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Crosstalk in Uniformly Coupled Lossy

Transmission Lines

By J. C. ISAACS, JR,, and N. A. STRAKHOV
(Manuseript received July 5, 1972)

The crosstalk between two identical, uniformly coupled, lossy transmis-
ston lines is examined. Equations are derived which can be solved to obtain
formulas for the near-end crosstalk (NEXT) and far-end crosstalk
(FEXT). An example is worked which illustrates the mutual influence of
the two lines in terms of the modal voltages and currents. The mutual in-
fluence of the two lines 1s also studied by comparing the results of this
example with the ‘‘classical” crosstalk formulas which assume weak
coupling and neglect the influence of the disturbed line on the disturbing
line. It is shown that the influence of the disturbed line on the disturbing
line can be neglected for NEXT for most weak coupling situations. For
sufficiently high frequencies and/or long line lengths, however, this in-
fluence cannot be neglected for FEXT.

I. INTRODUCTION

One of the earliest analyses of crosstalk in coupled transmission lines
was made by Campbell ;! later Shelkunoff and Odarenko® used a similar
method to analyze the crosstalk in coaxial structures. These “classical”’
formulas were derived for two parallel transmission lines with weak
coupling and matched terminations. One drawback of these analyses
is that they do not take into account the effect of the disturbed line
on the disturbing line. However, their crosstalk formulas are simple in
form and easy to analyze. Also, they are applicable to any parallel,
uniformly coupled transmission lines with weak coupling.

Somewhat later an analysis of coupled transmission lines was made
by Rice.? His results apply under quite general conditions and are
expressed in compact matrix notation. However, his results have
apparently not influenced current analyses, possibly because the
formulas are more complieated to analyze than those in Refs. 1 and 2.
Coupling between two pairs under similarly general conditions is
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given by Kuznetsov and Stratonovich.* Although the emphasis is in
obtaining results for the time domain, the basic approach is similar to
the one we will follow. The specific time domain results do not apply
to the transmission lines of interest here because the frequency de-
pendence of the primary constants is not taken into account. More
recent analyses® S have relaxed the assumptions of weak coupling and
matched lines and do take into acecount the effect of the disturbed line
on the disturbing line. Unfortunately, these analyses focus attention
on the lossless case in order to obtain crosstalk formulas which can be
readily caleulated. While the lossless case may be of interest for some
line lengths and frequency ranges, it does not cover many applications
which are of great practical interest.

In this paper, a fairly general analytical model is presented for two
identical, parallel, uniformly coupled transmission lines with a common
ground return. This model does not assume weak coupling, matched
terminations, or lossless lines. The resultant crosstalk equations, al-
though somewhat unwieldy, can be evaluated with the aid of a
computer.

The motivation for this study was, in part, to assist in the analysis
of special cables being utilized in the interconnection of equipment
racks. These cables, referred to as flat flexible cables, have conductors
that are not twisted and therefore can couple to each other strongly
under certain conditions. The results of this study are also of interest
to those studying longitudinal mode coupling effects in multipair
cable.

II. DERIVATION OF CROSSTALK BETWEEN TRANSMISSION LINES WITH
ARBITRARY CONSTANT COUPLING

The starting point for this analysis is the set of coupled differential
equations which are assumed to govern the two transmission lines.

They are
dE,

— = — (B + joL)l = joL.l: (1a)
dz
dI, .
— = = (G + juO)E — jaC.Ey (1b)
Xz
dF, . .
= —(R+ joL)Iz — joLey (10)
dz
dl, . ‘
= — (G + juC)E; — juC.E; (1d)

do
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where
E; 1is the voltage across transmission line 7, 7 = 1, 2
I; is the current flowing in transmission line ¢, 7 = 1, 2
R
L | are standard distributed resistance, inductance,
G | conductance, and capacitance, respectively
c
w is frequency in radians/s

L.| are “coupling” inductance and capacitance; the relationship to
C.] physical quantities will be derived in a later section.

A number of assumptions are tacitly implied in order for the equa-
tions to describe the physical situation. These will now be discussed.

The first and most basic assumption is that only two sets of voltages
and currents are involved in the coupling mechanism. This assumption
is readily met in the case of unbalanced transmission lines shown in
Fig. 1a. However, for balanced transmission lines, depicted in Fig. 1b,
other voltages and currents may play a role in the coupling mechanism.
They will only be negligible if each transmission line is well balanced
with respeet to ground.

Another important assumption is that the power propagating down
the transmission lines is essentially described by TEM modes. This
assumption is required to assure that the telegrapher’s equations
[i.e., (1) with L, = C. = 0] are valid.

For the time being, it is not necessary to specify whether or not R,
L, G, C, C., and L. are frequency independent. However, if these
results are translated from the frequency domain to the time domain,
the frequency dependence of these parameters will have to be specified.

