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Computer Modeling of Charge-Coupled

Device Characteristics

By G. F. AMELIO
(Manuseript received August 16, 1971)

Properties of various charge-coupled device (CCD) configurations are
nvestigated by means of a computer model. The model 7s based on a nu-
mertcal solution of the Poisson equation for a unit cell of the CC'D structure.
The surface potential and the tangential surface electric field are oblained
to an estimated accuracy of one percent and used to calculate lransfer
characteristics. On this basis various devices are compared as a funclion
of both geometrical and electrical parameters. The geometrical parameters
include oxide thickness, gap length, and electrode length. The electrical
parameters include such things as doping densily, fired interface charge,
and applied voltage. The influence of surface states 1s omiltled from the
treatment.

The principal resulls indicate that (i) for dimensions of practical
interest electrode lengths of the same order as the inlerelectrode spacings
are desirable, (i7) moderately thick orides enhance the tangential surface
electric fields and increase the effectiveness of the channel-stop diffusion,
(77) lightly doped p-substrates are more resistant to the formation of
electrostatic barriers in the gaps and yield faster devices because p-type
conductivity silicon has a higher minority carrier mobility, and (w) fized
charge at the Si-Si0, interface can have a significant influence on the
device characteristics.

It 7s concluded that proper choice of both geomelrical and electrical
paramelers is essential in obtaining optimum CCD performance; how-
ever, for such an optimized design, the transfer efficiency ts for all practical
purposes not limited by electrostalic considerations and is probably limited
only by surface states. Theorelical limits of transfer efficiency based on
these calculations are reported.

I. INTRODUCTION

With the invention' and initial investigation®® of charge-coupled

devices (CCDs), it became apparent that although conventional one-
705
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dimensional considerations can lead to qualitative and heuristic argu-
ments concerning the device operation, the phenomenon of charge
coupling laterally along a semiconductor surface is essentially two-
dimensional in nature and any quantitative understanding of the
effect must begin with this premise. The purpose, therefore, of the
present work is to use the solutions of the two-dimensional Poisson—
Boltzmann equation obtained within the bounds of certain reasonable
approximations to try to infer the basis of operation for the structures
reported in the literature as well as to study new structures and predict
their anticipated performance. Such inferences are obviously dependent
upon a large number of considerations. For purposes of tractability,
however, attention will be restricted to what is believed to be the key
attributes of the device. Central to our considerations, therefore, will
be the static surface potential and electric field profiles. These will be
obtained through numerical iteration of the two-dimensional equations.
In addition, the analysis is limited to the simple three-phase devices
as originally described. The question of charge motion is then treated
for the case of a sufficiently small charge density so that the fields are
not appreciably altered by its presence. The equations of motion are
then solved by an explicit quasi-static method. The usefulness and
validity of such an artifical approach to the dynamic behavior of the
device is discussed. '

II. THEORETICAL MODEL

2.1 General

In Fig. 1, one unit cell of a three-phase CCD is illustrated in cross
section (not to scale). For purposes of the model, the structure is as-
sumed infinitely long in the direction normal to the page. Each electrode
has a finite thickness £ and length [ and all are identical. They are spaced
from each other by a distance g and from the semiconductor surface
by the insulator thickness d. The interelectrode distance is taken as
w (= 1 + ¢) and the unit cell length as L (= 3w). Although not shown
in Fig. 1, in some calculations it will be assumed that the region between
adjacent electrodes is occupied by a dielectric as may well be the case
in an actual device manifestation. It is hypothesized that there exists
an immobile charge of density @,, in the insulator in a small region
adjacent to the insulator-silicon interface. The insulator is assumed
to be silicon dioxide. The silicon is postulated as uniformly acceptor
doped and sufficiently thick so that punch-through is not a considera-
tion.
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Fig. 1—Schematic cross section of a charge-coupled device unit cell showing the
parameters and boundary conditions used in computer analysis.

Transfer of mobile charge at the interface by such a three-phase
structure has been deseribed qualitatively in the literature.'™ Briefly,
electrons residing in an inversion layer are localized at the interface
under the most positive electrode. This charge packet is moved to an
adjacent area by increasing the potential of the neighboring electrode
and decreasing the voltage on the initial eleetrode. Three electrodes
per unit cell are required to insure directionality of charge transfer.
Under ideal circumstances, the charge packet should move quickly,
and in its entirety, from one area to the next when the proper voltages
are applied to the electrodes. Assuming that the possibly important
effects of trapping can be ignored, this charge motion is governed by
the transport equation which in turn depends on the surface potential
and electric field profiles. Qur chief concern in the model, then, is to
aceurately obtain these profiles for specified electrode potentials and
boundary conditions.

