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Stochastic Stability of Delta Modulation

By ALLEN GERSHO
(Manuseript received December 3, 1971)

The discrete-lime model of delta modulation is considered for a stalionary
random inpul process with a rational spectral density, and an aufo-
covariance that goes to zero as the lag approaches infinity. For leaky
integration, the joint distribulion of input and decoded approrimetion
processes 1s shown to approach a unique stationary distribution from any
inilial condition. Under the stationary distribution, the decoded process
may take on all values in a bounded interval that is independent of the
input process. For the often-studied ideal integration model of delta modula-
lion, it vs shown that the successive distributions at even parity time instants
converge to a limiting stationary distribution, while at odd parity time
instanis the distributions converge fo a different limiting distribution.
Under these limiting distributions, the decoded process is assigned a
positive probability for each level of a (discrete) laltice of amplitudes. The
mean-absolute approximation error and mean-absolute amplitude of the
decoded process are shown lo be finite under the limiting distributions. For
both ideal and leaky integration cases, an explicit upper bound on mean-
absolute approximation error is given, which is independent of the spectral
density of the input process.

I. INTRODUCTION

In spite of the great simplicity of delta modulation as an analog-to-
digital encoding technique, it has not yet succumbed to an adequate
mathematical analysis. Although realistic inputs such as speech are
extremely difficult to characterize, considerable insight could be ob-
tained from a thorough analysis for the case of a stationary random
input process with a preseribed spectral density. Yet no such results
have been obtained because of the mathematical complexity of the
nonlinear feedback loop. In fact, the presence of a feedback loop raises
the possibility that instability in some sense could arise. The possibility
that the decoded signal could ‘“run away” or become unbounded,
failing to track the original signal, has never been theoretically excluded.
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Although experience with delta modulation shows that such an extreme
form of instability never arises, it has never been shown analytically
that the mean-square or mean-absolute quantizing noise has a finite
upper bound. Another possibility which has never been theoretically
excluded is erratic operation, where the statistical average of the
quantizing noise magnitude continues to vary with time. In other
words, although the input process is stationary, the decoded approxima-
tion process would be nonstationary with a time-varying probability
distribution even after low-pass filtering. If this were the case, the
decoded process would not be replicating the original process very
effectively.

Recently, D. Slepian® has developed an exact computational approach
for finding the joint probability distribution of the original and encoded
processes. These results make it possible to accurately compute such
curves as the mean-square quantizing noise versus step size for particular
spectral densities of the input process. Slepian’s results are based on
the initial assumption that, for a stationary input process with rational
spectral density, the joint probability distribution will approach a
unique stationary distribution from any starting condition. (For delta
modulation with ideal integration, the stationary distribution actually
refers to half the sum of the distributions at two successive time instants
to account for the well-known parity change between even and odd
amplitude levels.) On a practical level, this stationarity assumption
seems to be entirely reasonable; yet it has never been theoretically
justified.

Other authors have also assumed stationarity. In particular, for ideal
integration H. van de Weg® assumed implicitly that the decoded process
had two different stationary distributions for the even and odd parity
time instants. D. J. Goodman® assumed a random phase initial condition
so that only one stationary distribution, half the sum of the even and
odd parity distributions, need be considered. In both cases the assump-
tion is implicitly made that for any initial condition the delta modulation
process will approach a steady-state mode of operation with a separate
stationary distribution for even and odd time instants.

As a final argument to point out the need for an analysis of stochastic
stability properties of delta modulation, consider the fact that most
heuristic and semianalytical approximate considerations of delta
modulation are based on the model of an ideal integrator in the feedback
path, while most physical realizations involve a leaky integrator. There
is a basic qualitative difference between these two cases, even for ex-
tremely wide-band integrators. This is because ideal integration gives
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equal weight to a current input sample and an arbitrarily remote past
input sample, while leaky integration forgets remote past samples.
Hence, it is not clear that the ideal integration model is meaningful,
even if it is known that the leaky integration system is well behaved.
To justify the validity of using an ideal integration model, a rigorous
demonstration of the stability of this model is needed.

