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A special class of transmission lines is considered, in which the modes
decompose into two noninteracting sets. Both a single transmission line
with constant characteristic impedance and variable propagation factor,
and two transmission lines with equal propagation factors and variable
coupling, in which the forward modes do not interact with the backward
modes, are investigated. Exact expressions are obtained for the reflection
and transmission coefficients when a section of such a transmission system
connects two semi-infinite transmission systems consisting of constant
impedance and admailtance lines. These results hold for arbitrarily varying
propagation factors and coupling; and while they are of independent
interest in the case of deterministic variations, we make an application of
them here in the case of stochastic variations.

Ezact results are obtained for the ensemble averages of the transmission
coefficient and transmitfed power, and their variances, for the inserted
section of single line, when the variable propagation factor is ¢ random
function involving either a Gaussian process or the random telegraph
process. Asymplotic results are also obtained in the general case of weak
Auctuations and long inserted sections. Analogous results may be obtained
for the inserted section of two lines when they are randomly coupled, and
the resulls are given in the case of matched lines, for which no reflections
occur. Finally, some of the time domain statistics for lossless lines are
considered, and expressions are derived for the ensemble averages of the
transmitted pulse, due to pulses incident on the inserted section.

I. INTRODUCTION

This paper deals with a special class of the generalized equations of
telegraphy. The starting point is the following simple observation.
Consider the telegraphist equations in the frequency domain for a
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single transmission line

B~ —s@s),
L~ —yayow, 0

where U(z) and 9(z) are the time Fourier transforms of the voltage and
current in the line, and 3(z) and Y(z) are the impedance and admittance,
respectively. Then, if the characteristic impedance

K = Va(x)/Y(x) @)
is a constant independent of z, it is simple to show that (1) has the two
fundamental solutions

0. = exp {~ [ TO d«E}, 5.(2) = 2 0. @),

UV_(x) = exp {fu T dﬁ} , g_(x) = —%’U-(w), 3)

where
I'(z) = V3(@)Y(z). 4)

This simple result has several interesting consequences. Note that
V. (z) and 9, (z) describe a wave moving to the right and U_(z) and
¢_(z) .describe a wave moving to the left (the time factor is assumed
to be ¢'“*). Furthermore, the wave moving to the right does not induce
a reflected wave moving to the left, and vice versa, except possibly at
the beginning or termination of the line.

This decomposition into noninteracting right and left moving waves
suggests that a similar decomposition may exist in the case of n coupled
transmission lines. This is the subject of Section II. It is shown there,
that when a condition analogous to (2) is satisfied by the impedance
and admittance matrices of the system, the system of 2n equations can
be decomposed into two noninteracting sets of n equations. Under some
circumstances, the n fundamental solutions of one system correspond
to waves moving to the right; and the n fundamental solutions of the
other system correspond to the left moving waves. In particular, we show
that the model of two interacting waves recently studied by Rowe and
Young'** corresponds to just such a decomposition.

In addition, the form of the solution (3) for the single transmission
line makes these models particularly convenient to study when 3(z)
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and Y(z) are stochastic processes. In Section III, we consider a finite
section of length ! of lossless transmission line with variable impedance
and admittance satisfying condition (2). This section of line connects
two semi-infinite lossless transmission lines having constant inductances
and capacitances. We derive various expressions for the reflection and
transmission coefficients of the inserted section. Using these expressions,
in Section IV, we calculate exact expressions for the ensemble average of
T(w, 1), the transmission coefficient, and of | T'(w, 1) |* and | T'(w, 1) |*,
when a(z) and Y(x) are particular stochastic processes. Asymptotic
results are obtained in the general case of weak fluctuations in 3(x) and
Y(z), and long inserted sections. These results are based on a limit
theorem of Khas’minskii,” and the details are given in the Appendix.

In Section V, we study a more complicated model consisting of two
coupled transmission lines. Here the model involves a finite length, I, of
two transmission lines having equal propagation constants, with variable
inductive and capacitive coupling, connecting two semi-infinite, constant
impedance and admittance lines. The self-impedance and admittance
of the inserted section are also constant, and the semi-infinite lines are
uncoupled. We derive expressions for the reflection and transmission
matrices of the inserted section. Exact results may be obtained for the
ensemble averages of the elements of the reflection and transmission
matrices in the case of random coupling, for particular stochastic
processes, using the results of Section IV. Since the results are quite
lengthy in the general case, we give them only in the case of matched
lines, so that no reflections oceur.

