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Pulse Propagation In a

Two-Mode Waveguide

By D. MARCUSE
(Manuseript received May 2, 1972)

The resulls of an earlier paper, describing pulse propagation in multi-
mode dielectric waveguides with random coupling, are specialized to the
two-mode case. Because of their greater simplicity, the results for this
special case provide more insight into the mechanism of pulse shortening
due to mode coupling. The two-mode theory yields a formula for the width
of a pulse carried by coupled guided modes that is found to hold also for
four modes, so that it may be true for an arbitrary number of modes. This
formula [eq. (23)] contains only the measurable distance required to
establish the steady-state power distribution and the length of uncoupled
pulses. The pulse length formula is identical with Personick’s tmportant
result. Our treatment suggests that the characteristic length appearing in
this formula may be accessible to measurement.

I. INTRODUCTION

In a series of earlier papers, the theory of multimode propagation in
dielectrie wavegmdes was analyzed with the help of stochastic coup]ed
power equations.'”® The propagation of Gaussian-shaped pulses in a
waveguide with randomly coupled modes was treated quite generally
for N modes in Ref. 3. The theory was based on the following form of
the stochastic coupled power equations:

1 9P, -
= —aP, + 3 h(P, — P). )
v, ot =1
P, is the average power in mode », v, the group velocity, a, is the atten-
uation coefficient of mode » in the absence of coupling to other guided
modes, and h,, is the power coupling coefficient. To second order of
perturbation theory, and assuming a Gaussian shape (in time) of the
input pulse, the solution of (1) can be expressed as:’

Pz, 1) = Z ar, BeBe T exp {”(tfs_c,.%v) } @
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Af, , the width of the ith Gaussian function in (2), is given by

At; = 2(7° + 4e52)h (3)

The input pulse with half width 7 and amplitude @, is assumed to be
2

P, =G, exp (—%) 4

The coefficient k; appearing in (2) is determined by the input pulse

N
ki = 2, G.B)". (5)

r=1

The vectors with components B! and the parameters o are the
ith eigenvectors and eigenvalues of an algebraic eigenvalue problem
defined in Refs. 2 and 3. The parameter a5 is the second-order pertur-
bation of the eigenvalue ' and is defined as follows:
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(6)

v is the average group velocity.

This approximate theory of pulse propagation in multimode wave-
guides holds for random coupling between the guided modes under the
assumption that the correlation length of the coupling funetion is short
compared to the distance over which the mode power P, changes
appreciably.

II. APPLICATION TO THE TWO-MODE CASE

In its full generality, the theory of multimode pulse operation is hard
to evaluate. Computer solutions are being provided in Refs. 2 and 3.
Here we want to derive expressions for the special case of two modes,
that allows us to gain more insight into the meaning of the theory. The
two-mode case has been treated previously by several authors.*® Our
results are thus not all new.

For two modes, we write hy, = hay = h. We now have to solve the

eigenvalue problem®*’
(@ — a, — h)B, + hB, = 0}. o
hBl + (ﬂ“ — Qg — h)Bz == 0

The equation system (7) has the solution
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— o) ¥
oV = h+ a + _ |:(az 4051) + hﬂ] (8)

2

— 2 H
a:m = h+ 31 ‘gaz + I:(az 4‘11) + hz] (9)

for the first and second eigenvalue. The two components of the first
eigenvector are

B{l) = (az _ al)z . 1 h (az _ aI)E . N3 (10)
P—I——+h]%y—%+2ﬁ—z——+h]}
2 i
{al — ap, + 2[@—12“:-;#])' + h{l }
2= (ay — a))’ ! . (D)
2[ : h]

The components of the second eigenvector can be expressed in terms of
the components of the first eigenvector.

BP =B  B{ = —B{". (12)

III. DISCUSSION OF THE TWO-MODE CASE

In the special case @, = a, = 0 we have the eigenvalues

al’ =0 (13)
and
P = 2h, (14)
while the eigenvectors are
B =5 BY = (15)
and
1 1
B:Z) = \7_‘; BE(Z) — _\_/:2-' (16)

There are several interesting features apparent in this special solution.
In the absence of loss, both modes carry equal power. We see im-
mediately from (15) and (16) that the sum of the squares of the com-
ponents of each eigenvector adds up to unity, while the inner product
of the two vectors vanishes. This is a general property that is also shared
by the solutions (10) through (12).
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The “loss coefficient” " of the term with ¢ = 1 in (2) vanishes, so
that this term does not decrease in amplitude as the pulse moves along
the z-axis. The “loss coefficient” a!* of the second term of (2) (with
i = 2) is equal to twice the coupling coefficient %, so that this term
becomes vanishingly small for large values of z. This too is a general
feature of (2). The lowest order eigenvalue a;" is smaller than all other
eigenvalues, so that only the first term of the series (2) remains for large
values of z while all the other terms have become vanishingly small.
Even though «” is not zero in the general (lossy) case, the multimode
waveguide always reaches a steady state which is described by the first
term of the series expansion in (2), provided that the modes are coupled.
Only in the lossless case do we find a;” = 0. It is noteworthy that the
“loss terms” exp (—a'”z) (i > 1) all become vanishingly small even
in the absence of losses. A steady-state distribution of mode power
versus mode number is thus established that is independent of the
initia] excitation of the waveguide. The decay of the higher-order terms
in (2) does not necessarily indicate power loss. We see indeed, from the
solution (16), that the sum of the components of the second eigenvector
adds up to zero indicating that no power is carried by the second term
(¢ = 2) of (2) in the absence of loss. The individual terms of (2) must not
be confused with waveguide modes. They have no independent physical
meaning except for the first term with ¢ = 1, which is the steady-state
power distribution. It is apparent that it is sufficient to study the
behavior of the first term in (2) alone, since all other terms (the second
term is the only other term in the two-mode case) become negligible
for large values of z.

