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Capacitances of a Shielded Balanced-Pair
Transmission Line

By C. M. MILLER
(Manusecript received October 4, 1971)

The eract formulae (calculable to any accuracy) for mutual and con-
ductor-to-ground capacitance (C, and C,) for a shielded balanced pair
are erpressed as infinile determinants. Convergence of these determinants
is rapid ercept as the conductors of the pair approach each other or the
shield. Approximate expressions developed by Philips Research, though
not extremely accurate, are simple and in closed form thereby allowing
capacitance surfaces to be plotted. These surfaces show qualitatively the
variation of capacttance with dimensions.

I. INTRODUCTION

The shielded balanced pair consists of two straight eylindrical con-
ductors immersed in a homogeneous dielectric, surrounded by an
electrically thick tubular shield. Figure 1 is a cross section of the shielded-
pair structure,

Dimensional restrictions are imposed which serve to keep the three
conductors of the struecture from touching. These restrictions are
S > dand D > S + d. In terms of the traditional dimensional ratios
wand V, uw < 0.5 and V < 1/(1 4+ 2u). Thus, the variables w and V
are contained in the shaded area in Fig. 2.

The exact capacitance expression for a pair in free space (unshielded)
is derived in most texts.

C, = me/cosh™ (0.5/u) 1)

where ¢ = (c’u,)”" = 8.8541853 X 107** farads/meter.

As the spacing between the conductors approaches zero, u — 0.5
and C,, — . The effect of placing a shield around the pair at a large
relative distance cannot alter the limiting values of C, as u© — 0.5.
Also, intuitively, as the inner conductors of the shielded pair structure
approach the outer conductor, V— 1/(1 + 2u) and ¢, — «. The
capacitance values at the limiting dimensions appear in Table I.
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MUTUAL CAPACITANCE: Cm=Cy2+Cq/2
DIMENSIONAL RATIOS : u=d/2S;V=5/D

Fig. 1—The shielded-pair transmission line.

A

Fig. 2—Dimensional restrictions for the shielded pair. Typical values of  and V
for existing shielded balanced-pair cables and equivalent u and V for multipair
cables generally lie within the dashed square.

II. EXACT CAPACITANCE EXPRESSIONS

J. W. Craggs and C. J. Tranter' derived the exact expression for
the mutual capacitance of the shielded balanced pair. The method
assumed a Fourier surface charge density on the conductors, the
coefficients being determined from the constancy of the potential
over the surfaces. The factor 3,; is expressed in an infinite determinant
set equal to zero.

Cu _ 101-014735‘ uF/mile @

€
oe. (1 577) - o
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and ¢ equals (n — 1)/2 or (m — 1)/2, whichever is greater. B represents
binomial coefficients and C represents combinatorial coefficients.

TaBLE [—LivmiTING CAPACITANCE VALUES

Dimensional Condition Capacitance Value
D= =, V=0 C,, = 0.044765¢,/cosh™! (0.5/u) uF /mile
d — 8, u — 0.5 C,— =
S4+d—=D, V-o1/014 2u) ¢, > o

This solution lends itself well to computer caleulation and for small
values of w and V, a 2 X 2 determinant will give accurate answers.
As u and V increase, more terms must be included until at u = 0.45,
a 10 X 10 determinant is required to give five-digit accuracy. The
convergence of this determinant is very slow as the conductors approach
each other or the shield (v and V approach the limiting values).

The exact expression for C, , capacitance to ground of one conductor,
was derived by the author using the method of Craggs and Tranter.
This derivation yields another infinite determinant equal to zero.

With polar coordinates (r, 6) let the surface charge density on r = r, be

1(6) = Qi (au + Z.:; a, cos ne)-

T

An even function is selected since the conductors will be equipotential
circles. The potential due to this charge density is then
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YV = —2Qa, logr + Q X (;:—) %—?ﬁ—g for r=n (4)
n=1 1
or

*V:—ooanlogwrez("‘) LS for rzr. ()

Since three conductors, each with different polar origins, are involved,
several coordinate transformations are required. For polar coordinates
(p, ) with origin at r = ¢, 8 = 0, and ¢ > r, and p < ¢ — 7, use equa-
tion (5). Using

(l—x)n S B, B, = oEm =D

ford m! (n — 1)!
and
5P B:)=_-> = eosnw( E)
log(l-l—. 10E;w+c,> _E " o)
then
"V = —2Qa, loge + 2Qa, Y 5"“’;1—”” (—-‘5)
n=1
o0 T nn __P m
+Q§n() Bm(c)cosmw. (6)

Forc < rand p < r, — ¢ and p < ¢ use equation (4). Using

(I+2)" =2 "Caa”, "Cn=
m=10

n!
m!(n — m)!’

then

V= —2mlogn + @ 2 %) T e (?) esme. @

n=1 n m={

For ¢ > r, and p > ¢ + r, use equation (5). Using previously stated
identities,

"V = —2Qa, log p + 2Qa, E C08 nw ( —E)

+0Q E ( ) b i "B,,,(—f)m cos (m + n)w. 8

n m=0

t This result is stated in Ref. 1.
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For polar coordinates (p, w) with origin at r = ¢, § = m and ¢ > 7,
and p > ¢ + r, use equation (5).