Finally, in Section VI, we consider some of the time domain statistics
of our models. Exact expressions are derived for the ensemble average
of the transmitted pulse, due to a pulse incident on the inserted section
of single transmission line with random inductance and eapacitance. It
is of interest to note that if the fluctuations in the propagation factor
are described by a Gaussian process, the transmitted wave violates
causality. This is not the case when the fluctuations are described by
the random telegraph process. Analogous results are obtained for the
transmitted pulses, due to pulses incident on the inserted section of two
randomly coupled transmission lines, in the case of matched, lossless
lines.

II. CLASS OF TRANSMISSION LINES

The generalized equations of telegraphy are the starting point of
this paper:
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2 Ve, ) = —R@IG@, ) — L) 516, 1), (50)

a%l(x, ) = —G@V(, ) — C@) 3 V(:c, 0. (5b)

These equations are typically used to describe the time and space
variations of the current and voltage along » coupled transmission
lines.* In this case, V and I are column vectors whose elements V,(z, f)
and I,(z, 1), p = 1,2, - - -, m, are, respectively, the voltage of the pth line
relative to some fixed voltage, and the current in the pth line. R, L, G,
and C are n X n matrices, the resistance, inductance, conductance, and
capacitance respectively, which typically are functions of the distance
r along the lines.

We will, for the most part, find it convenient to work in the frequency
plane, and so we introduce the Fourier transforms

V(@,w) = e dw, (6)
I(z, @) = _\}E [ Z Iz, " do. (6b)
Then V and | satisfy the equations
Mo z@y, &= vy, 0
where
Z(z) = R(@) + juL(z), Y() = G(z) + juC(z) (8

are the impedance and admittance matrices, respectively. It should be
noted that the frequency domain equations appear in other contexts,’
but there, the frequency dependance of Z(z) and Y(z) is generally more
complicated. The remainder of this section is devoted to some general
properties of the frequency domain egs. (7).

It follows from (7) that

g_; VI 4 V) = —I[Z'G) + @I — VIY'@) + Y*@IV*, )

where ¢ denotes transpose and * denotes complex conjugate. Hence,
for lossless lines

Z'(z) + Z*(x) = 0, Y'(z) + Y¥*(@) = 0. (10)
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We wish to consider the class of coupled transmission lines for which
Z(z) = KY(2)K, (11)
where K is a nonsingular constant matrix. Note that, in the lossless case,

the first condition in (10) follows from the second if K* = K* When (11)
is satisfied, the solutions of (7) may be split into two groups, namely

dav
vV =Kl, iz = —KY(2)Vv, (12)
and
av
YV = —KlI, dz = KY(z)V. (13)

If the lines are appropriately matched at both ends, then either one set
of solutions or the other occurs, and reflections are avoided. Since K is
constant, this matching is independent of the length of the lines.

As a particular example, let n = 2 and

re — je(x)
K - [K o]’ yo| B (KK 19
0 K, — je(x) Iy
(K.K))} K,
Thus, from (11),
Z — { I‘IKI _](KIK2)ic(x)J_ (15)
_'j(KIKL’)iC(x) I.K,
Corresponding to (12), we have
dv, _ (K
dz + I'/0, = Jc(x)(K) 02,
v, _ i (L)*
dz + I'0, = 30(3:) K, D, . (16)

The substitutions U, = K!I,, U, = K}I, lead to the equations for two
coupled modes traveling in the same direction, which have been con-
sidered previously.'* We remark that if we choose K = [¥* %, ] instead,
then we are led to equations for two modes traveling in opposite direc-
tions.

Next, we consider a particular class of transmission lines, satisfying
(11), for which

KY(x) = I'(2)I — je(z)A, 17)
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where I is the unit matrix of order n, and A is a constant matrix. Then
there are solutions of (12) and (13) of the form

V =b exp {:Ff [T(x) — jre(x)] d:t'} = +KI, (18)

where b is a constant vector satisfying
(\I — A)b = 0. (19)

The eigenvalues \ are given by [\ — A| = 0.

We will assume that ¢(z)A describes only the eoupling between lines,
so that A has diagonal elements equal to zero. The case n = 1 (for which
A = 0, and A = 0 is the only eigenvalue) corresponds to the well-known
case of a single line with constant characteristic impedance and variable
propagation factor. This case is considered further in subsequent
sections. The case n = 2 corresponds to n transmission lines with
identical propagation factors and variable coupling. Such a situation
might arise in the consideration of n twisted pairs in a cable, although
the relationship (11) is not too realistic. In Section V, we consider the
case n = 2 corresponding to T'; = TI'; in (14), so that (17) holds.