This paper demonstrates the stochastic stability of delta modulation
for both ideal and leaky integration by giving a mathematical proof
that the joint distribution of the input and decoded processes approaches
a unique stationary distribution from an arbitrary starting point and
by deriving an explicit, finite upper bound on the mean-absolute quan-
tizing noise. The input process is assumed to be stationary and con-
tinuously distributed, with finite variance, a rational spectral density,
and an autocovariance that approaches zero as the lag goes to infinity.
A shaping filter with white noise input is assumed as the generating
mechanism of the input process.

II. PROBLEM FORMULATION AND SUMMARY OF RESULTS

For most purposes the following discrete-time model of delta modula-
tion is an acceptable description of the actual continuous-time opera-
tion.* Let w, denote the sampled analog values of the dnput process at
successive time instants ¢ = 0, 1, 2, .-+ . The time scale is normalized
for convenience without loss of generality. The delta modulator shown
in Fig. 1 generates a binary-valued process b, according to

be = sgn (ux — ) (1)

where sgn y = +1if y =2 0 and —1if ¥y < 0, and =, is the decoded
process which approximates wu, . The decoded process z, is given re-
cursively by

Tyer = 2 + Asgn (uy — ) ®)]
Uk N — by
+
- _A_
T
INTEGRATOR

Fig. 1—Delta modulator.
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for the ideal integration case, and by
Tyyy = axe + Asgn (wp — 24) (3)

for the leaky integration case with a simple RC integrator, where A > 0
is the step size and 3 < a < 1. (In practice, « is very close to one because
the integrator time constant is much longer than the sampling period.)
The quantizing notse,

€ = Uy — Ty,

is the error at time k due to the analog-to-digital-to-analog processing
of the delta modulation system.

Assume the input process u, is stationary, continuously distributed
with finite variance, and has autocovariance approaching zero as the
time lag goes to infinity. For convenience, assume also that the prob-
ability density of u, is everywhere positive so that, as in the Gaussian
case, there is a positive probability of w, lying in any open interval.
Note that u, is not assumed to have zero mean value.

A summary of the results obtained in this paper follows. Let P,
denote the joint distribution of the input and decoded processes u, and
x, at time k.

2.1 Ideal Integration

(7) For any initial condition of the form z, = mA + 6 with m an
integer and | 8| < A/2, the two sequences of distributions {F.} and
{F,..} separately converge to unique stationary distributions G,
and G, , respectively. One distribution assigns positive probability for
the process z» — 6 to even integer multiples of A, the other distribution
to odd integer multiples, depending on the even-odd parity of the
initial integer m.

(77) With these stationary distributions the mean-absolute quantizing
noise, averaged over two successive time instants, is bounded according
to

%[EI-E&_HH""EU'HI_WHHéEi“-‘|+A/2+2|3|- 4

2.2 Leaky Integration

(?) For any initial value of z,, the distributions {F.} converge to
the unique stationary distribution @, under which z, may take on all
values in the range

A
|2 | < T— 6))

l—a
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(77) Under this stationary distribution, the mean-absolute quantizing
noise is bounded according to:

Elo,—w|=E|u|+ A/ 2a (6)

Note the qualitative difference between the leaky and ideal integration
cases. In the leaky case, z, is distributed over a finite interval; in the
ideal case, x, is discretely distributed on a lattice.

III. MARKOVIAN MODELING

Since the input proeess w, is stationary with finite variance and
rational spectrum, then @, = u, — u (where u is the mean value of w,)
can be modeled® as the response of a stable discrete-time shaping filter
to a zero mean, finite variance “white noise’ process w;, (with w, inde-
pendent of w,_; for ¢ = 1, 2, 3, --- ). More precisely, a white process
w; and a stable rational shaping filter H(z) can always be specified in
such a way that the response #, of the filter to the excitation w, will
be a stationary random process with spectral density identical to that
of %, . If w; is also chosen to be continuously distributed with a positive
density, then i, will also satisfy this property. Thus, all the assumptions
made in Section IT about the process w, are possessed by the process
@ + w. It is therefore reasonable to study the effect of the delta modula-
tion system for the input 4, + u, whose structure or generating mecha-
nism is known. For the remainder of this paper, no distinction will be
made between i, and 1, .