We can easily define a characteristic distance that is required for
the steady state to establish itself. Once the exponential factor
exp (¢! — a'®)z has become small, the steady state is reached. We

o

thus define the characteristic length as follows

L= an
The parameter « is a number of order unity. For x = 1 we have
exp (@ — &)L, = 1/e. Thus x = 1is too small to consider the steady
state as reached. However, we can still define L, by (17) with x = 1. If
we use « = 4.6, we have exp (a!” — «{”)L, = 0.01. This number is
small enough to consider the second term in (2) as negligibly small.
For the two-mode case we obtain from (14) and (17) for the case of
low losses
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- K
= o
Finally, we study the steady-state pulse width which follows from (3),
with 2 = 1. We also neglect r in this equation, assuming that the pulse
has spread to a size much longer than the input pulse. From (6), (8),
(9), (10), and (11) we find

L, (18)

h 1
(e — a)” + 4K /T,
We used z = L, with L designating the length of the waveguide. The
factor AT, the width of the pulse in the absence of coupling, is defined as

AT = (l — —I)L. (20)

Va2 YUy

Al, = 4AT (19)

Compared to the width AT of the uncoupled modes, the pulse length
in case of coupled modes is improving with length. The pulse width
formula can again be considered in the two limiting cases. If @; — a; K h
we have

Al = V3 (hA_I:F)*' @1)

This formula shows clearly that the pulse length shortens with increased
coupling strength. In the other extreme, h < |a; — o, | , we have

h -
[(az - al)aL]

It appears strange at first that the pulse length now increases as the
coupling strength is increased. However, in this mode of operation, the
pulse length is primarily determined by the differential loss of the two
modes. If both modes travel uncoupled, one will die out while the other
carries the pulse all by itself. In this case, the pulse width is determined
only by the dispersion of the surviving mode, which is not included in
our theory. For A = 0, we thus obtain a vanishing pulse length. As
the coupling is increased, power is flowing from the lower loss mode to
the high loss mode so that the pulse width is increased by the different
delay time of each mode. It is thus clear that a small amount of coupling
causes the pulse to lengthen.

Finally, we combine the formula (21) for the low loss case with the
formula (18) defining the characteristic length that indicates where
the steady state is reached. We thus obtain the interesting result

At, = 4AT (22)
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Aty = 72'; Af‘(%)i- (23)

The factor in front of this equation becomes unity if we use x = 4. We
have seen that this value is large enough to ensure that steady state is
essentially reached. Equation (23) has been derived by Personick.* We
see from our derivation that the characteristic length I, in Personick’s
formula can be interpreted as the length that is required to reach the
steady-state power distribution.

Equation (23) was derived for the case of only two modes. It is
tempting to use this equation also for the multimode case. In order to
test the mode dependence of this formula, I solved the four-mode prob-
lem under the assumption that all off-diagonal elements of A,, vanish
with the exception of the elements directly adjacent to the main diagonal.
All non-vanishing elements of h,, were set equal to the same value h.
For the lossless case, and assuming that the inverses of the group
velocities are evenly spaced, the following formula was obtained for
the four-mode case.

]
At = 0.79 —\2/—; AT(%) : (24)

L, is again defined as the length required to achieve the steady state.
AT is the length of the uncoupled signal for the four-mode case. Since
(23) and (24) are essentially identical [(24) is even slightly more favor-
able], it might be assumed that (23) may hold independently of mode
number.

Equation (23) was derived for the case where the coupling coefficient 2
is larger than the loss coefficients e, or @, . In the opposite case, where
the losses determine the rate at which the power distribution approaches
the steady state, no simple relationship exists between L, and Al
Formula (23) is quite useful for estimating the length of the Gaussian
pulse if the distance L, , at which steady state is reached, can be ob-
served. If it is known that radiation losses are small compared to the
coupling coefficient A, the conditions exist for which (23) was derived.
However, it may well be that the region of dominance of radiation
losses over coupling strength is different for different modes. Experi-
ments have shown that the coupling mechanism in optical fibers consists
of two parts.” A Rayleigh-type background with a wide mechanical
Fourier spectrum is responsible for most of the radiation losses, while
a very sharp peak at zero frequencies of the mechanical power spectrum
is responsible for most of the coupling between guided modes. The
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broad speetrum causes more radiation loss for higher-order modes,
provided that the coupling is caused by core-cladding interface irregu-
larities. The narrow peak at zero mechanical frequencies couples lower-
order modes much more strongly than high-order modes, because of
the closer spacing (in 8-space) of the low-order modes.® The combined
effect of these two spectral regions causes a steady-state distribution
that favors the lower-order modes. In this situation, it may still be
possible to estimate the pulse performance of the multimode waveguide
by ignoring those modes that do not carry power in the steady-state
distribution and interpret AT as the pulse length that would be obtained
by the remaining modes in the absence of coupling. The steady-state
distance L, is best observed by launching only the lowest-order modes
and measuring the distance that is required until the power versus mode
number distribution ceases to change its shape.
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