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In this paper we consider some questions of implementation of a
scheme described in Section V of Ref. 1 for addressing message blocks
in the Pierce loop system.’ The scheme consists of using a stream of
binary digits (0 and 1) as the address of the destination loop of a message
such that the scalar product* of the address with a stream of binary
digits of equal length stored at a loop gives the distance between the
loop and the destination. The message is routed along a path that
minimizes distance between source and destination. The binary streams
used in this scheme ecan be obtained by factoring the distance matrix D
of the graph representing the connection of loops into two binary-
valued matrices P and @ such that

D = PQ',

where the superscript ‘4" stands for matrix transposition. The kth
row of P represents the address to be prefixed to a message destined
for loop k. The kth row of @ represents a binary sequence to be stored
in loop k. The scheme discussed in Section V of Ref. 1 provides a par-
ticular way of factoring D. For completeness, we give a description of
that factorization as follows.

Let s be the diameter of a graph on n vertices and let D be its distance
matrix. (Note: s = max;; D,;). We consider a PQ' factorization of D
with P and Q matrices each of order n X ns. The 7th row of P, P, , is
zero everywhere except in positions (s(z — 1) + 1) to si where it is one.
The 7th row of @, Q. , is constructed as follows: for every j, there are
exactly D;; 1's in positions (s(j — 1) + 1) to sj with the rest of the
entries of Q; equal to zero.

* The scalar product of two binary streams of equal length is the number of places
they both have a ‘“‘one”’.
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Obviously the length of addresses in this scheme is ns. The P matrix
defined above, rows of which are addresses to be prefixed onto messages,
is the same for all graphs with diameter s. The @ matrix, rows of which
are stored in the loops in the network, contains the information that
identifies a particular graph.

As will be discussed further, a simple mechanization of this scheme
reveals that it is essentially an obvious table look up scheme. In a table
look up scheme, each loop has stored the distance between it and every
other loop in the networks, and each address essentially provides a
signal to look up or read out a particular distance that is stored.

The above PQ‘ factorization can be transformed into a table look
up scheme in the following way. The integer ¢ (=n) uniquely specifies
the sth row of P; thus, a message address need only consist of the
binary representation of 4, which, of course, requires at most [logs n]*
bits. Each loop, instead of storing simply a row of matrix ¢, stores
a binary array consisting of n rows and [log, s] columns. The ¢th row
of this array contains the binary representation of the distance between
the loop in question and the 7th loop. The binary array can be im-
plemented by a read only memory the ith row of which is accessed by
the binary sequence representing integer 7. Note that in the original
PQ' form of this scheme, both matrices P and @ were dependent on s,
the diameter of the graph. In the table look up mechanization, s appears

* [z] means ‘‘the least integer greater than z'’.
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only in the dimension of the stored memory. (The authors had originally
considered a table look up mechanization for minimum distance routing
but had concentrated their early efforts on the more mathematically
fruitful schemes discussed in Refs. 1 and 3. It is interesting to note at
this point that the table look up mechanization has evolved in a natural
way from a special case of one of those schemes.)

The table look up scheme meets the following important criteria:

(i) The simplicity of constructing addresses is important in the
case of large graphs with no special structure. Even if one were to find
minimum length addresses similar to the ones described in Sections I,
11, and III of Ref. 1, we suspect that the construction of these addresses
would be very complicated. In the present case, each address is obtained
trivially as the binary representation of an integer.

(%) Since present plans for length of message blocks envisage lengths
of perhaps a few thousand bits, the length of the message address is
an important parameter in any large loop system. The present method
guarantees minimum length addresses, [log, n], provided that the
graph is not constrained to have a particular structure.

(#i7) The scheme can be adapted by prefixing some control digits
to do alternate routing.

(iv) Tt is simple to determine the necessary changes in the stored
memory required by updating (adding loops) or modifying the network,
gsince such changes can be identified by inspection of the distance
matrix.

(v) The speed of operation of this scheme can be very fast compared
to the speed of the message.

(vi) If the graph is hierarchical in the sense of Pierce,” except that
interconnections among loops at the local level are allowed, then routing
can be accomplished by using the Pierce scheme at higher levels, and
the present scheme at the local level.

At first it might appear that the present scheme requires longer
address lengths than the Pierce addressing scheme’ for the case of
strictly hierarchical graphs. For most cases, we show this is not so.
A hierarchical graph of & levels can be represented as in Fig. 1.

N represents the maximum of the number of branches connecting
each vertex at the (z — 1)st level, to vertices at the 7th level. Pierce’s
scheme obviously requires addresses of length D ., [log N.] bits. The
present scheme requires at most

m = [log(l + N, + N\N, + -+ 4+ NN, - -+ N,)] bits.
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1st LEVEL PR Ny

2nd LEVEL Ny

kth LEVEL A Ny

Fig. 1—A hierarchical graph of k levels.

But

m = [iog W M4 4+ + )|

If, at each level, there is at least one vertex with two or more branches
descending to the next level (this will always be the case if the levels
“fan out’’) then N, = 2 for each 7. Then

m = [logNlN,...Nk(1+%+§1§+ +%):|

< [log 2N\N, --- Ni] < [log N\N, -+ Ni] + 1.

Therefore, if each N, is a power of 2, then Pierce’s scheme gives ad-
dresses at most one bit shorter than those of the present scheme. How-
ever, if even one of the N,’s is not a power of 2, then the present method
has address lengths at most equal to those of Pierce’s scheme. In fact,
even if each N, is a power of 2, the Pierce scheme has the one bit ad-
vantage if and only if every vertex at the sth level has exactly N,,,
branches connected to the (z + 1)st level, for all levels.

In order to compare the present scheme with other schemes described
in Ref. 1, we assume that the important parameters are of the following
orders:

s = diameter of the graph ~ 6
n = number of loops ~ 10°
length of message block ~~ 4 X 10° bits.
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Then for the present scheme, the address length =~ 10 bits, or 1/4
percent of the message block length. The memory requirement at each
loop is n log, s or &~ 3 X 10° bits. For these numbers, the presently
available memories, either core or the more advanced semiconductor
memories, could be used to realize very high speed routing of messages.

For the other schemes in Refs. 1 and 3, the address length was con-
jectured not to exceed 2(n — 1) bits &~ 2 X 10° bits, or 50 percent of
the message block length. The memory requirement is of the same order
or about 2/3 of that of the present scheme.

With regard to time of computing distance at each junction, the
table look up scheme using semiconductor memory might require
on the order of 100 nanoseconds; on the other hand, the schemes dis-
cussed in Refs. 1 and 3, based on inner product or Hamming distance
caleulations, might require on the order of 5,000 nanoseconds.

These numbers, together with the six points listed previously, provide
evidence of the practical advantage of the table look up scheme over
the other schemes in Ref. 1. We have, of course, omitted discussion
of such important questions as reliability and the implementation of
updating the stored memory in each loop due to changes in the net-
work. However, these questions are of equal importance in the present
scheme and the schemes in Ref. 1, since the basic routing rule is the
same (minimum distance) and the sizes of the stored memories are
comparable as shown above.

The authors are indebted to H. 8. McDonald for helpful discussions
concerning some of the practicalities of implementing a loop switching
system.
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