Using this model and the assumption that the autocovariance of u,
goes to zero as the lag approaches infinity, Appendix A shows that
u, can be imbedded in a vector Markov process, d, , with

d. = (dkl ’ dkz, Tty dkn)‘
and

u, = diy + p (7)

where u denotes the de value of the input process and n is the number
of poles in the shaping filter. The vector d, characterizes the state of
the filter at time % and is generated by the recursion

dk'tl = AdL + b‘wk (8)

where A is an n X n matrix with eigenvalues within the unit circle,
and b is a fixed vector. The process d, is Markovian, since the condi-
tional distribution of d,., given all past states d,, d,_,, - - - , depends
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only on the given value of d, . Appendix B shows that for any initial
state d, , the distribution of d, approaches a unique stationary distri-
bution. Equations (2), (7), and (8) for the ideal integrator case, or
egs. (3), (7), and (8) for the leaky integrator case, jointly characterize
the evolution in time of a Markovian process whose state s; at time k
is given by the n 4+ 1 component vector

sp = (e, U, dia, dag, - y Qi)'

Then, given the value of s, , the distribution of s,., is completely
determined. Henceforth, a distribution F, , deseribing the joint distribu-
tion of the n 4+ 1 components of the vector s, , will be regarded as a set
function which assigns a probability Fi(4) to the region A of the n + 1
dimensional space of possible values of the state vector s, . The prob-
ability transition function® characterizing the Markov process is defined
as

p(s, A) = P{sy.. e A | s, = s}

which is independent of k. By averaging this conditional probability
over a distribution F, assigned to s, , the unconditioned distribution
F... of s,,, is obtained:

Fun(d) = [ pls, AFdS) = Erp(s, 4). ©)

Thus, F,,, is related to F, by a linear mapping T', so that in operator

notation
Fk+l = TF& . (10)

Note that T plays the same role as the probability transition matrix
in Markov chains. The process has a stationary distribution G, if G = TG,
so that @ is self-reproducing. If any state vector has distribution G, all
subsequent state vectors will have this distribution. The existence of
a stationary distribution is a necessary but not sufficient condition
for the convergence of the distributions Fy,, to a limiting distribution.

The Markovian model will be used in Sections V and VI to obtain
the convergence properties of the distributions {F.}. But first, it is
necessary to obtain a bound on the time and ensemble average of the
quantizing noise.

IV. BOUNDING THE TIME-AVERAGED MEAN-ABSOLUTE QUANTIZING NOISE

Suppose that at the initial time instant k = 1, the system has an
arbitrary initial state s, . Appendix B shows that for any initial state
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d, of the shaping filter, the process d,, and hence u,, converge in
distribution and E | u, | converges to ¢, the mean-absolute value under
the stationary distribution of the process u, .

Squaring both sides of eq. (3) gives

al, = o’ — 204 | we — 2 | + 208w, sgn (ue — ) + A
< a2l — 20A |ue — 2 | + 204 | u | + A
Taking the expected value of both sides yields
Ex?,, < Ex® — 2aAFE | e | + 2aAE | u: | + A°

and iterating backwards gives

k
B, <2+ 2A Y (E|u | —E|e |) + A%.
i=1

Since the left side is nonnegative, it follows that

k k
%EEWJgW%M+%ZEMJ+M% (1)
i-1

i=1

Hence, using the fact that £ | u, | — ¢,

k
]imﬂupl% SSE|e:| =c¢+ A/2a, (12)
k—o0 i=1

which shows that the long-term time average of the mean-absolute
quantizing error is bounded. Since the preceding derivation holds for
a = 1, it applies for both leaky and ideal integration, setting & = 1
for ideal integration.

For leaky integration, the decoded process is, in fact, bounded
deterministically. Integrating eq. (3) backwards yields

k
Tp+1 = Cl’kl'l + A E‘Ik_‘bi (13)
i=1
so that
|2 | S o [ |+ 2= 1 — ) (14)
Lk+1 = ! 1 — .
Hence,
limsup |2, | = 4 (15)
k—vo0 1 —

Thus, the decoded process is bounded with probability one in the case
of leaky integration.
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V. EXISTENCE OF A STATIONARY DISTRIBUTION

A sequence of random vectors and the corresponding sequence of
distributions are said to be stochastically bounded if, for any probability e,
however small, there is a sufficiently large distance R such that each
random vector of the sequence has probability less than e of having
length greater than R. Hence, the successive vectors cannot have a
positive probability of moving out toward infinity.