V = —2Qa, log p + 2Qa, 3. “"—Sn”ﬂ (f)

+0Q ; (T')' % ,g "B,,,(‘i;)m cos (m + n)w. ©)

For the shielded balanced pair structure let the inner and outer
conductors be numbered as shown in Fig. 3.

Fig. 3—Polar coordinates for the three conductors of the shielded-pair structure.

Assuming a charge distribution on eonduetor 1

1(8) = Q (1 + Z a, cos nB)

and on conductor 2

far —6) =—[1+ Za cos n(r — 3)]

2rr
_Q [ SO }
= 2y, 1+ 2 (—=1)"a, cosné |,
and on conductor 3
_Q [ : ]
f(6) = Sere by + ): b, cos né

Writing the equation for the potential on conductor 3 with both inner
conductors at +V, potential and conductor 3 at zero potential yields

0:V31+V32+V331
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where V., is the potential on (a) due to a charge distribution on (b).
From (8) with p = r; and 2¢ separation between conductors

KQ‘E= —2logr3+zfj(—"—) s

T3 n

n=1

+ 3 (L) @ s "Bm(_%)m cos (m + n)w.

n=1 V3 3

From (9) with p = 73,

—%; —2logrs + 2 E(

+ Yo S o) o tn 4o

n=1
From (4) or (5) withr =7, = 13,

% = —2b, logr + Z n CORTH,
=1

Substituting & = m + n yields the total potential on conductor 3,

— —2(2 + by) logrs + 2 Z( ) SRR 1+ (= 1))

+ E (ﬁ) - > "Bk_n(f_;) (=1L + (=D cos ke

k=n
- b
COS Nw
+ 2 - .
n=1

TFrom this relationship we select the charge distribution on conductor 3
so as to eliminate the angle (w) dependence.

_Q (_ S )
f(e) = G 2+ ; by, cos 2nd (10)
Using
"Bi_, = 0 for k<n
and
] 0 0 k
Z:l ; an‘“f(n) k) = ’; ; an—nf(nr k)y

then
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_ C_ 2n 2n r_l k&k .
b, = 4(’_3) I:l +n ; (c) k B2n—k] (11)

Equation (11) gives a functional relationship between the Fourier
coefficients for the assumed charge distributions. For conductor 2
the total potential Vo = Vo + Vi + Vas . From (6) with p = r, and
2¢ separation between conduectors,

Vo = —2Q log 2¢ + 2Q > L8 e (—Il)

n 2¢
oy “"( ) > B (—ﬂ)m cos mw.
n=1 n =C m=0 " 26
From (4) or (5) withr = r, ,

Voo = —2Q logr, + i * (—1)" cos nw.

From (7) and (10) with p = r,and r, = 7, ,

Vg = +4Q logr, + Q Z (Ts) ' Zﬂ 2"C,,,(:%)m cos M.

n=1 -fn m=0

The total potential on conductor 2 is then,

F () s n(—i—

Va €08 Nw r\" = a, n
Q= —2 log 7cr.+2; (—52) — Z;(—l) Cos Nw
o0 bf_bm ¢ 2m 2m o T1 n
+4logr, + 222 C‘,‘;:— COS Nw.
n=0

m=1 Qm 1"3
Forn =0,
Va (rs)* 2 a, (rj)"‘ 2. bam (c )2"'
Yo _ o Va/ Em (D1 =
Q 2 log 2cr, + ; m \2¢ + E 2m \ry (12)
Using *"C, = 0 for n > 2m,
ZU Eﬂ "C.f(m, n) = Zﬂ 22 “Cof(m, n).

(g e (S £y w

n
T 2m " bom
(c_) u,,.z.,. C"( ) om’
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To obtain the final solution, substitute (11) into (12) and (13) to
obtain a system of n + 1 homogeneous equations in n + 1 unknowns.
The determinant of this system is then equal to zero.