III. SINGLE TRANSMISSION LINE

In this and the following section, we study in some detail the following
example. Consider an infinitely long, lossless, single transmission line
(n = 1 in the classifieation of Section II) which for x < 0 has the
constant impedance and admittance 3, = jwl,, Yo = jwCy, forz > )
has the constant impedance and admittance 3, = jwL, and Y, = jwC ,
while the central section 0 < z < [ has the variable impedance and
admittance 3(z) = jwL(z), Y(x) = juC(z). A wave traveling to the right
in the region & < 0 will be partially reflected and partially transmitted
on striking the central region in 0 < z < I. We study the transmitted
wave under the assumption that 3(z) and Y (x) satisfy condition (11), i.e.,

K = V3@)/y@) = vV L@)/C) (20)

is a positive constant independent of x.

Although this case is probably hard to realize physically, it is never-
theless of considerable interest, since it is mathematically simple enough
so that many interesting questions about it can be answered.

Let

T, = \/3=‘Hu = j“-’ \% LaCa = ija ’
Ko = V3.,/Ya = VL,/Co, a=0,1L (21)
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Then in x = 0 and x = [, we can solve eqs. (7) simply. In 2 < 0, we

have a solution

V(z) = e " + Rlw, D",

(@) = Ki €7 — R, De™). (22)

—Tor

This represents a plane wave e moving to the right and a reflected
wave R(w, )e"* moving to the left, where R(w, ), the reflection coeffi-
cient, is a funetion of w and [. Similarly, in 2 = [, the solution can be
written

V() = Tlw, De ™' = K,9(z), (23)

representing a transmitted plane wave moving to the right, where
T(w, 1) is the transmission coefficient.
In 0 £ z < ! we define the propagation factor

M) = Ve = wKC() = ju 2. (24)

Then, from (18), we can write the general solution of (7)in0 <z <l as

V(x) = AT, () + BU_(2),
5G) = 7 (AU (2) — BU_(2), (25)

when A and B are constants and
V(@) = exp {rF fu G d.g}- (26)

We now have a solution depending on four unknown constants
A, B, E and T which can be determined from the eondition that U(z)
and 9(x) must be continuous at @ = 0 and & = l. The resulting four
linear equations are easily solved and yield for the reflection and
transmission coefficients

(K — K)K + K)U_() — (K + K)(K — K)0.(0)

(K + K)(K + K)o () — (K — K)(K — K)yo,(0)’
KK, _

K + K)E + K)0_() — (K — K)K — K)0.()

Notice that if K = K, = K, , then R(w, [) = 0.
We confine our study to the transmitted wave, although the reflected

R(w, 1) = (27)

Tw, ) =

(28)



1276 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

wave can be studied equally well by the techniques we employ. In
particular, there is the easily proved energy conservation relationship:

1= R, DI + % T, DI. (29)

Before proceeding, let us assume instead that a section of line
0 < z < lis driven by a voltage source in series with an impedance Z,
and that the line is terminated in an impedance Z, , as shown in Fig. 1.
Then, U(z) and 9 (x) are still given by (25), but the boundary conditions,
from which A and B are determined, are now

V(0) + Z,9(0) = E,,
V() = Z,9(0). (30)
Then, it is easily shown that
v(l) = 2KZ K, ’
(K + Z)(K + Z)0_(D) — (K — Z)K — Z,)0.())

so the transfer impedance in this formulation is essentially identical
with the transmission coefficient in the first formulation. We shall
continue to use the first formulation.

We now further specialize the model, and let

L(z) = L(1 + eN(2)), (32)

where we assume that 0 £ ¢ £ 1 is a dimensionless constant, L > 0
is a constant with the dimension of inductance, and N(z) is a (dimen-
sionless) stochastic process with zero mean. It follows that L is the
stochastic mean of L{x),

@31

L = (L(z)). (33)
The symbol ( ) will be used throughout to denote the stochastic mean.

Zo Vix), I(x)

Zy,

| I
! |

[ [

i |

_ I |

Eo I [
| |

| |

| I

| [

I |

_ Fig. 1—Diagram of transmission line circuit driven by source E, at z = 0 with
internal impedance Z, and terminated at z = [ by impedance Z,.
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It follows from (20) that

C(z) = C(1 + «N(2)), K = \/% (34)
Further define
vy = VCL, (35)
s0 that
I'(x) = jwy(l + eN(x)). (36)
In addition, we let
1]
0w = [ N@ &, (37)
and
(K + Ko)(K + K,)’ (K + Ko)(K + K))
Then we can write expression (28) for T'(«w, I) as
T(w, l) — )\g—im-y{ti-(ﬂ(l))[l _ pe—ziuv(li-d(“)]ﬁ-l. (39)