For a sequence of distributions {F,}, define the associated sequence
of averaged distribution {G.} by

Gi(4) = 1 2 Fi(A). (16)

Thus, if I is a randomly selected time instant from the first k integers
each having equal probability, then G(4) is the probability that the
random vector s; lies in a region A, where s; has distribution F,.
If the sequence {F,} is stochastically bounded, then the averaged
distributions {G,} are also stochastically bounded; however, the converse
is not always true.

To show that the Markov process s, defined in Section III has a
stationary distribution G, the following theorem, proved in Appendix C,
may be used.

Theorem: A Markov process has a stationary distribution if

() for any initial state s, , the averaged distributions G are sto-
chastically bounded, and

(4i) for any region A, let D be the set of points s at which the transi-
tion probability function p(s, 4) is discontinuous and let N; be
the set of all points whose distance from D is less than §; then
there is a function C(8) independent of s with C(§) - 0asé —0
and for all s,

p(s, No) = C(d). an

Condition (7) excludes the possibility that successive state vectors
can move out toward infinity. Condition (42) is concerned with the
region of state space where an arbitrarily small perturbation of a given
state vector can cause a substantial change in the induced distribution
of the state vector at the next time instant. This region is contained
within the set N; for each § > 0. The eondition requires that this region
be suitably unimportant.

To show that the delta modulation process satisfies condition (7),



DELTA MODULATION 829

observe that
E|le,| S E|ui—z: |+ E|u|

and since E | u; | is bounded, eq. (11) shows that for some constant K,
k

%ZEMJ<K. (18)
i=1

Now Chebyshev’s inequality,
MP {|z,| > M} = E|z|,
applied to eq. (18) yields

k
%ZHMJ>M§KW

for every M > 0, which shows that the averaged distributions of the
decoded process z, are stochastically bounded. But from Appendix B,
the d, process is stochastically bounded. Hence, the averaged distribu-
tions of d, are also stochastically bounded. Thus, the marginal distribu-
tions of the joint distributions @, are stochastically bounded so that
@, is itself a stochastically bounded sequence, and condition (z) holds
for the ideal integration case. For the leaky integration case, condition (z)
is satisfied since eq. (15) shows that the & components of the vectors s,
are uniformly bounded with probability one, so that the above argument
shows that the joint distributions (, are stochastically bounded.

To verify condition (#1), note from eqs. (2) or (3) that for any region
A, p(s, A) is continuous, except in the set D of all points s the first two
components of which,  and u, are equal. Appendix D shows that given
s; , the variate w,., is continuously distributed and that this implies that
there’ exists a function C'(§) which goes to zero as § approaches zero and

Pilz —w|[]s} = C(8) (19)

where C(5) is independent of r and s,. But since r;., is completely
determined by s, , (19) implies that

Pl| 2ier — weer | < 6| s} = C(8). (20)
Hence, eq. (17) is satisfied and condition (77) holds for both ideal and
leaky integration. Therefore, a stationary distribution exists.
VI. ALLOWABLE AMPLITUDE VALUES FOR THE DECODED PROCESS

For ideal integration, it is clear from eq. (2) that an initial condition
of the form
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r,=mA-+ 0

with m an integer and | 8| < A, implies that all subsequent amplitude
values of the decoded process will be confined to the lattice

n=IA+ 10 =0, %1, £2, ---.

Since the preceding results did not specify a particular choice of initial
condition, it follows that for each 6, a stationary distribution G, exists.
For eonvenience, assume § = 0. No loss of generality will result because,
for any 8, the problem can be converted to the § = 0 case by replacing
the input process u; by u: — 6 as can be seen from eq. (2). This simply
changes the dc value of the input by, at most, one step size A.