2.2 The Dimensionless Poisson Equation

The fundamental equation governing the electrostatic behavior in a
semiconductor is, of course, the Poisson-Boltzmann equation

Vip= £ = el (N, — Np + n — p) : semiconductor, (1)

m
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where N, is the ionized acceptor concentration, N, is the ionized
donor density, and n and p are the electron and hole densities respec-
tively. Similarly, in the oxide the appropriate equation is

Vie = —% 8(x — x,) : insulator, 2

where x, is a vector defining the interface, and in the vacuum
Vie = 0:vacuum. (3)

Equations (1) through (3) all possess the same form and, for purposes
of generality and computational convenience, can be simultaneously
recast into dimensionless form by use of new variables defined as

@
=
v,
)
X
o= —
To

where V, and 2, are dimensioned constants arbitrarily chosen and
usually assuming a value suggested by the problem parameters. The
basic P-B equation then becomes

2
o

X

2. P - _
V= Ve Ty, o). (5)
In like manner, the dimensionless electric field is given by
&€= —V.v (6)
and is related to the true electrie field by
E = LA 8. (7

Note that the solution » is unchanged if »(», @) is invariant to changes
in z,, V,, and p. Assuming v to be available, the dimensional results
can then be easily extracted by use of the scaling equations (4) and (7).
To facilitate deseription of the physical operation of the device, the
results in Section III are presented in dimensional form and the equa-
tions above can be easily applied to rescale to other dimensions or
densities of interest.

2.3 Approximations and Boundary Conditions

In practice it is perhaps probable that, with the statement of boundary
conditions, the problem can be solved by some numerical technique
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without approximation. In the present problem such an approach is
unnecessarily difficult and likely to be uneconomical as well.

In the normal operation of CCDs the potentials on all electrodes
are kept sufficiently positive at all times to insure that the surface is
maintained in a state of depletion (or inversion). Experimentally, it
has been determined that this leads to the more efficient charge transfer
because majority carriers cannot then reach the surface and be trapped
to subsequently recombine with minority carriers in a passing inversion
packet. In the analysis, this means that the depletion boundary never
terminates at the surface and hence it may be justifiable to treat the
majority earrier density in the P-B equation in a less than rigorous
way. This observation leads to a significant reduction in computational
labor. In the depleted (but not inverted) volume near the surface of
a device with a p-type substrate, n, p, and N, are much less than N,
and hence equation (1) reduces to a simple form of the Poisson equa-
tion. Conversely, deep in the bulk the hole density is large, although the
electron density is still very small and N, — p = 0. Consequently,
equation (1) reduces to Laplace’s equation if, as is commonly assumed,
N, is small. Within a few Debye lengths of the depletion boundary,
however, the hole density is rapidly changing from near zero to N,
and cannot be ignored. However, as stated above, in a CCD
the depletion boundary does not come close to the surface in normal
operation and hence the precise manner in which the potential changes
in the depletion boundary region is relatively uninteresting. Thus we
assume that the hole density p is zero up to the depletion boundary
and is equal to N, beyond. This step function treatment of the majority
carrier density is the essence of the “depletion edge’ approximation
and is expected to lead to accurate estimates of the true surface po-
tential.

This method of treating the majority carrier density is the essential
approximation of this work and with its statement the boundary
conditions can now be specified:

(7) At a distance “far above” the device surface, the potential is

uniform and equal to zero.

(77) Each electrode is at a specified uniform potential (V,, V,, or V3).

(i71) Deep within the bulk the potential is zero. The potential is
never allowed to go negative in the semiconductor.

(iv) The potential is translationally periodie; i.e., ¢(0, 2) = (L, 2)
where L is the unit cell length and z is the direction normal to
the surface.
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(v) At the vacuum-dielectric boundary and at the dielectrie-
semiconductor interface, the tangential component of the
electric field and the normal component of the displacement
field are conserved.

The numerical formulation of the problem and the relevant error
considerations are treated in the Appendix.

III. RESULTS

3.1 Static Surface Potential and Electric Field Profiles

The surface potential, and consequently the electric field, throughout
one bit of a CCD is a function of the semiconductor and oxide pa-
rameters, the geometrical configuration of the electrodes, and, of
course, the impressed voltages. In this section the influence of each of
these variables on the static surface potential and electric field is
illustrated by several examples. For convenience these are presented
in terms of specific dimensions as opposed to normalized coordinates.
It is to be understood, however, that these results can be scaled to
other dimensions by means of the equations of the previous section.

3.1.1 Geomeirical Influences

Variation of the electrode length, the interelectrode spacing, and
the oxide thickness has a significant effect on the surface potential
profile and the relationship between these parameters must be con-
sidered carefully in predicting CCD behavior. The effect of modifying
the electrode length is considered first. In Figs. 2a and b the surface
potential and electric field are presented for electrode lengths of 3, 6,
and 12 um. For the other variables an oxide thickness of 3000 ﬁ, a gap
length of 3 um, a doping density of 5 X 10" em™’, and a positive oxide
charge at the interface of 10" em™” are assumed. At the instant of time
in question, the electrode potentials are V, = 0, V, = 4V, and V; =
16 V and it is assumed no minority earriers are present (the alternative
case is considered separately in the next section). In this figure it is
clear that the smaller electrode-length-to-gap-length ratio yields a
larger tangential electric field under the center of the second electrode.
A similar conelusion applies to the electric field under the first electrode.
Elsewhere, the fields are very much alike. From the point of view of
charge transfer, the tangential electric field under the second electrode is
of particular interest. From Fig. 2b the minimum values of this field
are about 40 V/em, 500 V/em, and 2000 V/em for the 12-ym, 6-pm,
and 3-um electrode geometries respectively. For electrodes less than
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Fig. 2—Surface potential (a) and surface electric field (b) for three charge-coupled
devices which differ in the electrode size but have the same gap length of 3 pm.

