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We study the dimensionality for the class of near-end crosstalk functions
in a cable. The dimensionality is closely related to the distribution of
eigenvalues for a particular integral operator that we call the energy op-
erator. We find bounds for these eigenvalues in lerms of the eigenvalues
assoctated with the prolate spheroidal waveforms studied by Landau,
Pollak, and Slepian. The important technical observation, permilting us
to use their results, ts that though the crosstalk functions are not band-
{tmited, the degree to which they are band-concentrated can be uniformly
specified.

I. INTRODUCTION

The class of functions bandlimited to the interval (—W, W) and
considered over the interval (—7, 7') has long been held to have es-
sentially [2WT] degrees of freedom. This goes back at least as far as
the discovery of the sampling (or cardinal) series, since exactly this
number of terms in the series is available with knowledge of the function
over the interval (—7', T)." The notion was made precise and validated
by Landau and Pollak.” The fundamental quantity in their approach
was the energy (or L*-norm) of the bandlimited function over (=7, T).
The energy is computed as a quadratic form of the function and to this
there corresponds a positive definite, compact operator. We shall call
this the energy operator. The distribution of the eigenvalues for the
energy operator, 1.e., the energy eigenvalues, determine the approximate
number of degrees of freedom or dimensionality of this elass of functions.
The idea is that energy eigenfunctions with small enough eigenvalues
(or energy) can contribute only minimally to the energy in the interval;
hence, they can be disregarded. They find that [2WT] energy eigen-
functions span this space of functions within an error bound which
they compute.

To be more definite, let D5 denote the operator which acts on square
integrable functions as follows:

1347



1348 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1972

0 t¢(—T,T)

and let B, denote the operator which similarly chops off the Fourier
transform of the funetion outside (— W, W); thus, if F(w) is the Fourier
transform of {(¢), then

1 2« W ot
Byf(t) = gf ) do.

Whenever f is bandlimited to (—W, W), then Bwf = f. The energy
of this function in the interval (=T, T) is

”DTf [|2 = ||DTBWf ||2 = (D¢Bwf, D:Bywf) = (f, D:Bwf),

where we have made use of the fact that D, is a projection operator
and Byf = f. Note:

(II g |I* = _E | g |dt and (g, h) = f: g(D)h(t) dt)-

The combined operator D;By is the energy operator, and its eigen-
values are the energy eigenvalues studied by Landau and Pollak.

This paper concerns the generalization of these results on dimen-
sionality to the class of functions representing near-end ecrosstalk
transfer funetions within a multipair cable. As an approximation of
the coupling within a cable, it follows from the telegrapher’s equation’*
that these transfer funections have the form

i
N =i [ &) ds,

where T'(w) = i8(w) + a(w) (e(w) = 0) denotes the propagation func-
tion for a pair in the cable, [ is the cable length, and the coupling function
between two pair, u(z), satisfies

1
f |u(@) [P dz < o.

The physical meaning of N () is specified in more detail in Section III.
We wish to find the approximate dimensionality for the class of such
funections either as viewed over some finite interval or, more generally,
as weighted by some fixed square integrable function F(w). Our ap-
proach, again, is to set up an energy operator, then study the energy
eigenvalues to reach conclusions about the dimensionality.
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The paper goes from the general to the particular. We first introduce
a class of compact, integral operators and derive upper bounds for
their eigenvalues. Next, we show that this class includes the energy
operator corresponding to the crosstalk equation; this gives us bounds
on the energy eigenvalues. From these bounds, one ean draw quan-
titative conclusions about the dimensionality of the class of crosstalk
functions.

II. A CLASS OF INTEGRAL OPERATORS

The first problem is to determine the distribution of eigenvalues
for a special class of integral operators on the space of square integrable
functions, L*(0, I). We characterize these operators by kernels of the
form

K@) =5 [ |F@ [ Pa,oP@0) e 0sa,y<,

where F(w) is bounded and square-integrable, and P(z, ) has the
following two properties:

(?) The function P(z, w) is bounded and the integral [Z [ |P(z, w)|*

dx dw is bounded. As a consequence:

(a) The w-function, U(w) = [; P(x, w)u(z) dz is square-integrable
when wu(x) is square-integrable over (0, I). We assume its
norm is nonzero.

(b) U(w) has a Fourier transform.

(¢) The operator, By , limiting the Fourier transform to the
interval (=Y, ¥) can be applied to the functions U(w).