Under the assumption that w, has a positive density, it follows
from eq. (2) that there is always a positive probability of either increas-
ing or decreasing by A in going from z; to ,,, . This means that every
integer multiple of A must have a positive probability under the station-
ary distribution, because each level can always be reached from any
other level in a finite number of steps. (On the other hand, if u, were
bounded, then eq. (2) shows that the decoded process would get locked
into a bounded set of levels from which it would never escape.)

For leaky integration, the situation is strikingly different. The
decoded process will get locked into the bounded region

X=f{:—A/1—a) 2= A/l —a)}. (21)

This may be seen by noting from eq. (3) that if x, is in X, then x.,
must also be in X. Consequently, once z; is in X, it will never escape.
If x, is not in X, then eq. (3) shows that

EIk+1i<|Tk|

and if b, has the correct polarity,
| Teen | < @i ], (22)

Hence the values | z;.; | must decrease monotonically as long as .,
remains outside of X. Since u; has a positive density, b, must have
positive probability of having either polarity; which means the stronger
inequality eq. (22) must hold at some subsequent time instants. Hence,
the process must eventually enter the region X.

Iterating eq. (3) backwards yields

k-1

Ty = &'z + A D a'by, . (23)
i=0

This shows that the initial value z, is gradually forgotten and the set
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of allowable values for x, as k goes to infinity, approaches the set
W= {rr= A+l +a +a’ £ -+ )} (24)

where all possible sequences of polarities are used to generate values
of z. Appendix E proves that, for « = %, the set W coincides with the
interval X.*

For the leaky integration case, the stationary distribution G clearly
must confine the z component of the state vector to the region X.
Furthermore, the following argument shows that G assigns a positive
probability to every open subinterval (y — € ¥ + ¢ with y in X and
e > 0. Let {¢;} be a suitable binary sequence (generated as in Appendix E)
satisfying

y=A42 ca (25)
i=0
Pick the integer N large enough so that
e, < ¢/3, and o A/(1 — a) < €/3, (26)
and consider the event
E = {bz = Cy-1, b3 = Cya, - ,bN+1 = Co},

which has a positive probability for any initial state s, . Then for
k= N + 1, eq. (23) can be written in the form

tysz — Y = o Ty + AdVb, — A D a'e;

i=N
so that, using eq. (26),
|TN+z_yI§f/3+5/3+f/3=5)

for z, in X. Hence,

P{lay.a —y| < el|si} 2 PIE|s] (27)
and averaging eq. (27) over the distribution G for the state s, shows that
P{loys —y| <€l >0 (28)

where ry,, has the marginal distribution of the first component of G.

VII. CONVERGENCE TO THE LIMITING DISTRIBUTIONS

The following speecialized and paraphrased version of a theorem due
to J. L. Doob’ is suited to the delta modulation process:

* For @ < 1, it can be shown that W does not coincide with X, in fact W is not
even dense in X.
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Doob’s Theorem: Suppose the Markov process has a stationary distri-
bution G and satisfies the conditions:

(?) For any initial state s,, if A 1s a region with G(4) = 0, then
F(A) — 0.
(#7) If a region A satisfies p(s, A) = 1 for s in A, then G(A) = 1.
Then either

F, — G for any initial stale

in which case the process is aperiodic, or there exist m disjoint sefs
Ag, A, -~ Apy with GOJH A;) = Land p(s, A;a) = 1ifsis in A;
fori=0,1,---,m — 2and if s isin A,_., then p(s, A,) = 1. In
this case, the process is said to be periodic with period m. In particular
for m = 2, there exist two distributions Go and G, with G = 3(G, + Gy),
Gi(A) = 1, Go(A,) = 1, and for any initial state in A, Faiw — G,
and Fo. — Gy , while for any inilial state in Ao , Fopor — Go and Fa, — G,

For ideal integration, Section VI shows that there are no transient
levels for the x; process and Appendix A shows that d, has a positive
probability of lying in any region of n space with nonzero volume.
Hence, there is no transient set A with G(4) = 0 except for trivial
sets with F,(A) = 0 for each k. For leaky integration the only nontrivial
sets A are regions where the r component lies outside of X and for
such regions, Section VI shows that Fi.(4) — 0. Therefore, condition (2)
is satisfied for both types of integration.

