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Optical Power Flow in Multimode Fibers

By D. GLOGE
(Manuscript received May 8, 1972)

Loss, coupling, and delay differences among the modes of multimode fibers
influence their transmission characteristic in a complicated way. An
approximation of the modes by a continuum leads to a comprehensive
description of these interrelations. We relate the mode power distribution
to the far-field output and calculale these distributions as functions of the
fiber length and the input. We report measurements of the far-field dis-
tributions at various lengths of a cladded low-loss multimode fiber. A
comparison of theory and experiment yields a quantitative estimate of the
mode coupling involved. We associate this coupling with random irreg-
ularities of the fiber configuration and straightness, and construct a quanti-
lative model of such irregularities.

1. INTRODUCTION

Some sources considered for use in optical communication systems
have a spatially inecoherent or multimode output and require overmoded
fibers for efficient transmission. The fibers consist of a highly trans-
parent core surrounded by a cladding of lower refractive index. Liquid
core prototypes with losses as low as 20 dB/km have been built." Solid
mutimode fibers have slightly higher losses.” A recent study of their
propagation and dispersion characteristics® showed a rather intricate
behavior complicated by the fact that hundreds of modes could propa-
gate simultaneously. These modes underwent a perpetual mixing process.
The attenuation coefficient appeared to vary from mode to mode causing
a relatively fast loss of the high-order modes.* An increase of delay with
mode number (and fiber length) was observed as expected, but mixing
and attenuation seemed to influence this relationship in a complex way.

An exact knowledge of the processes involved is of considerable
interest not only to understand the sources of loss in the fiber, but in
order to determine the signal distortion in long fibers. It has been
predicted® that under certain circumstances inereased mixing reduces
the signal distortion (ultimately forcing all energy to propagate at an

1767



1768 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1972

average velocity). But it remains to be determined what actual signal
improvements can be gained in practice from this effect. Previous
investigations of these problems,’"® although suited to show the concepts
involved, were limited to model studies involving relatively few modes.

In this work, we replace the modes by a continuum. This results in
a relatively simple differential equation which describes the power
distribution as a function of time, fiber length, and the continuous mode
parameter. The differential equation can be solved rigorously for certain
conditions which satisfactorily match experimental results. Explicit
relations result which describe the propagation characteristics as a
function of the modal coupling, attenuation, and delay coefficients.
The coupling is then related to specific imperfections of the configuration
or straightness of the fiber.

This paper is primarily devoted to the time-independent solution of
the problem. Signal distortion and, specifically, the (baseband) impulse
response of long fibers can be derived from a slight modification of
the above equations and this will be done in a subsequent paper. The
concept underlying our results developed from experiments with solid-
core fibers® but, in the meantime, measurements of long liquid-core
fibers’ have proven that these fibers follow the same concept.

II. TRANSITION TO MODAL CONTINUUM

For large mode numbers, the characteristic mode parameters change
so little between neighboring modes that their discrete values can be
replaced by one continuous variable. Consider the two-dimensional
dielectric guide-a thin film, for example-sketched in Fig. 1. We assume
that the relative index difference

A=1-—" 1)

between core index n and cladding index n, is small compared to unity.
In that case, the critical angle* for total internal reflection

6, = 4J1 — (%)z ~ V24 )

is small as well, and we can use small-angle approximations in the

following relations.
Within the high-index material, the field distribution of the mth
mode is essentially sinusoidal (see Fig. 1) with transverse wave number

* Defined here as the angle measured from the reflecting surface (see Fig. 1).
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Fig. 1—Sketch to illustrate the wave nature of the modes in the dielectric slab and
in the fiber.
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where 2a is the guide width. If & = 27 /) is the free-space wave number,

the propagation direction of a mode (i.e., its representative plane wave)
follows from

u mA
b= nk ~ 4dan’ @)

Because of Snell’s law, this angle becomes

mA
Oout = E (5)
outside of the guide. In the far field (or the focal plane of a lens), the
plane waves are concentrated about the directions +6,,, and —8,,. .
The aperture of the guide determines the angular concentration of the
two far-field “spots.” If the guide width is 2a, the spot width is of the
order of \/a.
As we learn from (4), the propagation directions of neighboring
modes differ by

A
Ad = 4an ©)

and hence by A/4a outside the guide. The modes thus form a partly
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overlapping sequence of spots in the far field, ordered according to
mode number. Consequently the far-field distribution represents a
direct image of the modal power distribution.