(72) For all u(zx) in L*(0, 1),

| Fl)(I = By)[U@)] [lw = e(Y) || u(@) ||x

and e(Y) — 0 as ¥ — «, [Note: || - ||w denotes the standard
norm on L*(—w, @) and || - ||x on L*(0, 1). Also, “I’’ denotes
the identity operator on L*(—w, «), ie., I[((w)] = G(v).]

Suppose K is the operator having the kernel K(x, i) above; then,
since the kernel is square-integrable jointly in x and y, K is compact;
Le., it has a sequence of eigenvalues, say A\, , n = 0, 1, --- , which
approach zero as n gets large (see Ref. 5, p. 264). We shall bound the
\. in terms of the eigenvalues, say \.(¥, Y), of the compact operator
denoted by My which acts on functions in L*(—Y, ¥) and has the
kernel
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1/ o (n—
Myn, 9 = o [ 1F@ [ do,

These eigenvalues are more directly accessible and better studied than
the A, , and when

<
Plo) = {1 |w| = 22W
0 |w]|>2rW
they are exactly the eigenvalues of the operator DyBy studied by
Landau and Pollak. Also included in our bounding expression will be

the eigenvalues, g, , n = 0, 1, - -+, of the compact integral operator L
acting on functions in L*(0, ) and having kernel

L,y = 5 [ P P, o) do.

[Note: Using Schwarz’s inequality on the w-integral above and then
property “(a)” for P(z, ), we conclude that L(z, y) is jointly square-
integrable in x and y, and this assures the compactness of the operator L.]

Theorem: For the eigenvalues N, , \(Y, F), and g, just defined, we have
for eachn = 0,1, ---

M = min (inf (@MY, P)! + V)T, baa),

where 0 < a, < po , 0 = b, < max, | F(w) |*, a. approaches zero as n
becomes large.

Proof: The Weyl-Courant Lemma (See Ref. 6, p. 251) implies that
. Ku, u)
v = it .0)
o ity (U, W)

forany n = 0, 1,2, --- , where S, denotes an n-dimensional subspace
of L*(0, 1) and the infimum is taken over all such subspaces. Since
(Lu, w) is nonnegative for all u(z) in L*(0, 1), we have

. (Ku, w) (Lu, w)
M= 00 SUD T W), 0)

So for all choices of S, ,

(Ku, w) (L, w)
< .
N AT e A )

Choose S, so as to minimize the latter factor. But the minimum value,



DIMENSIONALITY OF CROSSTALK FUNCTIONS 1351

by the Weyl-Courant Lemma, is exactly the nth eigenvalue of L.
Thus, when S}, is the appropriate subspace, then

(Ku, w) ) _
M = (ﬁ‘i‘f. (T, w) M) = Brtin

We claim (Ku, u) = || F(w)U(w) ||, and (Lu, u) = || U(w) ||> with
Ulw) = f ! Pz, wyu(z) dz,

from which it follows that

0 <b, <max|F)|* forall n.
To prove the claim, we have

Kus) = o= [ ") [ @ [ 1 7@ P P, )PP, ) do de dy
=5 [ 17 ¢ ([ P one as) [ P o) ay) da

= ﬁf_: | F)U(w) |* do = || F)Uw) |[%

and similarly for (Lu, u). (The integrand above is clearly absolutely
integrable, so the conditions for the Fubini Theorem are met, and the
order of integration can be switched freely.)

For the second part of the bound, the Minkowski inequality implies

(Ku, w) = (|| F(@)By[U@)] || + || Fw)(I — B[U(w)] [|u)*
So by assumption (77) on the function P(z, w) we get

(Ku,u) _ (” F(w)ﬁ':f(ﬁ(w)] o n Em)z-

w, w) =

Now choose the subspace S, so as to minimize the quantity

|| F@)By[Uw)] ||
su .
e N1BAU@Y [
But this minimum value is upper bounded by the nth eigenvalue of

the operator My , defined previously, because the Weyl-Courant Lemma
implies

() . (M}’VJ V)Y
A - T ARRE
I, 1) = inf sup TS
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where R, represents a subspace of L*(—Y, ¥); and by the calculation
above

MV, V) = | F@V (@) [,

where
Y .
7@ = [ V@) dy = BT
and the argument is finished by applying the Plancherel Theorem,
(V: V)Y = [-[7(""): 1";‘Y(‘-'-’)]m .
Therefore, when S, is the appropriate subspace of L0, 1),
(Ku, u)

M S sup SRS [(@X(F, V) + « V)T,
where
e UBMUGILLE
" ..J_S?" ” u(x) ||:
Note that
Uw) |[s _ Tu, W)\ _
0=a = Sup [|u@) |2 (sgp (u,u)) il

Also, since L is compact, a, — 0 as n — «. The inequality is good for
all values of ¥, so it is good for the infimum over Y. We have two upper
bounds for the ), ; thus the minimum of the two is also an upper bound.
This proves the theorem. Q.E.D.