Furthermore, the ergodicity requirement (#7) is also seen to be satisfied
for both ideal and leaky integration from the results of Section VI.

For ideal integration the process clearly has period 2, since, if 4, is
the set of all state vectors with z components taking on even integer
multiples of A, and A, is the complementary set, then A, \J A, has
probability one under the limiting distribution and the transition
probability function has the requisite property implying the state
vector alternates between A, and A, . For leaky integration the process
is aperiodic since eq. (27) holds for all N sufficiently large so the process
cannot satisfy the requirements for periodicity, hence F, — G. Since
a sequence of distributions cannot at the same time converge to two
different distributions, it follows that the stationary distribution G is
unique for both ideal and leaky integration.

VIII. BOUNDING STEADY-STATE QUANTIZING NOISE

The fact that a sequence of distributions converges to a limiting
distribution does not imply that moment functions such as mean or
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variance converge to the corresponding moment of the limiting distri-
bution. However, it does imply that the sequence of expectations of a
bounded eontinuous function converge to the expectation of that fune-
tion under the limiting distribution. It turns out that this property
is sufficient to obtain a bound on the least mean-absolute quantizing
error under the stationary distributions.

For ideal integration, eq. (12) can be rewritten in the form

lim s qup2 ZE(I e | + | €2rer |) (29)

m—a0

where K = ¢ 4+ A/2, which implies the existence of an even subsequence

of time instants ¢; (= 2k;) with
1E(Je, | + |t ) = K (30)

Now define the truneating function J;(e) according to

1 le| =
Jee) =1 — (Je| —R)/6 R<|e| <R+ 6.

1 0 R4+ 6= |e
Then,
E(eg |+ lenl) 2 Efle. | Jrle) + | e | Jrlew)) (1)
and, since the right-hand side is the expectation of a bounded continuous
funection,
Ef| e, | Jale,) + lecor | Jrlen )} — Eo| e | Jrles)

F B e | Jaler)  (32)

where j denotes an even time instant in steady-state operation and
E, and E, denote the expectation under the distributions G, and G,
respectively, or reversed, depending on the parity of x, . Since eq. (32)
holds for each positive R and §, taking the limit as 6 — 0 and B —
shows that

1By |e.| + Ei e ) =c+ a/2 (33)

Thus, the mean-absolute quantizing noise averaged over two consecutive
time instants has the bound ¢ + A/2 under the limiting distributions
for ideal integration.

For leaky integration, the process r, is bounded with probability one,
so that in this case all moments of r, converge to the corresponding
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moment under the limiting distribution. Furthermore, in Appendix B,
it was shown that the first absolute moment of u, converges to the
corresponding value under the limiting distribution. Together, this
implies that E | e; | converges to Eg | e; | . Hence, eq. (12) yields

Egle| ¢+ A2 (34)

This result could also have been obtained by the same argument used
to derive eq. (33).

Note that the bounds, eqs. (33) and (34), are independent of the
spectral density of the input process u. and are therefore very crude
bounds. An important feature is that the mean-absolute quantizing
noise is shown to be finite under the stationary distributions. An im-
mediate consequence is that the decoded process z; has a finite first
absolute moment for ideal as well as leaky integration. Since

Elz;,|=E|e;+u | =E|e|+E|wl,
then

for both leaky and ideal integration. (Set & = 1 for ideal integration.)
Possibly of interest also is that this bound may be used to obtain upper
bounds on the tail probabilities of the decoded process by using the
Chebyshev inequality.

As discussed in Section VI, ideal integration with initial values of z,
of the form mA + 6 can be handled by replacing %, by w. — 6, so that
the bound, eq. (35), remains valid if ¢ is replaced by ¢ + | 6 | , and
|e;| by | e, | — | 8|, which leads to the inequality, eq. (4).

IX. CONCLUSIONS

The results of this paper show that delta modulation indeed possesses
the qualitative properties of convergence to a stationary distribution
and boundedness of the quantizing noise. Perhaps of greatest interest
is the fact that the results also hold for ideal integration, thus justifying
the study of this idealized model to obtain an understanding of the
usual physical situation of leaky integration.