Vn -aCT'l 2(2k) 1 ] a—m(_)m B
s B k- 5 (e

s s ) BT ()

where
() - (=o) - G
an =\T3) T\ =&/ \m+c/
1 m+n 0 ) - 2(2q)
te=m (=) -2 S )
q 3
and
g = m/2 or n/2, whichever is greater.
Using

and transferring to the traditional dimensional ratios, » = r/2¢ and
V = ¢/ry , vields n + 1 equations in the variable (—1)" a./m so that

C, 0.089532

=z = - I (D uF/mile, (14)
log 4’1& H [1 _|_ VZ**'] - Ao
where
(43} oo 2
—A4, -5 (24 —% (2u)
2&1 ,
(r)"") ]- + Au(?ﬂ) A,_,l(‘zu) s an p— 0
%2 Qu)'  An(2w)' 1+ An(20)

The convergence characteristies of this solution are similar to the
(.. solution with the added effect of the infinite product as ¥V — L.
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With these two exact solutions and the computer programs to ealculate
them, other closed-form approximate solutions can be evaluated.

III. APPROXIMATE CAPACITANCE EXPRESSIONS

Several approximate expressions (Refs. 2 through 6) using various
methods and useful over limited ranges of  and V have been derived.

The Philips’ approximate equations for C, and C, have several
useful characteristics.

C. 0.17906 pF

"¢  4cosh'p mile’ (15)
where
_ 1 1=7Q - 4
2u 1 4+ V(1 — 4
C, _ 007906 uF )
e 2cosh™ ¢ mile’
where

11— T7'1 — 49

These equations are simple, easy to ecompute, and in closed form.
Additionally, they give the values of capacitance shown in Table I
at the dimensional limits. Tables II and IIT show that the overall
accuracy of these relationships in the range of u and V corresponding
to practical cables is not high.

IV. NUMERICAL TECHNIQUES

Several numerical techniques have been deseribed to calculate
eapacitance by mapping equipotential lines. A grid is usually assumed
to set values of r and y and known boundary values of potential are
used. The value V(r, y) is taken as the average of the four neighboring
values, and when this is true for all points, Laplace’s Equation, 8°V /dz*
+ a°V/ay® = 0, has been solved. This relaxation method is used in a
computer program’ to calculate capacitance for a system of shielded
circular conductors.

It is difficult when using a relaxation method to determine the
accuracy of the final solution (due to the finite grid and computer
errors). The program’ was run with the proper parameters to calculate
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TasLE II—PERCENT ERROR IN PHiLIPS C,, EQUaTION
(CPHILIPS - CEX:\CT)* IOO/CEX.-\CT

u

14 005 01 015 02 0.25 0.3 0.35 0.4 045 0.5

0 0 0 0 0
0.05 | 0.001 0174 0267 0
0.1 | 0.003 0700 1.07 0
0.15 | 0.007 1.59 2.47 0
0.2 |0.013 2.89 4,52 0
0.25 | 0.019 4.64 7.39 0
0.3 |0.026 6.94 11.3 0
0.35 | 0.035 993 16.7. 0
0.4 | 0.44 13.9 24.4 0
0.45 | 0.054 19.4 36.5 0
0.5 | 0.064 28.1 61.7 0
0.55 | 0.075 51.0
0.6 | 0.087
0.65 | 0.099
0.7 (0114
0.75 | 0.132
0.8 [ 0.157
0.85 | 0.200
09 |2.49

Note: Typical values of u and V for shielded-pair and multipair cables generally
lie within the enclosed area.

(.. and €, of a shielded pair with u = V between 0.05 and 0.45 in 0.05
increments. The finest grid (33 X 33 in each quadrant) was used and
Table IV shows the error in the relaxation solution. The conductor
diameter for = V = 0.05 did not include enough of the grid to com-
pute. Unlike the approximate equations, the errors in the relaxation
method, for the most part, are not a strong function of u and V. For
most values of w and V (u = V > 0.2) the relaxation method is more
accurate than the Philips equations.

V. CAPACITANCE SURFACES

The complexity of the exact formulae for calculating the capacitance
of a shielded balanced pair structure causes difficulty in visualizing
how capacitance is affected by changes in dimensions. The Philip’s
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TapLE IV—PERCENT ERROR USING A RELAXATION METHOD
(Cr , uF /mile)

Percent

u v Cexacr CrELAX Error
0.05 0.05 0.01498054 0 —100.
0.1 0.1 0.01969278 0.01985524 0.825
0.15 0.15 0.02442631 0.02445576 0.121
0.2 0.2 0.02987059 0.02984397 —0.089
0.25 0.25 0.03669688 0.03665908 —0.103
0.3 0.3 0.04594544 0.04589750 —0.104
0.4 0.4 0.08314346 0.08311094 —0.039
0.45 0.45 0.13697544 0.13692383 —0.038