We can now derive some series expansions of T'(w, [) and some of its
powers which will prove useful in the next section. Since K, K, and K,
are positive,

hence we have the geometric series expansion
T(CDJ, l) — k Z pre—(2r+lliu’r(l+(ﬂ{l)). (41)
r=0
Next let
fle) = N/[(1 — pe™*)(1 — pe'*)]. (42)
Then f(¢) has the partial fraction expansion
Sl )
= — + — |, 43
f(¢) 1 — pz 1 — pelw 1 _ pe—H’ ( )

and hence f(g) has the series expansion

o) = 72 3 oo, (44)

n=—00
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Then, it follows that

|T(b), l)lz — 2 E IrI 2r:m'r(!+zﬂ(l)} (45)

r=—

We finally need to examine double sums of the form

o0

§= 2, f; p' " h(r + ). (46)

r=—00 §=—00

If we make the change of summation variables u = r + s, ¢ = r, we can
write 8 as

= 5 ok, @)
where
E(’U-) = .Z— p“H“_“I. (48)

The series £(u) can be evaluated simply, and so we obtain
5= ;_: {l |+ 15 ;} " hw). (49)

If we now square expression (45) for | T'(w, 1) |, we obtain a series of
the form (46), and so it follows that

T, DI* = (1—1—;,7 rE {

=—c

}Plrlezﬁu-r(l+=8([)]. (50)

IV. FREQUENCY DOMAIN STATISTICS

In this section we study some of the frequency domain statistics of
the model described in Section ITI. In particular, we obtain expressions
for the stochastic average of T(w, 1) and | T(w, ) |* and examine the
standard deviation of these quantities.

It is clear from (41), and (45) and (50) that the problem of calculating
(T(w, ), (| T(w, 1) |*yand (| T(w, I) |*) has been reduced to the problem
of caleulating (e***"").

Consider first the case where N (z) is a zero-mean, Gaussian random
process. Then 6(I) is a zero-mean, Gaussian random variable with
variance’

70 = [ [ N@N) ddy, Gy
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and
jaf () _ 1 P iat—t3/20 _ ke
@) = - gﬁwe 8 = ¢4, (52)
Consequently,
Ml(“-’: D = (T(‘-") l)) = A z Plrle(zr + 11 w, l): (53)
Mo, ) = (T, D) = 2 X oo, (54)
and
M4(w: l) = (lT(“’J l)r)
—_ h‘ - { 1 + p‘z} Irl
= (1 _ P2)2 T;ﬂ Irl + 1 — p2 P 8(2?‘,&0, l): (55)
where
e(r, w, 1) = exp [ —jrayl — Irfu™y e’ (D)]. (56)
If N(x) is white noise, then (N (z)N(y)) = D, é(z — y) and
(1) = Dl , (57)

where D, is a constant having dimensions of length. If N(z) is a wide-
sense stationary Gaussian process,

(N@Nw) = g(lz —y ), (58)

with continuous g(§), then

]

#0) =2 [ (- 9@ . (59)
In particular, if g(£) = ™", then

1 1 — ¢
o) = 7 [t _ —%—] (60)
Since ¢(0) = 0 in all these cases, e(r, w, 0) = 1, and so
NS
M,(w, 0) = (T—“}) . n=1,24. (61)

In many cases, such as (57) and (60), ¢*(I) tends monotonely to « as
I — . In these cases we obtain the asymptotics of the moments as
[ — = simply. For wyes(l) > 1, we have
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Mi(w, 1) R A~ ieriThemiaey (62)

2
Mo, D~ T2 (1 + 29 cos Qul)e ™ 7"}, (63)

Mo, ) s [+ 5 dp con Qn )™ 7). (60

The mean-amplitude transmission coefficient M,(w, [) decays exponen-
tially to zero as I — o, while the mean-power transmission coefficient

tends to the limit
N 4KK; )
1-— 92 (Ko + Kl)(Kz + KoKz)
This can be explained qualitatively by noting that, when the transmitted
amplitudes are averaged over the ensemble, cancellation can take place,

while the transmitted powers all have the same sign and so no cancella-

tion can take place on averaging.
Tt is easily seen from (62) through (64) that the ratio of the standard

deviation to the mean of T(w, [) is

(65)

el""?""'(”, (66)

1
Zy(w, ) & Vi
while the ratio of the standard deviation to the mean of | T'(w, D|? is
2p°
1—p
For the examples (57) and (60), Z,(w, I) — = exponentially as [ — o,
while Z;(w, I) tends to the limit
20" |K — K, || K — K. |
7= z - (68)
1—9" +2K(K, + K )K"+ K.Ki)
To get some feel for the numbers, we note that for

1 KO K; 2p2
T < 20 _ 22«

Zylw, D) =~ [1 — p cos Qwyle ® ], (67)

=< 0.158.