3 pm, the minimum field slowly continues to increase to about 10*
V/em; however, such electrode-length-to-gap-length ratios are not
practical in terms of charge storage and efficient usage of silicon area.
Moreover, for 2000 V/em the region of nonlinear mobility is beginning
and larger fields are of diminishing benefit.

Some effects of increasing the gaps can be inferred from the results
of Fig. 2 and the scaling equations of the previous section without
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additional computation. From equation (5), it follows from invariance
of r(v, @) that as the dimensions are increased the voltage required to
produce similar surface potential profiles increases quadratically. This
will lead to similar performance since the surface electric field increases
linearly if it is assumed that the mobility remains constant and the
carrier drift velocity increases in proportion to the tangential field.
Thus, direct scaling of the structures to larger dimensions rapidly
results in inordinately large voltages. If the voltage is not increased,
charge transfer may still occur but proceeds more slowly due to the
decreasing fields and the increasing size of the unit cell. In addition,
the surface potential in the large gap region becomes more dependent
on the local charge density with the electrode voltages imparting a
lesser influence. Thus, as will become clear in the next section, the
control of such things as interface charge becomes more critical. For
the case of constant voltages and constant unit cell length, the effect
on the surface potential as the gaps are increased is shown in Fig. 3.
Note the presence of an electrostatic barrier when the gap equals or
exceeds 4 um.

In a similar manner, it is expected that the electric fields will be
altered by changing the oxide thickness. Using the same parameter
values as in Fig. 2 for the structure with 3-um electrodes, the surface
electric field is shown in Fig. 4 for oxide thicknesses of 1500 A, 3000 A.
and 5000 A. For the 1500 A oxide, the electric field dips to about 10
V/em under the second electrode but peaks to almost 10" at the edge
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Fig. 3—The surface potential for charge-coupled devices with the same unit
cell length but varying gaps and electrode sizes.
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g. 4—Surface electric field for three charge-coupled devices which differ only
in Ihe oxide thickness.

of the third electrode. For the thicker oxides, the fields are more uniform
with a minimum field of about 2 X 10" V/em and a maximum of about
3 X 10" V/em. For even thicker oxides, the tangential field begins to
fall for a fixed set of gate voltages due to the rapidly decreasing surface
potential. The better oxide thickness for this particular structure is
approximately 3000 A (or 0.1 of the electrode length) because it yields
the greatest oxide capacitance per unit area (and hence charge handling
capability) without sacrificing the magnitude of the electric field
parallel to the surface. The above results imply that the moderately
thick oxide enhances the ability of adjacent electrodes to couple effec-
tively. In this context, two electrodes are said to be coupled when the
tangential electric field at the surface is positive in the region between
their centers. The larger the minimum field in this region, the more
strongly the electrodes are said to be coupled.

The geometrical influences as presented in Figs. 2 and 4 indicate
that in the range of practical interest (g = 1 to 10 um), a preferred
structure should possess an electrode-length-to-gap-length ratio of
about unity and an oxide-thickness-to-electrode-length ratio of about
0.1, assuming all parameters are scaled appropriately. Furthermore,
the smaller electrode lengths generally imply larger tangential fields,
although the gains are probably marginal below 3 um. These conclusions
are in general consistent with intuitive notions about the effects of
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capacitive fringing on which charge coupling is based. In an MOS
capacitor, however, the magnitude of the fringing depends not only
on the geometry but also on the charge density in the silicon and at
the interface.

3.1.2 Impurity Charge Density Influences

In addition to the geometry of the device, the surface potential in a
CCD is a function of the semiconductor impurity doping density and
the (usually positive) ionic charge density at the interface. Ignoring
for a moment the interface charge, the influence on the surface potential
profile by modifying the substrate doping may be easily inferred from
the scaling of equation (5). Thus, if the doping density is halved, the
applied voltage may be also halved and a similar surface potential
profile results in which the amplitude is reduced by a factor of two.
Alternatively, the same voltages may be maintained but the structure
enlarged by a factor of v2. In the former case the electric field also
diminishes by a factor of two but the decrease in performance may be
acceptable if the voltage is limited in the expected application. In
the latter case the fields are undiminished but the increased bit length
will proportionally reduce the charge transfer performance. Again,
this may be acceptable if very fine features prove to be a difficulty.
Unfortunately, in practice, materials more lightly doped than 5 X 10™
em™® are frequently nonuniform. Such nonuniformities could con-
ceivably eliminate the anticipated benefits and result in a nonfunctioning
device. Using more heavily doped material appears unprofitable unless
one is capable of fabricating features smaller than 3 um.