The transition to the modal continuum uses a continuous angle 6
instead of the discrete values (4). In this way, we arrive at a continuum
of plane waves which, in the following, will be represented by rays.
The power distribution P(6), in this continuum, is obtained by replacing
f... by 0 in the (average) far-field power distribution.

The cylindrical configuration lacks part of the conceptual clarity
associated with the plane-wave representation, but a formal similarity
permits us to arrive at an equivalent ray model which is satisfactory for
almost all probléms related to multimode fibers. We refer again to
Fig. 1, considering now a cylindrical core of radius a imbedded in
cladding material. The modal field distributions are given by Bessel
functions. In the case of a small index difference, there are degenerate
mode pairs (HE,.,,, and EH,_, ,) whose transverse mode number u is
determined by the gth root of the Bessel function®

Ji(ua) = 0. (7)
Here [ is the azimuthal order number. Fig. 2, which lists a few low-order
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Fig. 2—The order numbers of degenerate fiber modes plotted versus ua and the
effective group number m = 2au/r.
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roots, has the purpose of indicating how much the exact roots deviate
from the approximation

w=tla+g). ®

which is to be used in the following. The group with ¢ 4+ /2 = 7, for
example, which has ua = 22 according to (8), is marked by vertical
lines in Fig. 2.

Most problems of interest in multimode fibers (coupling, scattering
loss, delay) require only the transverse wave number u for a satisfactory
description of each mode. Furthermore, u can be related to a propagation
angle @ and a far-field angle 6,,,—in exact formal agreement with (4)
and (5)—through an Hankel transformation of the mode field at the
fiber end. This transformation shows that a mode of azimuthal order !
produces [ far-field spots located on a circle which is defined by the
angle 6,,, of (5). Figure 1 illustrates the situation if viewed as a meri-
dional cross section through a cylindrical configuration.

These facts suggest a description of the cylindrical modes by a single
mode number

m = 2q + L (9)

Equations (1) through (6) then obtain for the cylindrical guide as they
do for the slab. The important difference is hidden in the fact that
m of (9) comprises a group of modes with different ¢ and I. As can be
seen from Fig. 2, the number of possible combinations for a given m is
the nearest integer below m/2. As mentioned earlier, every combination
of ¢ and ! represents two (degenerate) modes. Consequently, each m
describes a group of (approximately) m modes. In the far-field pattern,
this mode group covers an annular area of ‘“radius” 6,,, and approxi-
mate “width"” A\ /a.

The transition to the continuum again converts 6 to a continuous
parameter. But # is now considered as a radial variable which covers
the solid angle 76? . We have a conceptual model which consists of a
continuum of rays within the cone =8>, whereby the modal power
distribution P(#) is obtained by replacing 8,.. in the (average) far-field
power distribution by 6 of (4).

To compute the total number of modes, we determine the highest
possible group number m, = 4anf./\ by inserting 8, into (4). If we
consider also that each group has m modes; and each mode has two
possible states of polarization, we have for the mode volume

me 2
3 om = (4—‘;?) 24. (10)
m=1
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A comparison with the more accurate number (2ran/\)’A from Ref. 8
gives an indication of the quality of the approximations used here.