However, if K, and K, differ too much from K, this ratio becomes much
larger than 1.

As a second example, consider the case where N(z) is the random
telegraph process.” It is an ensemble of square wave functions {N (x)},
such that each sample function N (z) can assume only the values 1.
For fixed z, a sample function chosen at random will equal +1 or —1
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with equal probability. The probability p(n, z) of a given sample
function changing sign n times in an interval of length z is given by the
Poisson process

pi,x) = Lo, m=0,1,2,-. (69)

This process has zero mean and correlation function
(N@)N(y)) = e '="\. (70)

The probability density function for the integral of the random tele-
graph process has been derived by McFadden,” and in our notation

Ps, 1) = ‘”[a(l o) + &1 + 6)

2 i
+ b{Iu[b(l’ — M+ %{}ﬂ}ﬂ(z — OH( + a)] , @

where H(u) is the Heaviside function

Hu) =1, u >0,

Hu) =0, u<0. (72)
It follows that’

"""y =" [cosh ((® — o)1}
+ W—-:b—;g)jsinh {(* — az)il}] . (73)
If we define

fryw, ) = exp {—jroyl — bl

. 2 _ 22200
-[cosh () — P’y + bsm?bz{(b 7 :2 %} )”] ’ (74)

then the expressions for (T'(w, 1)), {| T'(», §)|*) and {| T'(w, })|*) for the
random telegraph case can be obtained from (53) through (55) on
on replacing e(r, w, 1) by f(r, w, 1).

If € > 0 is small enough so that for a given positive integer r,

n = (erqwy/b)’ K 1, bl K 1,
then for0 £ r =y,
fr, w, 1) = exp {—jranl — 30™y*EI/b}[1 + 0(n) + 0(nbD)].  (75)
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If furthermore bl 3> 1, then from (60) for the Gaussian with correlation
funetion (70), we have

o<1+ )]

Hence, for these two cases, for 0 = r = np,

e~ 11+ o) + 06700, (76)
Note that both e(r, w, I) and f(r, », I) are exponentially small for » > 7,
if bl is moderately large. Also, from (74), as I — « the first-order
moment of T'(w, ) tends to zero, and the second moment and its standard
deviation tend to the same limits as in the Gaussian case.

We now consider a general case of weak fluctuations in the inductance
and capacitance, and long sections of line, so that 0 < ¢ < 1 in (32),
and ! = A/€. It is assumed that N(z) is a bounded, zero-mean, wide-
sense stationary stochastic process, with correlation function given
by (58). An application is made in the Appendix of a limit theorem due
to Khas'minskii,® in order to determine the behavior of

AJe?

eB(A/E) = ¢ N(x) dx, (77

for A bounded and ¢ — 0.

If the stochastic process N (z) satisfies a certain strong mixing condi-
tion,® then it is found that the process ef(A/¢") converges weakly to a
Markov diffusion process ©(A), with probability density function

1 —0*
P(@, A) = (27r§1\)§ CXp [2&1’&} 1 (78)
where
a = 2lim B? [ @ -2 dz] , (79)

and g is given by (58). If, as we assume,

1o
im [ [ ] =0 )
then

a=2 fw g(z) dz. (81)
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It follows from (78) that
(exp [jrayef(A/€)]) ~ exp (—ar*w™y’A). (82)

Hence, for 0 < ¢ << 1 and | = A/¢*, the asymptotic expressions for
(T(w, D)), {| T(w, H|*) and (| T'(w, I)|*) can be obtained from (53) through
(55) on replacing e(r, w, I) by

h(r, w, l) = exp { —jroyl — %Tzwzryzeza_”, (83)
where a is given by (81). For the random telegraph case g(z) =
exp (—2bz), so that @ = 1/b, anc the consistency of (75) with the above
result is noted.