IIT. APPLICATION TO CROSSTALK

The near-end crosstalk equation for multipair cable leads to an
integral operator of the type in the theorem. The crosstalk transfer
function N(w) (in the frequency domain) is related to a coupling func-
tion along the cable, u(x), by

— ! -2l (w)x
Nw) = 'awf e u(x) dz,

1]

where I denotes the cable length and I'(w) denotes the propagation
function of a pair in the cable. A good approximation to I'(w) over the
frequency range 0.1 to 10 mHz is

Fw =kiV]ew|+ike+ isgn(@k Vel
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where the exact values of the constants k, and k, depend on the gage
of the wire. More precisely, when a pair in a cable is excited by a signal
with spectrum (f(w), the coupling within the cable will produce a signal
with spectrum ((w)N(w) at the near end of an unexcited pair. The
energy of the crosstalk signal is

o [ 16N o = 3= [t

2

i
fe_”(”"u(x) dr | de
L]

By Fubini’s Theorem [applicable when w((w) e L*(—®, =) ]Jwe get,
1 ]
f u(y)f u(x).,lf | wGiw) [ e 720 do dx dy = (Ku, u).
o 0 AT J -
Here K is a compact integral operator with the kernel
K(I, ,y) - ‘)_]"rrf lmG(w) |2 e—ET(w)I—ZI“{U)y dﬁ}.

We call K the energy operator and its eigenvalues, say, A\, ,n = 0,1, - - -,
the energy eigenvalues. With a slightly more restrictive assumption
on the function (w), we obtain for the \, the same bounds as before.

Proposition: When (1 + | w|)w((w) is in L*(—w, «) for ¢ > 1 and
asymptotically for large w, Re(I'(0)) ~ " with r = 3, then the previous
bounds apply to the energy eigenvalues.

Proof: Let

—aT (w)z
1+ |l )

then the previous properties assumed for P(x, w) are satisfied. To
demonstrate this: first, it is clear that P(r, ») is bounded and it is
tailored (i.e., the g values are just large enough) to be square-integrable
jointly in z and w. Since [} e **u(r) dr is analytic in z, it follows from
the Plancherel Theorem that U(w) has nonzero norm for all u(r) in
L*(0, 1) with nonzero norm. Finally, using the Fubini Theorem,

B [ Pl onte) ae | = & [T 5 YO [ b Gy az aa

Pz, w) =

_ %f () f_wWP(x,w)dwdm

I

f By[P(x, w)ulx) dz;
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but By[P(z, )] is uniformly bounded in w for all values of z in the
interval [0, ], so

pr(z, @) = (I — By)[P(z, w)]

is square-integrable in z and for all w,
(0= BIU@IF S [ |ore,o) [da [ [0 " do
Therefore,
| Flw)(I — BU@)] |l = «Y) [l () |-,
where
L] 13 ]
«Y) = [;—T [ [ 1P a) 1 da dw] :

Put F(w) = (1 + | @ |)wG(w); then

=20 (w)x g—zr'(u)u

1 [ 2 €
é?:f_mlp(“’” 1+|w|°1+|w|°d‘°

K(z, y)

'2_11r f:, | Fw) " Pz, 0)P*(y, @) dw.

This is exactly the same form as before and so the energy eigenvalues
have exactly the same bound. Q.E.D.

Corollary: When

F(@:Jll ol =W
0 |w|>W

A = min (inf (oo 2YW)! + (Y, W)T*, o),

where a, denoles the eigenvalues associaled with the prolate spheroidal
waveforms (Cf. Ref. 2), and e(Y, w) is e(Y) with the W-dependence in-
dicated.

Proof: Since a, < uo , we can substitute u, for a, . The eigenvalues
A(Y, F) in this special case are those studied by Landau and Pollak;
they depend on the product of ¥ and W. Finally, b, = 1 in this case.