The influence of a charge density Q.. at the interface is not so easily
inferred. In Fig. 5a is plotted the surface potential for a CCD with
12-um electrodes, 3-um gaps, and differing @,, . The other parameters
are the same as in Tig. 2. Note that for Q,, = 0 there is a barrier-to-
electron transfer in the gap between the second and third electrodes.
As the magnitude of positive interface charge is increased, the barrier
diminishes, eventually disappearing entirely. Thus, in an n-channel
device, the normally occurring positive interface charge can be of
substantial benefit. This is illustrated somewhat more dramatically
in Fig. 5b. The parameters are as before except that the solid curve
corresponds to a device with @,, = 2 X 10" em ® and impressed
voltages of 0, 4, and 16 volts. The dashed curve corresponds to a device
with @,, = 0 and impressed voltages of 2.78, 6.78, and 18.78 volts.
(The flatband voltage V5 for 2 X 10" em™ is 2.78 volts.) Quite clearly,
the lack of Q.. cannot be compensated for by adjusting the level of the
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Fig. 5—Surface potential profiles for o 12-ym electrode charge-coupled device for
differing values of interface charge and electrode voltage. (1) Electrode voltages
held constant (V, = 0, V, = 4, V3 = 16) but Q,, varied. Note the “barrier’’ for
@ss = 0. (b) The effect of interface charge on the surface potential. Solid line shows
@s(x) for Qo = 2 X 10" em~2, Dashed curve shows ,(z) for @, = 0 and electrode
voltages altered to compensate for flatband shift. Note the formation of large
barriers in interelectrode gap. Dot-dash curve shows change of solid curve when
second electrode is reduced to zero volts. Note the formation of a “pocket’” in the
gap hetween electrodes.

applied voltages without encountering large barriers to electron trans-
port. Since the surface potential under the electrodes ean be controlled
by the applied voltage, the effect of this solid eurve can be obtained
by placing charge in the gaps only. However, there does not appear
to be any advantage to this approach.
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The presence of fixed charge at the interface can also cause some
difficulties. The dot-dash curve in Fig. 5b illustrates the surface po-
tential for a surface charge Q., of 2 X 10" em™ and impressed voltages
of 0, 0, and 16 volts. Note that in the gap between the first and second
electrode there is a “pocket” in which electrons may be temporarily
stored. Thus, for example, an electron briefly trapped in a surface
state at the interface under the second electrode may, when emitted,
proceed to the right or left. Those proceeding to the left are acquired
by a trailing charge packet resulting in loss of transfer efficiency.
This pocket may be eliminated by increasing the voltage on the first
and second electrodes. The condition at which there is no pocket or
barrier occurs when the gate voltage equals the surface potential.
This can be easily calculated from the familiar equation relating the
gate voltage to the surface potential

Ve — Ves = ¢ + a‘Pi (8)

where

\IQE.QNA
a="—a

(', = oxide capacitance.

If Vo = ¢, it follows that when

2
Ve = Vz = Vs = (h) (Q)
a

the surface potential is “level’” and no barrier or pocket exists in the
gap between the first and second electrode. Conversely, difficulties
with small pockets may be avoided by allowing V. to return to its
minimum potential slowly enough so that the charge has the maximum
opportunity to proceed to the right. For larger pockets such an approach
may not be adequate. Both pockets and barriers become larger for
greater interelectrode spacing.

In addition to adjusting the doping, the electrode length, and the
oxide thickness, the strength of coupling may be influenced by in-
cluding a dielectric in the interelectrode spacing. If the surface potential
and electric field for the 12-um electrode, 3-um gap configuration
discussed in Fig. 5 is recalculated for the case when @,, is set equal to
zero, the solid eurves of Figs. 6a and b result. Adding insulating material
in the gaps with the same dielectric constant as SiO, but changing
nothing else yields the dotted curves. Although the barrier has not



CCD MODEL 717

14 Vy=ov
Va= 4V
12} 2
V3 =16V

£ =12um

<ox IN GAPS g=3um

SURFACE POTENTIAL, ¢g(V)
@
T

d = 30004

(a)

0 2Ll d L L I ITIIIS) | P AT AT I TSI Irr.) L
DISTANCE, X
108
104+
€qx IN GAPS
107 R
\
102 - \‘
rd
,’
w0’ 4

|
|
]
|
T
|
|
I
1
|
|

-103-

SURFACE ELECTRIC FIELD, Eg (\V/cm)
I+
1
o

—10%-

(b)

-10%

Fig. 6—Surface potential (a) and surface electric field (b) for two charge-coupled
devices differing only in the presence of the dielectric in the region between electrodes.

vanished, it has definitely decreased and the fields indicate a more
favorable coupling posture. In these calculations the electrode thickness
is assumed to be 2000 A and the observed results are believed attrib-
utable to more effective coupling of the electrode edges to the silicon
surface. A material in the gaps with a higher dielectric constant would
be even more effective in reducing or perhaps eliminating the barrier.