V. TWO COUPLED TRANSMISSION LINES

We consider here the case of two coupled transmission lines deseribed
in eqs. (14) through (16), but with identical propagation constants
so that

I,=T=T,. (84)
Then T is independent of z in (17), and
}
Ao [ 0 (KJK2) J (85)
(K./K,)} 0

Thus, the eigenvalues of A are A = +1. Let

) = [ cway, (56)

it being assumed that ¢(x) is real, and that K,K, > 0. Then, from (14),
(18), and (19), the general solution of (7), subject to (11), for this case
may be written in the form

U, = Ki[e" W (Be ™" + Ce™) + ¢ (AT + De')], (87)
Ve = Ki[e"(Be™™ — Ce™) — 7t (4e™"* — De™)), (88)
9, = K[ (Be ™™ — Ce™) + ¢t (4™ — De™)], (89)
92 = K:'e(Be™™ + Ce™) — ¢7"**'(Ae™™ + De')). (90)

We suppose that the coupled lines extend from z = 0 to z = [, so
that (87) through (90) hold for 0 = x = . Forz < 0 and z > [ we
suppose that the transmission system consists of uncoupled lines with
constant propagation constants I',, and T',, , and constant characteristic



1284 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

impedances K, and K, , respectively, (p = 1, 2). Then, for an incoming
wave on line 1,

V, = ("7 4 Re™), Ve = Roe"™", (91)
_ —R
1oz —R Tioz , d, = 2 l"n-’t, 92
91 Klo (ﬁ © ) 2 K ¢ ( )
forz £ 0, and
,01 — Tle—l‘u(z-t), ’02 = .Tze—l'u(a:—i)J (93)
Tl —P:l‘(:—‘) T2 —Fn!(z—”
g, K“ ) g, Kﬂ ) (94)

forz = 1.

The boundary conditions are that U, and d,, (p = 1, 2), must be
continuous at = 0 and z = I. The calculation of reflection and trans-
mission coefficients is tedious, but straightforward, so we omit the

details and merely state the result. Let

i =Kn0
P Kp,

w=l, =12, ©5)

and
= (K./K)}, x = £(0). (96)
Also, define
A= [0+ w)1 + )+ w)L + e’ = 20 — w2 — v2)
+ (1 = p)( — p)d — w1 = w)e™
— 2(1 — pmpa)(1 — »ws) cos 2x]. (97)

211

Then it is found that
AT, = 4n[(1 + w)(1 + v)e"™ — (1 — w)(d — w)e T eosx,  (98)
AT, = 4jwa[(1 + w)( + )™ + (1 — w)(1 — w)e” ‘Isinx, (99)
AR, = [(1 — )1 + ) + »)(1 + 2)e™" + 20m + pa)r — »)
+ (14 ) — p)@ = 2)(A = w)e
— 2(1 + wyp2)(l — wywy) cos 2x], (100)
and

AR, = ——4jx,ug(1 — vw,) Sin 2. (101)
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We remark that the reflection and transmission coefficients correspond-
ing to an incoming wave on line 2 may be obtained by appropriate
interchange of subseripts.

Since the coupling function ¢(z) is real, x is also real, from (86)
and (96). If k is an integer, then T, = 0 and B, = 0 for x = kw, and
T, =0and B, = 0 for x = (¢ + })m. The oscillatory behavior of
T, and T, has been found earlier by Foschini,' in the case of matched
lines with equal characteristic impedances, i.e., u, = 1 = »,, (p = 1, 2),
and k = 1. In this case there are no reflections.

In the general case, the expressions for the transmission and reflection
coefficients 7', , T, and I, , B, may be expanded in Fourier series in .
Thus, in the case of random coupling between the lines, the problem of
caleulating the expectations of the transmission and reflection coefficients
reduces to that of calculating {exp jrx) where, from (86) and (96),

X = f (o) de. (102)

We have seen in Section IV how to carry out this calculation if ¢(z) is
a Gaussian or a random telegraph process. Similar remarks apply also
to the caleulation of the expected transmitted and reflected powers,
and their variances. We do not give the results for the general case,
although the calculations are straightforward, since the final expressions
are somewhat lengthy.

However, we will consider the ecase of matched lines, for which no
reflections oceur. Thus, with g, = 1, », = 1, (p = 1, 2), we have, from
(97) through (99),

T, = e " cos yx, T, = jke " sin x. (103)

This is for unit input voltage on line 1. Interchanging subscripts, for
unit input voltage on line 2 we have

T, = Le T giny, T, = ¢ " cosx, (104)
K
using (96). Thus, if ©,(0) = », and V,(0) = v, , then
VO =T, = e_”(zrl cosx + ’%vz sin x) ,

Vo(l) = Ty = e "'(jiv, sin x + v, cos x). (105)