(Cg , uF/mile)
Percent

u 14 Cexacr CrELAX Error
0.05 0.05 0.01178299 0 —100.
0.1 0.1 0.01624484 0.01363114 —16.1
0.15 0.15 0.02090778 0.02052972 —1.81
0.2 0.2 0.02632710 0.02623542 —0.348
0.25 0.25 0.03308222 0.03298556 —0.292
0.3 0.3 0.04210923 0.04203434 —0.178
0.35 0.35 0.05529502 0.05520572 —0.162
0.4 0.4 0.07744843 0.07732726 —0.156
0.45 0.45 0.12737824 0.12717648 —0.158

equations provide simple functions which can be plotted to give a
qualitative picture of a capacitance surface. Computer plotting of a
function of two variables® has been described and will be used to display
capacitance surfaces along with scales, coordinate axes and a ‘‘cube
of reference.”

Figures 5, 6, and 7 are plots of capacitance surfaces as functions
of d/D and S/D. The dimensional restrictions with these ratios, map
into the region shown in Fig. 4.

These plots in the interval 0.05 = d/D = 0.3 and 0.35 = S/D = 0.65
can be interpreted as capacitance surfaces normalized to some constant
outer conductor diameter (say D = 1). Figure 5 shows C,,/€ to be a
monotonically increasing function of d/D and a monotonically de-
creasing function of S/D with a maximum slope as the inner conductors
approach each other. Figure 6 shows C,/e is an increasing function of
both d/D and S/D with a maximum slope as the inner conductors
approach the shield. C, /¢, plotted in Fig. 7, is seen to contain the
sum of previous effects with approximately equal weighting.
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_—S+d=D

d/D

0 0.5 1.0
S/D

Fig. 4—Dimensional limits as functions of d/D and S/D. The shaded area defines
the plotting interval in Figs. 5, 6, and 7.

0.65

Fig. 5—C2/€ as a function of d/D and S/D.
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Fig. 6—C,/e as a function of d/D and S/D.
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ot VAT = esp 0.17906¢ (17)
4C,,
e 17906
¢+ VF 1 = exp LI (19)

using cosh™ a = log, (a + VvVa* — 1) fora = 1.
Solving (17) and (18) iteratively for p and g yields two simultaneous
iterative equations in two unknowns,

11— V1 — 4)

Tl V(1 — @) (19)
11— V(1 — 44
= —. - . )
1= 5, 4V- (20)
|
|
|
|
|
|
I
|
|
|
l 1
|
|
————————— 065
[
- 0.55
S/D
0.45
t t t t 0.35
0.05 0.10 0.15 0.20 0.25 0.30
d/D

Fig. 7—C. /€ as a function of d/D and S/D.
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Solving (19) for V* and substituting in (20) yields,

1 — 2up

2 _ _
|4 1 — 4u” + 2up — Su'p

(21

and

(1 — 2up)’(l — 4u’)*
(1 — 4" + 2up — Su'p)”

Sup(l — 2up)
1 — 4 + 2up — Su'p =1- (22)
Equation (22) can now be iteratively solved for u and substituted
in (21) to get V. The variables u and V are again inconvenient from
the standpoint of intuitive visualization. In the manufacture of a
shielded balanced-pair cable, D and S are difficult to control; however,
d ean be accurately controlled. Even if d varies down the length of
the cable this can be related to die wear or to elongation, which can

be modeled. Normalizing S and D with respect to d yields,

|~

S

d - 2u (23)
and

D 1

= v (24)

Tigures 8 and 9 are surfaces of S/d and D/d as functions of C,/e
and C,/e in the following regions.

002 =0C,/e =007
0.015 = C,/e = 0.035.

No attempt is made to define the bounding values for C,/e and
C,/¢; however, the above represents one of the largest rectangular
regions the author could find by trial and error. These surfaces have
the expected general shape (S/d — « as C,./e — C,/2¢and D/d — =
as C,/e — 0).
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S/d

0oz 003 004 005 006 007

Fig. 8—8/d as a function of C,, /e and C,/e.

VII. CONCLUSIONS

The exact expressions for €', and C, must be used if a high degree
of aceuracy is desired. As the conductors approach each other or the
shield, the convergence of the exact solutions is slower and the accuracy
of approximate expressions is less. For large values of w and V, the
relaxation method yields a more accurate result than the Philips ap-
proximate equations; however, the error is difficult to ascertain. Ca-
pacitance surfaces using the Philips relationships show a great deal
about the manner in which capacitance varies with dimensions and
enables inverse plots of dimensions versus capacitance.
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0.035

, , : | 0.015
0.02 0.03 0.04 0.05 0.06 o.o7

Cm

€

Fig. 9—D/d as a function of C,,/e and Cy/e.
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