Before proceeding to the discussion of minority carrier transport
in these structures, the surface potential in the direction normal to
the channel is treated so that the effects of the channel-stop diffusion
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may be considered. The appropriate model geometry is shown in Fig. 7a.
The p* channel-stop diffusion is hypothesized 2 yum deep with an abrupt
junction. Assuming a substrate doping of 5 X 10" em™*, a channel-stop
diffusion of 10" em™, and a gate voltage of 25 V, the surface potential
and electric field shown in Fig. 7b and 7¢ result for oxide thicknesses
of 2000 A and 3000 A. Note that near the channel-stop diffusion the
maximum electric field approaches the breakdown field for silicon in
both cases. Avalanche breakdown at the channel edges gives rise to
unwanted currents thereby degrading device performance. In seeking
methods to reduce the peak electric field it was observed that field
profiles are relatively insensitive to parameter changes, with the ex-
ception of substrate doping and, of course, the applied voltage. In-
creasing the oxide thickness helps to the extent of reducing the surface
potential for a given gate voltage and, therefore, has only a small effect
on the maximum field as illustrated in Fig. 7c. The reduced potential,
however, keeps the surface in the channel-stop region well below
threshold thereby preventing large quantities of spurious dark current
from coupling with the active region. Changing the doping of the
channel-stop diffusion has only a very small effect on the maximum
field, since by its very nature this diffusion must effectively hold the
surface potential to small values in this region. It is concluded, then,
that avalanching can most easily be avoided by limiting the voltage
operation to values less than about 25 V, although an increase in the
substrate doping density from 5 X 10" em™ to larger values is also a
possibility.

3.2 Charge Transport

When the surface potential and electric field profiles in a CCD are
like those shown, for example, in Fig. 2, any electrons (minority carriers)
under the second electrode will be rapidly transferred to the region
under the third electrode. In this section we discuss the time behavior
of this charge transfer and attempt to infer its dependence on surface
potential, surface electric field, and minority carrier charge density.

3.2.1 Analytic Transport Equation

Before launching into a presentation of the computer predictions
for the time dependence of charge transfer, it is useful to investigate
the nature of the transport phenomenon by analytically studying the
relevant equations. From such an analysis we can glean basic functional
forms which shall prove useful in the interpretation of the computer
results.
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In one dimension, the equation for current flow in a semiconductor
is well known to be
. E@)
i= #(E)(PE 7 or (10)
where u(E) is the mobility, E is the surface electric field, and p is the
minority carrier charge density. It is convenient to divide the surface
electric field into two contributions

E =E, +E,

where E, is the electric field arising from the device geometry as de-
scribed earlier and E, is the field contribution resulting from variations
in the charge density of minority carriers. This latter contribution is
easy to derive for the case of a large MIS capacitor. From equation
(8), it follows almost immediately that the inversion charge density
is given by

p=C(V —9)— V2Ne ¢! (11)
where V = Vi — Vpy . Differentiating (11) with respect to z results in

9 _ _,( qu-) 3.
ar ¢, + 20, / oz

_(Cn + Cd)En

Il

or

1 dp

E, =~ FcC o

(12)
in which C, is the depletion capacitance.

The thermal contribution in equation (10) may also be treated in
terms of an effective field if it is divided by the charge density.

_kP13p _ KT 9(n p)

Ba = g pdx ¢ oz

(13)
In many instances the “thermal” field is small, initially, in comparison
to E, and E, but can be important in determining the asymptotic
behavior of the charge decay.

It is now possible to identify three physical cases as suggested by
the form of equation (10). These occur when E, is small and the electric
field E is dominated by E, , when E, dominates and E, is small, and
when E, and E, are comparable. In each case E\, is assumed to be
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small initially compared to the dominant field. In any of these cases
it is possible to eliminate the current dependence by use of the continuity
equation

d , 0j _
ot + ar 0. (14)
The analytic transport equation is then
4 d kT
i —E{u(ﬁ)[pﬁ’a - (—C ks . ) ax]}- (15)

In the case when the tangential fields resulting from geometrical
factors are small (£, + E., > E.), equation (15) reduces to a form of
the diffusion equation

2= 2 {2+ )] 2} 1o

If the temperature-dependent term is negligible and x and C, are
assumed constant, the variables easily separate* and the normalized
time-dependent part, which we shall designate €'({), has the form