Il

Note that
| &' !2 + [T |2 = C’-—(HI"”(‘ Kty Eg + ‘ Ua |J) (106)
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We let
e(xr) = eN(x), (107)
where N (z) is a dimensionless stochastie process with zero mean. Then,
from (37) and (102),
x = (). (108)
Let us consider the case when N(x) is a Gaussian process. Then, from
(52),
(e'"*) = et (109)
where o°(l) is given by (51). Hence, from (105),
(T)) = ve e, (Ty) = ve” e, (110)
Also, after some algebra, it is found that

(r+I*)i

AT = G W o Lo P (o = o P00,
(111)
(1. = R [ i P b I (O P — v e,
(112)

and

KTy 1Y = (T = (T ) = (| Te [
= _187642(1"+1'"JT[1 _ e—4c'w’(!}]ilv§ _ K2?)11! |2[1 + e-!c’c’(l)]
— 2(|v, | — w0 [V (113)
The first equality in (113) is a consequence of (106). I'rom (111) through

(113) it follows that the ratio of the standard deviation to the mean of
|T, |* approaches

| v2 — '}
= . 114
Z 2| ko, |* A+ |02 %) (114)

as ¢o*(l) = o, both for p = 1l and p =

Analogous resulfs may be obtained when N (x) is the random telegraph
process, by using (73), and also in the case of weak general coupling and
long scchons of the coupled lines, by using (82). We remark that we have
previously® calculated the average modal powers in these cases for two
coupled lines with unequal propagation constants, corresponding to
equation (16), using entirely different methods.
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VI. TIME DOMAIN STATISTICS

In this section we conelude the study of our models by calculating
some of their time domain statistics. Consider first the single line and an
incident wave moving to the right in x < 0 of the form

V(t - 'Ynfl') =~ rU'((a\.)) full=voz) dw,

\/—
I(t - 'YO-T) = I‘;{ V(t - "Yn-’t:)- (115)
Then the transmitted wave in x > [ is

Vot — vx) = —\—/1—)=f T(w, DU(w)e’ 711 dy,
27 V-

1
I.(t — vx) = f Valt — v.), (116)
L
where T'(w, [) is the transmission coefficient. If we substitute expression
(41) for T'(w, I) into (116) and formally interchange summation and
integration, we obtain

0

Vit —yi) = N 220

@ —10

= @2r+ Dy(l + e0(D))]} dw

A Z PVt — yile — 1) — @r + 1yl + 6(D)).
(117)

Therefore,

(Valt — y)) = N i pI(V(L — vile — ) — @ + (I + €6(D)).
r=0 (118)

In this formulation, the randomness appears just as we should expect in
a random change in the electrical length of the central transmission line.
I'rom (117) it follows that

(I Vr(f - 'Yt-?') ‘n>
< ZPI(!—T:(L— H— @ +1)vl+eel)))1> (119)

r=>0
To better understand some of the implications of these formulas,
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let V(u) be a rectangular pulse,
V) =1, 0=2u=sn,
=0, u<0,7<u (120)
Then if N(z) is one of the Gaussian processes discussed in Section IV,
(V(t — nile — ) — @r + Dy(l + 6(D)))
= [ = e — ) = Dy ) o

oV 2

Limy pla=D) = (2r+1) Y1/ V2(2r 4 1) ey (D)]
1 —w?
e Y dw

'\/7—; Limy ta—D) = @r D) y I=1/V2(2r+ D eveD)]

1 t—'r:(:v—l)-—(2r+1)'yl—f}
2 [e’f" { V3 @r + Deyo())

t— vl — 1) — @r+ il |
B erfc{ V3 2r + Deyo(l) }] (121)

In (121) erfe (z) is the complementary error function.”

Equation (121) shows that the average field violates causality, since
at z = I, for example, (V(t — (2r + 1)y(l + ed(1)))) is positive for all
— o < { < . This is really a consequence of the fact that for a Gaus-
sian process, at any point z, there is a positive probability that a sample
function is less than —e '. Hence, in our model the inductance and
capacitance can both become negative, leading to the violation of
causality.

If N () is the random telegraph process, then 6(l) has the probability
density function given in (71). It follows that in this case

(V(t — mile — ) — @ + (L + 6(D))

I

= %e""[V(t —yile — D) — @ + Dyl + &)
F V(= i@ — D) — @+ Dyl — 9)
+of {Io[b(f ey
12 __ ot}
+ M—"R—]}V(t — e — D — @r 4 Dy + <B) do]-

-6
(122)
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If V(u) is the rectangular pulse (120) which arrives at z = 0 at ¢ = 0,
then from (118) and (122), the average transmitted signal is a train of
nonrectangular pulses. It is seen easily from (122) that

Vi =7z = 1) — @ + Dy + €8(1)))

is a pulse which begins at ¢ = v,(x — ) + (2r + 1)yI(1 — ¢) and ends at
t =v( —10) + (2r + 1)yl(1 4+ € + 7. This shows that as long as
¢ < 1, causality is preserved for the average transmitted signal since
theny,(x — I) + 4l(1 — ¢) > 0foralll £ z.