The use of a Markovian model of the input process has been con-
sidered by several authors® '’ as an approach to determine actual
probability distributions for the steady state. The results of the paper
show that the Markovian recursion, i.e., the usual Chapman-Kolmogorov
equation, will, in fact, converge to the unique stationary distribution.
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The technique used here for showing the existence of a stationary
distribution (an invariant solution to the Chapman-Kolmogorov
equation) extends the method used by this writer' for an adaptive
filtering algorithm and the earlier results for Feller processes.”*''*

APPENDIX A

Markovian Imbedding

Suppose initially that the process u, has zero mean. Then wu, is
generated by the recursion

Upsn = O Upsn—1 + *° + el + B1Wein1 + -0+ Bawn (36)

with 8 # 0. This equation describes the operation of a stable shaping
filter with transfer function

o - B0 =0
a A(z) B Z“ . nza_zn—i

with A (z) having all roots inside the unit cirele, | z| < 1, and w; is a
white process with zero mean, finite variance and an everywhere-positive
probability density function. The requirement that the autocovariance
goes to zero for lags approaching infinity is satisfied by the fact that
B(2) is of lower degree than A (z).

The state vector d, is defined by

dip = th = @7)
disr o = di gy — bavy i=1,2,--- ,n—1

which when combined with eq. (36) leads to the state equations

d,.. = Ad, + bw, (38)
characterizing a vector Markov process. The matrix A is given by

(0 1 0 e 0]

o o0 10 --- 0

4 0
0 0 0 1
Op  Olp_q @y
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and the constant vectorb = (by, b2, - - , b,)’ is determined by solving
the equations:

b, = B

b = B +agiby + oo+ asbis + ab;_, for ¢=2,3, - ,n

The matrix A is stable since its eigenvalues are the roots of A(z). This
state representation is a standard one in the control literature. See

for example, Ref. 15, p. 221,

The polynomials B(z) and A (z) may be assumed to have no common
roots so that the shaping filter is intrinsically of order n. Then, the
state generating eq. (38) is known to be completely controllable.* This
means that, for any initial condition at time k, it is always possible
to find values for we , Wys1, -+ , Wesn—1 to produce any desired value
of the state vector d,., . It follows that since w, has a positive density,
the state vectors d, have a positive probability of lying in any region
of n-space with nonzero volume.

APPENDIX B
Convergence in Distribution of d,

The Markov process defined by eq. (38) can be iterated to obtain

k
dpoy = A¥dy + D A b, (39)

i=1

Since A has all eigenvalues of less than unit modulus, A* —» 0 ask — =,
so that the first term on the right side of eq. (39) goes to zero with
probability one. The second term has the same distribution as

k—1 .
U = Z A'bw,'
i=0

since the variates w, are independent and identically distributed. But
v is a martingale,"® since

E{Uk+.|' | Ut} = U

and
k-1 . b
Ello s S 0118w | <1l E

is finite, where A denotes the Euclidean norm of 4, A < 1. Then by the

* See Theorem 7-8, p. 389 of Ref. 15.
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martingale convergence theorem, v, converges with probability one to a
random variable v, . Hence, the probability distribution of the vector
d;.. converges to the distribution of v, , where

Vg = § A'bw; . (40)

Since w, is uncorrelated and has finite variance, it may be seen from
eq. (40) that v, also has finite variance. This, together with the con-
vergence in distribution, implies (Ref. 6, p. 252) that the mean absolute
value of each component of d. converges to the mean absolute value
of the corresponding component of v, . Consequently,

E|lu|—ec¢

for any initial state d, , where ¢ is the mean absolute value of the first
component of v, .