€(l) = (17

¢ + t,
where 7, is a constant of integration determined by the boundary
conditions.* Note that in this case ¢ (f) goes to zero very slowly in time
thereby implying that the transfer efficiency will suffer at high fre-
quencies. However, when p becomes sufficiently small, the temperature-
dependent term ecan no longer be ignored. In the limit when the thermal
term dominates, equation (16) assumes the standard Fick’'s equation
form. Following R. J. Strain and N. L. Schryer,” the gradient of the
charge density may be assumed to be zero under the left edge of the
electrode where the charge is initially located (charge transfers to the
right). The solution is then an infinite series of the form

o= e[ o e[S 0] 0

where D is the diffusion coefficient (= u kT/q), #' is a new spatial
variable with its origin at the left edge of the electrode, and z! is a
constant determined by the boundary condition at 2’ = L. When the
carriers reach »* = L, they move off at a constant velocity v, deter-

* In this and the ensuing cases it is assumed that separable boundary conditions
are applicable.
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mined by the electric field £, present at this edge (and in the inter-
electrode gap region) through the relation v, = wf, . Thus the ap-
propriate boundary condition is

ja =1) _ _palnp

Ty 7 =V .
p(m = L) a-’v z'=1L
For nominal values of v, , #/ is much less than w and may be assumed
negligible corresponding to the case v, = «. The coefficients a, are

determined by the initial condition for the charge density distribution.
If the distribution is such that it is rich in harmonics, the time decay
of the charge density for small ¢ is a large summation of exponentials
not unlike an error function. After a sufficiently long time, however,
the leading term will dominate and the decay will be purely exponential
with the charge density distribution assuming a cosine form.

In the other extreme, when p is large, changes in C; may not be
ignorable because in this case the depletion region is almost totally
collapsed. Hence, for a very short time interval near zero, e (t) will
deviate from (17) but the intermediate and long-time behavior are
unaffected. Thus, in the case when E, + E,, >> E, , the charge density
under an electrode decays in approximately a hyperbolic fashion
initially and exponentially asymptotically.

In the ease when the geometrically induced fields are large compared
to the charge induced fields (E, > E, + E.), equation (15) reduces
to the field-aided form

d _ _ 9
3= oz (weE.]. (19)
As above, the variables separate and the normalized time-dependent
part has the form
() = exp {—b(é‘—%)t} (20)

where b is a constant of integration and it has been assumed that u
and E, are constant. Note that in this case the form of the charge
decay is similar to the asymptotic form of the previous case. It is clear,
however, that (20) will approach zero more rapidly than (18) when

E, > (1)

wq
if we make the reasonable assumption that the constant b is comparable
to (r/2)% If the electrode spacing w is taken to be 10 um, inequality

(21) becomes
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E, > 26 V/em. (22)

This condition can be easily achieved by designing the CCD structure
according to the geometrical considerations outlined earlier.

Finally, in the case when FE, and E, are comparable, equation (15)
does not simplify and the variables are not separable. Thus we can
say nothing quantitative. Qualitatively, however, it is expected that
€(f) in this case would be an admixture of the above results with an
approximate hyperbolie-exponential form.

3.2.2 Computer Analysis of Charge Transport

A numerical approach to the question of charge transport in a CCD
may proceed in one of two ways. Perhaps the most obvious is to return
to equation (15) and solve it numerically using a standard technique
for dealing with partial differential equations (such as the Crank-
Nicholson scheme) subjeet to some reasonable boundary conditions.
The required electric field profile is either given some approximate
mathematical form or taken digitally from the results of Section 3.1.
Alternatively, one may return to the current equation (10) and recast
it in the form of an effective carrier velocity for each point along the
surface. Then proceeding sequentially in time, the trajectory of each
carrier is computed for a small time increment At during which the
velocity is assumed constant. After Af, a new velocity is computed
for each carrier resulting in a new trajectory and so on. At time zero,
all carriers are under electrode #2 and the time-dependent transfer
inefficiency €(t) is taken to be the number of carriers not under electrode
#3 divided by the total number of earriers as a function of time. The
transfer inefficiency e(f) is analogous to the time-dependent solution
¢'(t) discussed in the previous section but without the spatial dependence
separated out.

Clearly, the latter approach, although eonceptually more straight-
forward, is economical only for a relatively small number of minority
carriers. This, however, is just the ease we wish to examine. In order
to treat the case of large carrier densities, it is necessary to include
these carriers explicitly in the solution of the Poisson equation. Whereas
this in itself is not difficult, it is necessary to recompute the solution
at every time step. It is possible that the cost of such an analysis would
not be prohibitively large; nonetheless, it is essential to ask what
additional knowledge is obtained. Reflection on the discussion in the
previous paragraph reveals that the only significant addition is the
very short time behavior when electrostatic repulsive forces between
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carriers are large. The transfer inefficiency function then falls quickly
under a combined form of the exponential and hyperbolic behavior
discussed earlier. This mode of behavior, however, lasts for a time very
short compared to the asymptotic behavior, which has the principle
influence in determining how much charge is left behind in a practical
device application.