III. POWER FLOW EQUATION

For the sake of simplicity, the following derivation is based on a
model which seems to have limited validity at first glance. We assume
that mode coupling takes place only between next neighbors. It will
become apparent later that the error involved in this approximation is
small if other modes couple also, but the coupling strength decreases
sufficiently fast with the mode spacing. There is experimental evidence®"’
that a mechanism of this kind is indeed present in real multimode fibers.
Fig. 3, for example, shows a measurement performed with the solid-core
multimode fiber mentioned previously.>'* The core diameter was 55 um,
the relative index difference A = 0.0046, and the nominal loss 33 dB/km.
About 700 modes could propagate. By injecting a very narrow cone of
light (through an index-matching cell), we excited about 150 of the
low-order modes. This was measured by scanning the_ far-field of the
output after 30 em of fiber. Similar measurements with longer fibers
revealed a slow but steady increase in the number of excited modes
(the angular far-field width) with fiber length. This slow increase is
considered as strong evidence of a power exchange which favors near
neighbors and decreases rapidly with mode spacing.

To simplify matters, let us again consider the two-dimensional case
first. As long as the coupling mechanism is a statistical process, we can
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Fig. 3—The increase of mode volume with fiber length measured in a multimode
fiber which propagated 700 modes.



POWER FLOW IN FIBERS 1773

ignore the individual mode fields and obtain the power distribution
directly from some form of power rate equations.” These consider the
variation dP,, in the power P,, of the mth mode along a guide increment
dz. In the time-invariant case, the variation dP,, has two causes: (z) dis-
sipation and loss (scattering) to the outside, which we comprise in a
term —a.P,.dz; (ii) coupling to other modes. Our simplified model
assumes coupling between neighboring modes only. Thus, if d,, is the
coupling coefficient between the modes of order m + 1 and m, we have

P,

& = —a, Py 4 dp(Priy — Po) + dpei(Pey — Pa). (11)

The transition to the eontinuum requires power differences to be
replaced by differentials. Especially, we set

P,.. — P, dP,

6m+1 - Bm B da . (12)
With 8,, — 6,... = Af from (6), we can rewrite (11) in the form
aP, _ ap, iP..)
e anPn + Aﬂ(d.,. 70 7 - 70 (13)
The remaining difference requires an analogous transition
dP, APy _ 4o 4 ( ﬁ)
dn"gg — dnt g5 = A0gg\dn"gp (14)

After replacing the index m everywhere by a functional dependence of 8,
we finally obtain the power flow equation
P
P e +@0r S0 2] (15)
In the cylindrical case, the index m stands for a group of m modes.
To obtain the power equation for the mth mode group, we must there-
fore sum (11) over all m members. The coefficients «,, and d. depend
only on m, and hence are the same for all group members."” However,
the coupling to the lower group (m — 1) can occur only between m — 1
members. Thus

de

& - —man,P, + md(Pniy — P,) + (m — )dpey(Proy — Pa).

(16)

m

Using (12) and a transition analogous to (14), we obtain
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P _ _ 219 ( &).

% = o, P, + (A6) a9 \Mdn o0 (17)
With the help of (4) this finally leads to

D 210 [0 dP]

% = a(6)P + (A8) 2 30 [Gd(ti) 60:| (18)

Because of the symmetry involved, we can expand « in the form
a(f) = a, + A6° + - -,

where o, comprises loss common to all modes. A loss of this kind can
later be accounted for by multiplying the final solution by a term
exp (—ea,z). For the moment, we ignore this part of the loss. Among
the higher orders, the term A6” is the most important one, because it
essentially comprises the loss caused at the core-cladding interface.
This is so because the power density at the interface increases quad-
ratically with the transverse wave number u of a certain mode® and
hence quadratically with 6. In the following, we retain only this im-
portant term.