Q.E.D.
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IV. DIMENSIONALITY OF CROSSTALK FUNCTIONS

When approximating crosstalk functions over some interval (or as
weighted by some square-integrable function) by linear combinations
of functions, two practical questions arise. What is the most efficient
set of funections, i.e., the one requiring the fewest number of functions
to approximate any function in the class to a specified error tolerance?
Then, for a given error tolerance, how many of these functions are
required, i.e., what is the dimensionality?

There are at least two practical ways that information on crosstalk
dimensionality can be used. For a specified error tolerance, the dimen-
sionality gives the minimum number of independent measurements
required to determine the crosstalk as a function of frequency. Thus
it provides useful information to crosstalk measurement programs.
Also, in efforts to reduce crosstalk over a specific range of frequencies,
by subtracting linear combinations of fixed functions, the dimensionality
indicates the minimum number of independent controls needed to
meet a given criterion. Thus, dimensionality is a general concept, not
tied to any particular method, either for measuring or for controlling
crosstalk.

Before discussing dimensionality further, we answer the first question
stated above. We show that the most efficient set is the set of eigen-
functions for the energy operator, i.e., the energy eigenfunctions. This
result is a variant of Theorem I in Landau and Pollak’s paper.” Our
proof differs from theirs; and also we strive for the greatest generality
by considering erosstalk functions multiplied by an arbitrary square-
integrable function, (7(w). Later, in dealing with dimensionality, we
shall take (/(w) as zero outside the finite frequency range of interest.

Theorem: The quantity

sup min H N(w)G(w) — é a;N (w)G(w)

Niw) lajlod 1t

2

})
where the supremum s taken over all erosstalk functions with normalized
coupling function, is minimized by choosing N;(w), j = 0, -++ , J — 1,
as the crosstalk functions with coupling functions u;(x) equal fo the

(j + 1)th normalized energy eigenfunction (ordered according to decreasing
etgenvalue).

Proof: Suppose N;(w), j = 0, --- , J — 1, are linearly independent
crosstalk functions and let P, denote the projection operator onto
the J-dimensional subspace in L*(— «, «) spanned by {G(w)N;(w)}]™";
put P/ = I — P, . Then,
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= || PiN(@)G@) [ .

J—-1 2
min H N(w)G(w) — 2 a;N ;(w)G(w)
lajled 1 i=0 w
Let A denote the operator taking coupling functions in L*0, 1) to
L*(— =, =) such that

Au(z) = wG(w) f I e 2Ty (x) dr = G(w)N(w).

(Note: If A* denotes the adjoint of A, then A*A = K, the energy
operator.) The problem is to choose u(x) (with || u ||, = 1) to maximize
the quantity || PjAu(x) |2 and then to choose the minimizing pro-
jection P; .

Since P} is a projection operator,

| Pydu || = (P)Au, PhAu), = (A*P)Au, ).,

and the maximization over u(z) gives the operator norm of the operator
A*PJA, i.e., the greatest eigenvalue. We denote this by | A*PJ4 |. But

| A*PLA | = [(A*P)(P3A)| = [(PIA)A*P))| = | P AA™PS [,

which follows from the more general result that BB* and B*B have
the same nonzero eigenvalues when B is compact (Cf. Ref. 5, p. 262).
The Weyl-Courant Lemma implies that | PJAA*P]| is minimized
when P, corresponds to the subspace spanned by the first J eigen-
functions of AA* with the (J + 1)th eigenvalue as the minimal value.
Since K = A*A and AA* have the same nonzero eigenvalues, this
minimal value is A, , i.e.,

inf | A*P5A | =\, .
P

When P, is associated with the subspace spanned by {G(w)N O
where the N;(w) are crosstalk functions with the first J energy eigen-
funetions for coupling functions, then clearly

| A*PJA | = \s .

Thus, this set of functions is most efficient. Q.E.D.

We note that the supremum in the theorem has been taken over all
N(w) (with associated coupling function having unit norm, ie.,
JY | u(z) |* dz = 1). One can show that the suitable approximating
functions are the same even if the supremum is taken over N(w) with
the additional constraint, || N(w)G(w) ||. = b for a fixed value of b.