Based on these considerations much ean be learned by investigating
only small charge densities. This is done by means of the effective
velocity approach and using nearest and next nearest neighbors to
estimate local charge density. Thus, from (10), the distance Az traveled
by an electron in time At is

Az = p(E)(E(w) - 5”—;5 9 g;”) At (23)

For the field-dependent mobility the empirical relation

) ~ Hals 24
w(E) ch&lnp, 24)
]
or

1

Ko

is used where v, is the scattering limited veloeity of the electrons in
silicon and g, is the low field mobility. Using time increments of 0.002 ns
and charge densities of a few times 10° em™* the charge motion is
computed for the first nanosecond for each of the structures described
by the results of Fig. 2. The time-dependent transfer inefficiency for
each of these is plotted in Fig. 8. Note that in each trace the inefficiency
initially stays at unity for 0.15 to 0.30 ns, during which time the first
carriers move across the interelectrode gap. This is followed by a rapid
fall, corresponding to the hyperbolic behavior indicated earlier, after
which the decay lapses into an exponential. For each curve an ex-
ponential is matched to the appropriate data. The resulting time
constants are

0.08 ns: 3-um electrodes
7 = 0.5 ns: 6-um electrodes (25)
3.6 ns:12-um electrodes.

Note that if these time constants are used in equation (20) to calculate
the electric field modified by the undetermined constant, bE, , quantities
are obtained which are consistent with the average fields in the transfer
region as inferred from Fig. 2b if b =~ 1.
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Fig. 8—Time-dependent transfer inefficiency for the same charge-coupled devices
as in Fig. 2.

10* V/em: 3-um electrodes
bE, =~ 3 X 10" V/em: 6-um electrodes
7 X 10* V/em:12-um electrodes.

Thus, for times large compared to the characteristic time constant,
equation (20) with b = 1 is useful in estimating transfer inefficiency
if the average field is available. Based on such an exponential form,
the transfer efficiency n(= 1 — ¢) after N unit cells can be expressed

7(t) = (1 — )™ (26)
where
e(t) = e ",
If e is assumed small compared to unity, equation (26) becomes
p(t) ~ e~ 1 — 3Ne (27)

where the first approximation is valid if 3Ne® << 1 and the second is
valid if 3Ne << 1. The appropriate time ¢ used depends on the frequency
of operation and ¢, depends on the average electric field as described
above. It is clear from (27) and previous discussion that an extremely
high transfer efficiency is obtainable in principle in a properly designed
charge-coupled device.

IV. CONCLUSIONS

The choice of geometrical and electric factors in the construction
of a charge-coupled device influence the charge transfer performance
of such structures. In particular, the following points are evident.
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(i) For dimensions of practical interest (1-10 um) electrode lengths
comparable to interelectrode spacings are desirable.

(1) Generally, moderately thick oxides (~3000 10\) enhance the
tangential surface electric fields as well as increase the efficacy of the
channel-stop diffusion without a serious loss in charge handling capa-
bility.

(i77) The presence of a dielectric in the interelectrode gaps enhances
the coupling strength of adjacent electrodes. A slightly conductive
material (a so-called resistive sea) which allows charge to move between
electrodes over the oxide surface in the gap region can be made to
accomplish the same objective.

(iv) Uniform, lightly doped substrates are generally more resistant
to the formation of electrostatic barriers in the gaps than more heavily
doped material.

(v) A p-type conductivity silicon substrate is preferable to n-type
material because of the increased mobility and the favorable influence
of the normally occurring positive surface charge, although at the
anticipated performance levels suitable p-channel devices can be made
if these restrictions are taken into consideration.

(vi) There is an optimum surface charge density depending on the
oxide thickness and substrate doping density.

(vi7) For a CCD which is nearly optimized with respect to the
considerations discussed in this paper, the transfer efficiency is for all
practical purposes not limited by electrostatic considerations.

Remaining to be investigated are the proposed two (or four) phase
structures which call for either two levels of metallization or the addition
of surface charge near the interface.” Furthermore, the effect of surface
states on transfer efficiency has been completely ignored and for an
appropriately designed CCD will likely represent the limiting factor.
With the exposition of the basic electrostatic considerations deseribed
in the present work, these important questions can now be investigated
on a solid physical foundation and future CCDs can be designed con-
fidently.

APPENDIX

Numerical Formulation

Except for cases of simple geometry, the Poisson equation cannot
be solved analytically and the use of numerical methods is necessary.
As a result of the great interest in elliptic equations and in the Poisson
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equation in particular, a number of satisfactory numerieal techniques
exist for finding the solution within a bounded region @ with perimeter
I' on which the solution is specifiable.

The region @ and the boundary conditions on I' usually suggest
themselves by considerations of symmetry. These were discussed
earlier for the problem of a three-phase charge-coupled device and are
llustrated in Fig. 1. The geometry of the region is seen to be a simple
rectangle characterized by linear interface boundaries. In such cases,
an explicit, finite difference method employing successive overrelaxation
(SOR) is often satisfactory.” While more elegant methods such as the
implicit or finite element techniques are equally valid, adequate aceuracy
and economy is possible with the simple SOR approach. With more
exotic geometrical configurations or boundary conditions, the alternative
methods may be more advantageous.

