some important results in group representation theory are presented
next.

] = (14)(235)(6) = (14)(235),

Definition 12: A group of matrices D(-) is said to form a representation
of a group G = {E, A, --- , R, --- } if there exists a correspondence
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(denoted ~) between the matrices and the group elements such that
products correspond to products, i.e., if B, ~ D(R,) and R, ~ D(R,),
then (R,R,) ~ D(R.)D(R,) = D(R\R,).

An example of a representation is the so-called fotally symmetric repre-
sentation in which each group element is represented by the scalar
quantity unity.

Definition 13: A representation is said to be reducible if it can be
converted to block-diagonal form via a similarity transformation; i.e.,

D.\(R) 0}
0 D,(R)

is reducible. Otherwise, it is said to be irreducible. For a finite group,
there can be only a finite number of distinet irreducible representations,
and the irreducible representations may generally be specified to within
a similarity transformation. The irreducible representations of a finite
group satisfy the following important orthogonality relation.’

DR) = [

=

Z D“’(R)zp D”)(R)aqr - 8ii Oaa’ Bgs (51)

7 l;
where D% (R).; denotes the ag-element of irreducible representation
D™ (R), L, denotes the dimension of D' (R), g denotes the order of the
group, §,, is Kronecker’s delta, and asterisk denotes the complex
conjugate.

If a reducible representation D(R) is reduced to block-diagonal form,
the nonzero submatrices along the diagonal will be the irreducible
representations of the group.'” Some irreducible representations may
appear more than once (i.e., several nonzero blocks may be identical)
in D(R) while others may not appear at all. The number of times
that D* (R) appears in D(R) is denoted by ¢, and is given by

6 = lé = XV ®*x(B), (52)

where x(R) is the trace of D(R) and x*'(R) is the trace of D (R).

A very brief account is now given of so-called axial point groups.
Some important statements regarding networks with axial point group
symmetry may be found in Theorems 7, 8, and 9. For a more complete
treatment of these groups, see Ref. 17.

A point group is one whose symmetry operations leave fixed a point
at the center of symmetry. Some symmetry operations contained in
these groups are described in the following five definitions.
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Definition 14: The identity is the trivial operation which does not
transform the object at all. It is denoted by the letter E.

Definition 15: A rotation operation by 2w/n radians about an axis is
denoted by C, where 2r/n is the smallest angle for which the object
may be rotated invariantly about this axis. The axis is said to be an
n-fold rotation axis.

Definition 16: A reflection operation in a plane of symmetry is labelled
o. If the plane of symmetry is perpendicular to the principal rotation
axis of symmetry, it is labelled ¢, ; if it contains the principal axis,
it is labelled either o, or o, .

Definition 17: The rolation-reflection operation S, is a compound
operation consisting of a rotation by 2r/n radians about an axis followed
by a reflection in a plane perpendicular to the axis. Thus, S, = (..

Definition 18: The inversion, denoted by 7, is a reflection in the
center of symmetry.

The distinguishing characteristic of axial point groups is their single
n-fold axis of symmetry (n > 2), called the principal symmetry axis.
A diagram, called an equivalent point diagram, often used to visualize
the operations of an axial point group, is described below. The number
of points in the diagram is equal to the order of the group;'* the points
transform into one another under the group operations. In the equivalent
point diagram, a plus, 4+, and ecirele, O, denote points above and below
the plane of the paper, respectively. Reflection planes not in the plane
of the paper are indicated by dotted lines while rotation axes are
indicated by solid lines marked with one of the symbols 0, A, O, etc.
to indicate a two-fold, three-fold, four-fold axis, etc. Reflection in the
plane of the paper is indicated as a solid cirele in the point diagram.
In the equivalent point diagram, the principal symmetry axis is assumed
to be perpendicular to the plane of the paper so that reflection in that
plane is o, . See I'ig. 5 for equivalent point diagrams of all the axial
point groups mentioned below.

C, groups have one n-fold rotation axis. The group operations consist
of the rotations C7 of the object by (2rr)/n radians (r = 1,2, --- , n).
These groups are cyclic.

S, groups have one n-fold rotation-reflection axis.

C,. groups have a symmetry axis C, and n symmetry planes o, .

C.. groups have a symmetry axis €, and one symmetry plane ¢, perpen-
dicular to it.
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Fig. 5—Some axial point groups and their equivalent point diagrams,

D, groups have an n-fold rotation axis and n two-fold rotation axes
perpendicular to the principal axis. The angle between two adjacent
two-fold axes is w/n radians.

D,s groups contain all the symmetries of D, and in addition contain
n vertical symmetry planes o, which contain the principal axis and
bisect the angles between the two-fold axes.

D, groups contain all the symmetries of D, and in addition contain the
symmetry plane g, perpendicular to the principal axis. These symmetries
imply the existence of n symmetry planes ¢, containing both the principal
axis and a two-fold rotation axis.

APPENDIX B

For a given reducible representation D(R) of a group Gy , it is possible
to construct a unitary matrix « such that the transformed representa-
tion! a'D(R)« is in block-diagonal form. It is next shown how a is
constructed.

t The complex conjugate transpose of matrix « is denoted by at.
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Let D’ (R) be an irreducible representation contained in the reducible
representation D(R) of the group Gy .

Definition 19: A set of k vectors v{”, vi”, --- , v{” is said to form a
basis for an irreducible representation D*’(R) of dimension k if the
effect of all group operators on these vectors is to produce a vector
which is a linear combination of those already in the set. The set of

vectors is said to transform according to D"’ (R).

Definition 20: The vector v,"” is said to belong to (or transform accord-

ing to) the zth row of the irreducible representation D’ (R) if it satisfies
> DYR)L DR = 250l (53)
R

where gy is the order of Gy . The other vectors in the basis belong to

other rows of D’ (R) and are called partners of v{"’. They satisfy

P = > DOR)L. DENL. (54)

Let P be the operator which denotes the effect of operating on a
vector with group operation E. Form the operator

P = 3 DV(R)Px . (55)
P{" has the important property that its effect on any arbitrary vector
v is to produce the component vector (which may be zero) which belongs
to the kth row of D' (R)."” Hence, P is a projection operation.

The transformation « which places a reducible representation D(R)
in a block diagonal form may now be constructed. Let ¢, be the number
of times the irreducible representation D’ (R) of dimension I, appears
in D(R). Form the n X n generating matrix G*** by analogy with the
projection operator of equation (55), so that

G» = > D™(R)*, DRI, (56)

R

where I is the unit matrix. Some of the column vectors of G may be
zero and several may be identical; the number of linearly independent
vectors among the columns of G is ¢, ,'" and each of these ¢, vectors
belongs to the xth row of D’ (R). They are orthogonal and may be
normalized to unity. Following Kerns’ notation,' these ¢, column
vectors are labelled ;.1 , *** , @psa, *** , Gpse, , and are used as c,
column vectors of the matrix «. For every one of the vectors a,,, ,
I, — 1 partner vectors must be constructed. The partner vectors are de-
noted by a,,, wherey =1, ---7# — 1,7+ 1,--- ,l,anda=1, --- , ¢c,,
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and may be calculated as [using equation (54)]

Uppa = [; D®(R)}: DR)ayra - (7)

The index p runs over all distinct irreducible representations of the
symmetry group Gy . Thus, if a table of irreducible representations is
available, the matrix & may be computed relatively easily, and has the
form

a = [Qfm ) Tt Qe @211 5 " ) lges = (58)
D(R) D™(R)

where the columns of « are shown associated with the appropriate
irreducible representation in the above equation.
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