The coupling coefficient d(f) requires the same expansion. Its zero-
order term is essential and eannot be accounted for later on. Although
no estimates exist on the magnitude of other terms, the following
derivation merely retains this first term. Its physieal significance will
become clearer as we proceed. Thus with

e = d, (19)
or
2 Y
D = (A8)? d, = (M) d, , (20)
we can write (15) and (18) in the form
P _ L on ., 3P
% A¢°P + D 36 for the slab, (21)
and
oF _ _4ppy D2 ( iff)
9 AG°P + 2 38 ] 50 for the fiber. (22)

The form of the last terms in (21) and (22) identifies next-neighbor mode
coupling as a diffusion process in the continuum.

Solutions that are independent of z can be obtained from the sub-
stitution
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P =Qe7, (23)

where ¥ denotes a (power) attenuation constant related to the “steady-
state’’ solution @. Equations (21) and (22) take the form

pEL = (46 — )@ for the slab, (24)
and
Da ( @) e _
2 20 6 20) = (Ag )@ for the fiber. (25)

The first of these equations is satisfied by the Hermite-Gaussian, and
the second by the Laguerre-Gaussian polynomials; both are well known
from the theory of the open resonator. The attenuation parameters vy
associated with each of these solutions increase with the order of the
polynomial.

Both for the slab and the fiber, the solutions of least loss have the
form

exp (—0°/6;) (26)
with
0, = (4D/A)% (27)
The power loss associated with this distribution is
Yo = (AD)} for the slab, (28)
and
Yo = 2(AD) for the fiber. (29)

The distribution (26) constitutes an optimum balance between the loss
in high-order modes and the steady outflow of power into those modes
through coupling. It is assumed, of course, that the critical angle 6. is
so large compared to O, , that the steady-state distribution (26) is not
significantly influenced by the boundary relations at 6 = 6. . If this
is not the case, the solutions of (24) and (25) have to take these boundary
relations into account.

IV. BUILD-UP FROM GAUSSIAN INPUT

Any z-dependent solution of (21) or (22) can of course be constructed
from the infinite set of solutions of (24) and (25). But in the case of the
fiber, there is a certain interest in special solutions which have an
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arbitrary Gaussian input
P;. = P, exp [—60"/6]] (30)

as initial condition. This is because it is convenient to study multimode
fibers by using a Gaussian laser beam for excitation. A high-power lens
converts this beam into the angular Gaussian distribution (30). By
observing the change in P(6) with fiber length, and the loss as a function
of various (Gaussian) input distributions, one obtains valuable infor-
mation on the power flow in the fiber.

Since both the input and the steady-state are Gaussian, it is reason-
able to try the solution

P = {(z) exp [—6"/07(2)]. (31)

Although this approach is useful both for the two- and the three-
dimensional configuration, we shall concentrate in the following on the
fiber only. Introducing (31) into (22) yields the two differential equations

A

de/dz = —5 e’ + 2D/o (32)

and
df/dz = —4Djf/ 6", (33)

‘We can solve the first of these equations for 6 and obtain

62 = e:{tanh 'Yun(z + zn)} (34)
coth v.(z + 2,)

with the steady-state parameters 6, and v, from (27) and (29). The
choice of tanh or coth and the coefficient 2z, are determined by the
initial conditions. Eq. (33) can be solved with the help of (34) and yields

f - L{Biﬂh vele + ’} 9
cosh y,(z + 2,)

A Gaussian input stays indeed Gaussian, its width approaching monoto-
nically that of the steady state. The transition function is the hyperbolic
tangent if the input width is smaller than the steady-state width and the
hyperbolic cotangent in the opposite case. For the initial conditions (30),
the solutions (34) and (35) can be written in the form

2 2
2 eo + eoo tﬂ‘nh Yol (36)

2 —
6°6) = 0= 52 1 07 tanh 7.z
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and

P,6; _
0% 8inh v,z + O cosh v,z

) = @37)

To obtain the total power in the guide, P(f) must be integrated over
all angles up to 6, . If we assume, as previously, that P(6) is sufficiently
small at the eritical angle 6, and beyond, we can extend the integration
to infinity. With (31), the total power is

o f P(6)6d6 = =fo°. (38)
0
The power loss per unit length is consequently
__Lld .
7(2) - f@z d’z (fe )' (39)
By using the differentials d©/dz and df/dz from (32) and (33), we obtain
v(2) = A6°(2). (40)
With (27) and (29) this can also be written in the form