The main issue is dimensionality. Again, let N(w) be an arbitrary
crosstalk function. Suppose one wishes to approximate N (w)G(«) by a
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linear combination of fixed linearly independent functions to within
a mean square error of 3°. The preceding theorem indicates that, for
greatest efficiency, one should use the energy eigenfunctions N;(w).
The dimensionality relative to G'(w) is the smallest integer D such that
< 5

min || GONG) — 3 a6 @

for all N(w) with normalized coupling function. In terms of the energy
eigenvalues this means

A =8 but Moy > 6

This is so because for any such function N(w) there are coefficients
{b;} such that

ZbN(w) and E|b

1=0

- >
i-D

Since the eigenvalues \; are in descending order, this quantity is maxi-
mized by putting b; = {} 7D and, therefore, it must be less than &
for all choices of {b;}.

Now we wish to work out the dimensionality for the practical case
where one is concerned with a fixed frequency interval, (— W /2x, W /2x).

We modify the assumption of the corollary in Section IIT to say that
I |w| =W
0 0|2z W

Thus,

Glw)N () —

min

laj)

1+ |kw |) wllw) = {

The corollary indicates that the dimensionality (relative to &) is upper
bounded by the smallest integer D such that

(o QYW + (¥, W))*, up) < 6 (for some Y)

and the modification means only that e and the g, undergo a corre-
sponding change. The eigenvalues a,(2WY) are tabulated and plotted
in Ref. 7. They decrease rapidly for increasing D greater than the
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threshold value, 2C/r = 2/x[2YW], as indicated there. This is gen-
eralized in Ref. 8. What must be calculated is the behavior of the
eigenvalue sequence, {up}, and the function «(Y, W).

Assume ¢ = 2 and
T(w) = ki(V]w | +sgn @iV]e |) + k.
Though we leave k, unassigned, we assume relative to mile units,
k? = k, . (A typical value of k, is 8.0 X 10° second/mile for 19-gage
wire.) An upper bound for (Y, W) is (¥, «) and naturally it is tighter
for larger values of W. Explicitly,

. 1 1] -] ( 6—21‘ (w)z
< = — e
To estimate this, note that the Fourier transform of ¢*"’*/1 + (k,w)*

is the convolution of the transforms for each factor taken separately,
each of which is standard. Denote this by f(y, z}; then

T T o (2
1,0 = [ qee ™ T =" en (=22 ) &

where 7, = ¥ — 2k,z. By the Plancherel theorem, we have

2

dw dz.

ev,ms [ [ 1wy

To arrive at specific bounds on (¥, W), we bound the convolution
and then perform the y and x integrations on this bound. The derivation
appears in the Appendix; the result is

. 1 [e™ | 37 9 . {913”3 31,@-‘“”}]
‘(Y'W)gkz[m T 61 1 62.p? T ™ \32P7  8PF [’

where P = (Y — 2k,l)/k, .

The remaining unspecified quantities in the bounding expression for
the energy eigenvalues, A, , are the eigenvalues, u, , for the operator L.
Note first that these depend on the two parameters, k, and . The
former is easily handled:

% 6721‘(w)z e—zl“'(m)y de

Lo = | T4 Gl 1 Gy on O =°
Put k,w = & then we obtain

L) =i f "V o [26¢ 4+ VB — 1)) (1 f—gg‘z)a

2 JO
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and so the k,-dependence is completely specified. The I-dependence,
on the other hand, is not so easily isolated. The most important element
of the sequence, {u,}, is u, because it appears in conjunction with
(Y, W). In fact,

A = sol(@@YW) + Y, W)/uw]® forall Y.

Thus knowledge of u, gives us one completely specified bounding
expression for each X, . At this point, the question is whether this bound
is better or worse than the u, for a given n. We do not calculate the g,
here and leave this question open. Rather we shall study the former
expression in an example.

Let I = 0.1 mile. In this case, we have done a computer calculation
for g, ; the result is 1.57(k,)”". The problem is to find the value of ¥
which minimizes the bound for a given W and k, . For a fixed W, the
first term, Ve, (2YW) , is reduced by decreasing Y, and (Y, W) is
reduced by increasing Y; therefore, the best Y is some compromise
value. Let W = (mw/kyl) and ¥ = sk, for m > 0 and s > 2; then

M S uo[(an(%rSM))"

-8p ~3P/ -p/3 atl
RN O S )

15.7 \ 64 64 64(s — 2) 84/10(s — 2)
For the first eigenvalue, (n = 0) when mm = 1, then ay(2msm) =1
since s > 2 (Cf. Ref. 7, Fig. 2); consequently, u, is the best bound

available here. But when, for example, #m = 0.25 and s is chosen as
2.5, then

(ao(2msm))! ~ 0.8 (Cf. Ref. 7, Fig. 2)
and
Ao < 1[0.80 + 0.17]* & po(0.94) < po .