The region @ is segmented into p X ¢ rectangular cells and each
node is labelled (7, j). Each rectangular cell is not necessarily the same
size and the length of the sides are given as h; and k; . In this notation
the potential at any mesh point is estimated by

qo'- = ﬂ[z’{hi—lﬂo.‘-l.j + h.‘P.‘—l.i + k.‘—lﬁﬂi.iﬂ + ]\'110.,,'—1}
i hihi (h: + hizy) ki~ (k; + ki) (28)
Pi.i
+ %, ;
where
o hhioakikio
M= ¥ Ek

p:.; is the charge density, and only nearest neighbors have been used
in estimating the derivatives (the so-called five point approximation).
To compute the solution, the potential is successively ealeulated using
(28) for each node in the field. After completing a step through the
field, the process is continued repeatedly until by some means (discussed
below) it is determined that the result is within a certain specified
precision of the solution and the iteration process is ended. The solution
is often approached more rapidly if, instead of (28) above, the potential
at each node point is estimated by a linear combination of (28) with
the previous estimate. Thus, after n iterations of the region Q, the
potential at any node is given by

et = (1 — a)el7" + api (29)
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where « is the relaxation factor and determines the rate of convergence.
For any given problem there exists an a for which the rate of con-
vergence is maximized provided the sequence in which the nodes are
caleulated possesses a consistent ordering designated “Property A
If @ is less than unity, the convergence is “‘underrelaxed”; and if « is
greater than unity, the convergence is “gverrelaxed.” In practice the
maximum rate of stable convergence is usually obtained when a > 1
and hence the name successive-overrelaxation.

A detailed description of consistent orderings of the nodes possessing
Property A is available in the literature. In the present work the common
“checkerboard” array has been used. The nodes of region  are divided
into two groups, A and B, and each iteration is composed of a step
through the A group followed by a step through the B group. All the
nodes in Q are categorized into A or B in a manner exactly analogous
to the familiar black and white squares of the chessboard. Note that
when computing the potential at a node point in group A, only the
potentials at node points of group B are used. All consistently ordered
sequences possess this property.

When the region @ is rectangular and the calculation sequence is
consistently ordered, it is possible to analytically determine the optimum
relaxation factor. It is given by the expression

2 2
_ofi ™ /Z_L:t.i)
Qopt -’(1 Pq ) (30)

When @ is not rectangular or circular, the optimum relaxation factor
cannot be computed in closed form and methods exist for estimating
it numerically.® As a result of the unusual boundary condition for the
depletion edge, the region in the present problem is not truly rectangular.
Nonetheless, the relaxation factor calculated on the basis of (30) is
almost identical to the value estimated numerically, so long as the
bottom of the rectangle is within a few mesh points of the lowest part
of the depletion edge. This is fortuitous because, in general, the depletion
boundary changes with every problem and recomputation of ap. each
time would be prohibitive.

Finally, it is possible to estimate the error of the numerical solution.
Actually, there are two kinds of error to consider. One arises from the
quantization of the space and the replacement of the differential equation
by a finite difference equation. The other kind of error arises from the
termination of the calculation after a finite number of iterations. The
former is of order u?, where 4* is the dimensionless equivalent of M*
defined in equation (28) and obtained by scaling the area of © to unity.
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The quantization error is typically not a problem and can usually be
made acceptably small without using a prohibitively large number
of mesh sites. It is to be noted that, whereas the quantization error in
the potential is O(*), the error in the electric field is O(y).

Truncation error can also be estimated. After many iterations (the
exact number depending on the specific problem) the ratio of the
errors ¢" from one iteration to the next approaches a constant A at
any given mesh point

n+l |

| e
le" |

~ . (31)

The constant X is in turn related to the “residuals’ d"

dn+l
d“

2
N

(32)

where a residual is defined

1 %<
dn — [* v(n) _ (ﬂ—]) }
bi & )

and v;"} is the normalized potentlal [equation (4)]. Thus, in the iteration
reglon where the convergence is monotonic the mean error after n
iterations is given as

(rl]

(") = V" (33)

In the CCD problem discussed in the text, the region Q is divided
into approximately 50 X 90 cells. In the direction parallel to the semi-
conductor surface, the nodes are £qually spaced. In the direction normal
to surface, the spacing is 500 A in the vieinity of the interface but
increases linearly deep into the bulk and quadratically into the vacuum.
In this way the voltage change from one node to the next is always
about the same. Such an approach yields the greatest economy with
no real loss in accuracy. Based on (33), a mean error in the potential
of less than 107* is typically obtained after less than 10° iterations.
The constant A defined in (31) generally is established after about
20-30 iterations. In any practical problem this represents a lower
limit to the required number of iterations. Once A is known, the number
of additional iterations needed to reduce the error to an acceptable
value can be determined.
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