2
The ratio (41) is plotted in Fig. 4 versus the fiber length for some specific
input conditions. The plot illustrates the loss, the solid angle covered
by the fiber output and, since this is proportional to the mode volume,
also the number of modes propagating in the fiber.
If the measured width ©(z) is small compared to the steady-state
width 6, , we can approximate (36) by

0’ = 62y,.z + OF. (42)

In this case, because of (27) and (29), ©°(z) is a straight line with the
slope

02y, = 4D. (43)
Thus measuring 6°(z) under these conditions yields directly the coupling
parameter D. The approximate linear increase of the data in Fig. 3 is

an indication of the validity of (42). A straight-line approximation of
the measured data yields

D = 7-107° rad®/m. (44)

This value represents a first approximation for the zero-order coupling
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Fig. 4 —Calculated increase of mode volume and loss with fiber length. The data
are related to the steady-state values.

coefficient d, which, because of (20), becomes d, = 16 m ™" at the measur-
ing conditions (¢ = 50 ym, A = 0.63 um). The range of the measured
data is not sufficient to draw any conclusions on the size of higher-order
coefficients in d(f).

V. TWO SOURCES OF COUPLING

Marcuse'’ has studied a dielectric slab guide with slightly distorted
interfaces. He finds that two modes are coupled if the surface imper-
fections comprise a component of wavelength A that coincides with
the ‘“beat wavelength” between the two modes. The beat wavelength
is the distance in which the phase difference between two modes increases
to 2. It can be calculated from the wave number

w (45)

2.2 ™ AL _
B = (k*n u)? =~ kn o

DO | =

of the mth mode. With u from (3), we obtain for two neighboring modes
of order m and m + 1,
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2 4q
A= B B 0 (46)
This is also the distance that a ray of angle @ requires to complete a
zigzag period in a slab of width 2a.

To deseribe the distorted slab walls, let us define a ‘“power”’ spectrum
#(1/A) of the (random) deviations 6(z) from ideally straight interfaces.
If the irregularities of both walls are uncorrelated, the coupling coeffi-
cient d(8) between adjacent modes is'’

- 1 el2)

Using this relation and (20), we can calculate the spectrum associated
with the measured coupling parameter D of (44): The result

1\ _ Da*
o) - B 2

suggests a decrease of ¢ with the fourth power of the (spatial) frequency
1/A.

This result permits us to estimate the coupling among nonadjacent
modes. As is evident from (45) and (46), modes which differ by a
small number r have the beat wavelength 4ra/6. Because of (48),
coupling among such modes decreases with the fourth power of their
order difference. It is this rapid decrease which permitted us to neglect
all coupling except that between next-neighbors in (11). The error
involved in this approximation can be estimated for the case that the
power distribution P(8) changes slowly within rAd. In that case,

P,..,— P, _dP

.~ g for r<< m. (49)

The transition from (11) to (15) then allows us to lump the coupling
of all modes from m to m + r in the coefficient d,, = d(8) which assumes
the form

L] 1 “_4
d grq = 9% d ~ 1.08d. (50)

-

This suggests that the relative error in our approximation is as small
as 8 percent.

Random bends in the guide are another source of coupling. This
problem has been studied by tracing rays through a randomly curved
slab guide."" The result relates the statistics of the ray angle 8 to the
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“power spectrum’ C(1/A) of the curvature components. Reference 11
demonstrates that components of wavelength A predominantly influence
rays with the same zigzag wavelength. For a short guide length 2, the
probability distribution of the ray angle ¢ is found to have a variance
which increases as

@) = T—f%zo(%) + o 51)

where ¢ is the variance at the input.'* These results presuppose Gaussian
statistics, for which the probability to find a ray at 6 has the form
exp (—6°/2¢°).