In this case, it behooves us to use the more complicated bound. For
19-gage wire, this choice of m corresponds to a highest frequency of
about 5 X 10* Hz.

For the tenth eigenvalue (n = 9) when mm = 1, choose s = 5.5;
then (oo (2msm))! =~ 0.99 and

Xo < 1o[0.09 + 0.09]° & 0.032 o .

This is in the vicinity of the best choice for s. This means that for
W = (1/ky) and [ = 0.1 mile, the dimensionality of the crosstalk
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functions relative to an error eriterion, 0.032 g, , is at most 10. It may
be less than 10, but one needs lower bounds on the eigenvalues to
determine that. Our technique does not carry over in any obvious way
to a determination of lower bounds.

V. CONCLUSIONS

We have calculated bounds on the energy eigenvalues to determine
the dimensionality of the crosstalk functions, Our analysis uses ideas
developed by Landau and Pollak,” but our problem has a different
character. Since any crosstalk function approaches zero for increasing
frequency at a certain minimal rate, independent of the coupling
function u(z), the eigenvalues are insensitive to increases in the band-
width W after a certain point, i.e., they saturate. This is indicated in
the bounding expression by the presence of the g, which are independent
of W. Hence, the question of which part of the bound is better depends
on W:if W is large enough, the A, will have nearly saturated to u,
and these are better, whereas smaller W-values are better handled
by the more complicated expression which is sensitive to changes in W.
This phenomena came up in our example for n = 0.

The dimensionality, as we have seen, presumes an error criteria.
Given this, one can calculate from the bound, in any specific case, an
upper bound on the dimensionality. The significance of this in a measure-
ment program or in a crosstalk control scheme is to provide a realistic
goal for reducing the number of independent measurements or controls,
respectively. Since we have not derived lower bounds for the A, , the
tightness of the upper bounds remains in question. Thus, the possibility
of achieving greater reductions than our results would indicate is open.
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APPENDIX

We wish to bound the funetion

Yo _ 2I2k2 )
121/ka _ i 1
f_m Yo —2) exp( — dz

f(y: 33) = 4k2\/7r
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by a more convenient function of y and x, both when y > ¥ and when
y < —Y. First suppose y, = 0; then

Vo/a 07212
—IZIh _ .l' kl ) l
f_ ) (yo — 2)"F exp ( Yo — 2 dz

S2\7F [ :
é yai(g) j: —lzl/ka dz = Ssz"J (;) .

Also,
Ve 2,22 )
—z/ka -3 U Ky
€ Yo — 2) " exp | — dz
‘/;‘o/a (Ju ) P ( Yo — 7
= N D) 1
< gt f v exp (—22°kYy) dy = ¢ (w/2)" ,
0 vk,
where we have put ¥y = 1/(y, — 2) in the change of variables. Thus

3k, (3) s 1 o
f(-)': ’E) JD + 4k2\ﬁ26 .

Next, suppose y, = y4 with y; > 0. Then, after changing z to —z
in the integral above, we have

; I:k[ —Hn',-'kg =° _ n-3 ( 2k2 )
fly,x) = 1, \/ﬂ_ /; y (z — yo) " exp P — dz

1 e*l;;ul/k:'

4k, v2

1A

The details of this ealeulation parallel the former case.
Since

1
ev,wys [ [ 1w [y e,
0 |lpl>Y

we can bound €(Y, W) by performing the integrations on the above
bounds for f(y, x). First we have

— —-2p /3
e 2P () 3(, (x)/3 071.2

N 30 21
flm |y, 2) [Py = i [ 6 T 61 T GanPQ)

) g-w—m:).fa Sm—l’(x)/s ]
+“%mmm“ﬂmw}’
where P(z) = (¥ — 2k,x)/k. . In the latter term we have upper bounded
3/m by 1 and have put (¥ — 2k,x) for y, (in the former ease before
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the y-integration and in the latter after one integration by parts).
Before doing the z-integration, replace P(x) by P = P(I), thus ob-
taining a greater bound; then the z-integration gives us

. Afe? | 3 e . {91@”’3 3ze-”}]
E(Y'W)gkg[m T 761 T ogp T MO \T30pF 0 gpt [

We shall always assume that ¥ > 2k,l, i.e., that P > 0.
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