APPENDIX C

Eaxistence of a Stationary Distribution

Theorem: A Markov process has a stationary distribution if

(i) for any inilial state s, the averaged distributions Gy are stochastically
bounded, and

(17) for any region A, let D be the set of poinis s at which the transition
probability function p(s, A) s discontinuous and let N; be the set
of all points whose distance from D is less than &; then there is a
function C'(8) independent of s with C(8) — 0 as 6 — 0 and for all s,

P(S, Na) g C(ﬁ)

Proof: Since the sequence of averaged distributions G, is stochastically
bounded, by the Helly selection theorem, Ref. 6, p. 267, there exists a
subsequence (7, converging to a limiting distribution . From the
definition of ¢, and T it follows that

TG, = Gy + o Fres — F)
so that
| TG (A) — Go(d) | S =0
as 7 — oo for any region A. Since (7,, converges to @, it then follows that

TG, — G 1— o, (41)
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It remains to show that
TG, — TG (42)

so that egs. (41) and (42) will imply that ¢ = TG, which is the desired

result.
To prove (42), note that G,, — G implies that for any bounded

continuous function ¢ of the state vector (s),
Eio(s) — Ege(s) (43)
where E, is the expectation under @,,. If p(s, A) were continuous

in s, eq. (42) would follow from eq. (43) by setting ¢(s) = p(s, 4)
and noting from eq. (9) that

Eip(s, A) = TG.(4).

However, p(s, A) is not itself continuous and the following argument

is needed to complete the proof.

Let I;(s) denote the function which is equal to 1 if s is not in N,
and for s in N; let I;(s) denote the distance of s from D. Then
I,(s)p(s, A) is bounded and continuous in s for any region A, and so

E(Ii(s)p(s, A)} = Ec{Li(s)p(s, 4)}, i— =.

But

Ep(s, 4) — E{I:(s)p(s, 4)} = Gu(Ny) (44)
and also

Egp(s, A) — Eq{Li(s)p(s, )} = G(Ny). (45)
But since

p(s, Ns) = C(3)
by hypothesis, it follows by averaging over s that
F\(N;) = C(5)

and therefore

G (Ns) = C(5) (46)
and, since G, (N;) — G(N;), then
G(N:) = C(9). (47)

Combining these results shows that

lim sup |E',-p(s, A) - EGP(SJ A) 1 < 20(6)1

-0
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but since & can be made arbitrarily small, it follows that
Eip(s, A) — Ecp(s, A).
Hence, eq. (42) holds and the theorem is proved.

APPENDIX D
Ezistence of C(8)
From eq. (38), it follows that
Uks1 = (Adk)l + bw;

with b, # 0, so that the conditional distribution of u:., given s, is
continuously distributed because w, is continuously distributed. Let

Il = (Ad.), , and let
H(z) = Plbyuy < z}.
Then
Plug,, < 2|8} = H(x — 1) (48)
which is a uniformly continuous function of x. Therefore, if
c(s) = sup [Hz + 8) — H(x — 8)]
then

C)—0 as §—0.
But

Plluy —z| <d|si} =H@x+14+8) —Hx+1—- 8 = C6
using eq. (48), which proves the existence of a suitable function C(3)
independent of s, and z.

APPENDIX E
Range of the Mappingy = +1 + a + o &= ---

Theorem: For ¥ £ a < 1, the range of values taken on by the mapping

y= 2. a'b, (49)
i=0

for all binary sequences, b, = =1 each 1, is the closed interval |y | < 1/(1 — a).
Proof: For each y in the interval | y | < a, witha = 1/(1 — «), generate
a binary sequence by, b, , by, --- according to the algorithm below.,
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Let
p =3y + a)
If p = 1, let fo = 1 otherwise f, = 0. Let
s = oa'fs mn=0,1,2,---.

i=0
Forn =1,2,3, -++,if p — s, = """ let fos1 = 1, otherwise fu:1 = 0.
Then
bi=2f—1, i—=01,2---. (50)

To prove that eq. (49) holds for the binary sequence generated in this
manner, note first of all that for all n = 0,

8n = Sai1, and s =P

so that s, — s for some number s with s < p. Suppose that s < p.
Then there exists a largest integer m satisfying

P < 8n1 ta’ (51)
Therefore, fn = 0, and fn.; = 1 for each ¢ > 0. Consequently,
p>s=8u1ta" "+t
so that
P> 8wy + ™ /(1A — @) (52)
But egs. (51) and (52) imply that

m+1
23

l—a

<a"

so that
a <3

which is a contradiction. Therefore,

and so
y= Yo —a= Yab,

which proves the theorem.
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