Let us compare this distribution to the distribution

P(8) = exp [—6°/07]

of (31). For negligible mode attenuation, the width of this Gaussian
is given by the simple relation (42). Like the varianee of (51), it grows
linearly with length. A comparison of the growth factors involved must
take the factor 2 into account which enters because of the definition of
the variance. This leads to the relation

1 w

C( A) =7 D. (52)
To compare this result with ¢ of (48), let us consider correlated

deviations of the form 6 sin (27rz/A) at both walls. Twofold differentia-

tion with respect to z transforms this into a curvature component of

the form (2x/A)*8 sin (2wz/ A). Accordingly, we can relate the curvature

spectrum to a spectrum of (correlated) irregularities

a(1) = @emye, 53)
This result transforms (52) into
1 DA*
"’“(K) = B (54)

The factor 2 which distinguishes this result from (48) results from the
correlation of the wall deviations assumed in (53) contrary to (48);" to
represent a curved slab, the deviations must be equal and in phase.

Irregularities of this kind couple only modes which differ by an odd
order number r = 1, 3, - - - . Coupling across even numbers results from
irregularities in anti-phase or—in the case of the fiber—from irregularities
of at least twofold cross-sectional symmetry. Specific parts of the spec-
trum ¢(1/A) are likely to be dominated by certain kinds of irregularities.
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The region of interest is determined by A = 4a/6 and was in our case
between A = 1 and 10 mm. Since these lengths are significantly larger
than the core diameter (150 pm), we believe that bends were the domi-
nant source of coupling. The following example therefore uses the
relation (52) for a quantitative estimate of the irregularities involved.
Although (52) applies specifically to the slab model, we shall combine
it with the fiber data (44), confident that this will illustrate at least
the orders of magnitude involved.

To obtain a more tangible deseription of the random curvature, we
assume it to be composed of randomly distributed singular deviations
of the kind illustrated in Fig. 5a. We model these deviations by single-
period sinewaves of the form § sin (2r2/A). Essentially, only those with
a width larger than A/2 contribute to the curvature spectrum at A.
If there are n of those per unit length, the curvature spectrum has
approximately the value'

C = 8x'n 8°/A° (55)

in the vicinity of A. Because of (52)

2

.
w)

2

o= gop

(56)

Fig. 5b evaluates this relation for the case of the fiber measured. Plotted
is the density » versus the amplitude & for ray periods (and angles) of
interest. For example, an average of 1000 singular irregularities per meter
would aceount for the coupling measured, if their magnitudes obeyed
the relation § = 15-107°A. That would mean that the magnitude of the
irregularities increases linearly with their length reaching a value of
15nmat A = 1 mm.

VI. CONCLUSIONS

A comprehensive description of a multimode fiber by one differential
equation is possible, if the modes are approximated by a continuum.
Under certain realistic conditions, this equation has a rigorous solution.
We calculate here the far-field output distribution as a function of fiber
length and compare this to experiments performed with a low-loss
multimode fiber. We find neighboring modes to be coupled by an average
1.6 percent per mm. Coupling among other modes seems to be at least
an order of magnitude less.

Among the possible sources of coupling taken into consideration, we
believe random bends to be the most likely. In this ease, the curvature
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Fig. 5—Deviations from straightness as indicated in (a) account for the coupling
meagured, if their density », and magnitude & are related to their length A as plotted
in (b).

spectrum has a value of 2-107 mm™" in the region of spatial ferquencies
between 0.1 and 1 mm™". Another equivalent deseription of this result
is by small hump-shaped deviations from straightness—on the average
1000 of them per meter—the magnitude of which increases propor-
tionally to their length and is about 15 nm for a length of 1 mm.

The theory derived here can be modified to include the velocity dif-
ferences among the modes and, in this way, to describe the impulse
response in the presence of coupling and loss. This will be the subject
of another paper.
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