The duration of the rth average transmitted pulse is At = 1 +
2(2r + 1)vle, while the time between the end of the rth pulse and
beginning of the (» 4+ 1)th pulse is 2yl — 4(r + 1)yle — 7. Thus, each
pulse in the train is longer than the pulse which preceeded it and all of
these are longer than the incident pulse. Furthermore, no matter how
short the incident pulse is, the average transmitted pulses eventually
begin to overlap.

The transmitted power can be treated in the same way. However,
due to the overlapping of the pulses, the analysis is tedious and we do not
discuss it here.

Analogous results may be obtained in the ease of two coupled trans-
mission lines with identical propagation constants, if we consider
lossless lines and suppose that the phase constants and the coupling
coefficient are proportional to the frequency, so that

I'=juwy, ¢= wye (123)
and
FpO = jw‘YpU ’ Ppl = jw'Ypl ’ (p = ]-p 2) (124)

It is also assumed that the characteristic impedances K, , K,,, and
K, , (p = 1, 2) are independent of «. We will confine our attention to
the case of matched lines, so that no reflected waves oeccur.

Let us consider an incident wave on line 1 moving to the right in
z < 0, and of the form

-]
Vl.(t - 'ym:r) = 71"):[ Ul(w)e:‘wu—y”,) dw,
LT V-

1
I(t — v02) = K_m Vit — vi02). (125)

Then, from (93), (94), (96), (103), (108), and (123) through (125), the
transmitted waves in & > [ are



1290 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972
Vit — Yuzx) = Kl (t — Y11%)
1 * ; ;
= -—‘\/?_f 'U,(w)e_""“ cOo8 (wyeﬂ(l))e”’“’""""” dw
T v —

HVL( = yule — 1) — o[l — €0(D)])
+ Vit — yule — ) — wov[l + (D]}, (126)

and

Var(t — Yul) = Ko Ion(t — Y2it)

. i @ ) )
= _\/72— (%) f V,(w)e™ "' sin (wyed(D)e ") dy
m 1 —m

4
= %(%) {Vi(t — vz — 1) — wv[l — e8(D])

— Vit = yale — ) — eyl + 0DD}- (127)

The transmitted waves in z > [ corresponding to an incident wave
on line 2 moving to the right in z < 0, and of the form

Valt — vuor) = ’\/1_2_—”[- Uz(w)ei"“'-""’) do,

I(t = y201) = 'KL' Va(t — v207), (128)
20
are obtained by interchanging the subseripts 1 and 2 in (126) and (127).
The transmitted waves corresponding to incident waves on both lines
are obtained by linear superposition. The ensemble averages of the
transmitted waves may be calculated as before.

APPENDIX

We here apply a limit theorem due to R. Z. Khas'minskii,’ in order to
determine the limiting probability density function for the process
ef(¢/¢%), for bounded £, and ¢ — 0. Now, from (37),

j—x [0@)] = N(z),  €b(0) = 0. (129)

We assume that N(z) is a bounded, zero-mean, wide-sense stationary
stochastic process, with correlation function given by (58). Since 6 is
a sealar rather than a veetor, and moreover the derivative of f depends
only on z, and not on §, we have just about the simplest nontrivial
application of the limit theorem.
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There is only one quantity to be considered, namely,

a(x,y) = (N@N() = gl z — ¥ |), (130)

from (58). Then, in accordance with Khas’minskii’s definition,

1 X+zo X410
@ = lim ,:ff f a(z, y) dx dy]
X—0 EN To

= 21im [—1)? f T (X = 200) dz] , (131)

X—o0

after some integrations by parts. As required by the hypotheses of the
limit theorem, @ is independent of z,. It is also required that the
stochastic process N(z) satisfy a certain strong mixing condition, and
the reader is referred to Khas'minskii’s paper for a precise statement
of this condition.

For the case under consideration, the limit theorem states that, on
the interval 0 < ¢ < &, where £, is an arbitrary positive number, the
process ef(¢/€’) converges weakly as e — 0 to a Markov diffusion process
O () with zero drift and diffusion coefficient @. The drift coefficient K is
zero since the right-hand side of eq. (129) is independent of §. The
probability density function of the limit process satisfies the equation

aop _ 1.9 _
in view of the initial condition @(0) = 0. Thus,
1 — @
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