GROUND-"
PLANE

(a) (b)

Fig. 1—(a) Unbalanced transmission lines. (b) Balanced transmission lines.

GROUND-™
PLANE
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Of course, it is a fundamental assumption of this analysis that the six
parameters are independent of z.

Differentiation of (la) and (le) with respect to z and substitution
of (1b) and (1d) for the appropriate quantities result in

d*E,
—— = AnE: + ApE, (2a)

dz?

d*E,
= ApE) + Ak, (2b)

dz?

where

All — (R + jCIJL}(G + ij) - WELcCc (3)
Azz = Au (4)
Ap = (R + jwLl)juC. + (G + juC)jwLe. (5)

Assuming a solution of the form E; = A,e* and E; = Ase* for (2)
yields
vy=£yt or £y

where
vt = \/Au + A,
= ([R + jo(L + LJ)JLG + ju(C + Co1}? (6)
v = VA — An
= {[R + jw(L — L)ILG + ju(C — Co)]}? (7)
and

Ay if v = £t

-4, i vy =
Therefore, the general solutions for E,(z) and E:(z) are expressed as
Ei(z) = Ater*s + A=ev* + Bte """ + B7e™"® (8a)
E,(z) = Ater* — A=ev = 4 Btev'* — Bme™r" (Sb)

A2=

where the four constants A+, A-, B*, and B~ will be determined from
boundary conditions. The corresponding expressions for the two
currents can be obtained by solving (1a) and (lc). After the required
algebraic manipulations, one obtains

1 1 1 1
= - — tr o A—pr T [ —rtz — BTz
I,(x) Z+A+e'f Z_A e T + Z+B+e + Z_B e Y (9a)

1 1 1 1
= —— +zr —  A—pr R —ytz __ _ PR—p—yz
Is(z) = Z+A+e‘f + Z_A er r + Z+B+e v Z_B e (9b)
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2, Lol I, (0
* M +c
Vi Eyqlo) * 0. Eq(2) %Zz
- o “om
Lol (9
— o
+ +
23$ Eglo) S E, () %Z‘s
o o
Fig. 2—Boundary conditions imposed on coupled transmission lines.
where .
R + jo(L + L.
z+ = [ o )] (10)
G+ jw(C + C.)
R + jw(L — L)1}
- [ =T (11)
G+ ju(C —C.)

The boundary conditions that will be imposed are shown in Fig. 2.
The corresponding boundary condition equations are:

Vi = Z,(o) + Ei(o) (12a)
0 = ZiI:(0) + E.(0) (12b)
0 = Z,I,(l) — Ei(l) (12¢)
0 = Z.0,(1) — E.(l). (12d)

Substituting (8) and (9) into (12) results in four equations for the
four unknowns A+, A~ B+ and B~. Solving for these quantities and
substituting them into (8) yield a solution* of the form

El(z) 1 1p—
;o T HR@ IR (13a)
E(x)
= §R*(x) — 1R~ (2). (13b)
Vi

The near-end crosstalk is given by #:(0)/E (o) while' the far-end
crosstalk (equal level) is given by E.(l)/E:(1).

*In principle, (13) could be derived from egs. (1.25) and (1.30) of Ref. 3.
However, applying the boundary conditions (12) to these equations leads to sufficient
algebraic complication that it is easier to derive (13) directly.

T The conventional definition of near-end crosstalk is E2(0)/V, which is equivalent
to the above definition (except for a factor of 2) under the conditions of loose coupling
and matched terminations.
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Obtaining expressions for R*(z) and R~(z) involves very extensive
algebra for arbitrary impedances and in general does not lend insight
into the coupling process. For applications where switching circuits
are involved, several special cases of interest partially simplify the
algebra in obtaining expressions for the near-end and far-end crosstalk.
Some of these cases are:

(3) Z, = Zyand Z, = Z,," (possible application to analog switch-
ing systems).
(i1) Zy = Zy = Z, Zy = Z4 = » (possible application to switching
systems using ‘‘totem pole” logic).
(i1i) Z, =0, Zy = Z3 = Z, = » (possible application to switching
systems using simple transistor logic).

These cases all involve somewhat bulky expressions, but they can be
obtained with perseverance.

The case that will be studied in detail in the following section is
Zy = Z, = Z3 = Z,. This case is of special interest for three reasons:

(i) The coupling capacitance and inductance can be related easily
to physically measurable quantities.
(#7) The conditions under which the “classical” crosstalk formulas

apply can be studied.
(i11) This case is of interest for many applications involving analog

circuits.

III. RELATIONSHIP TO PHYSICAL QUANTITIES

The behavior of the coupling process is most easily illustrated by
modifying the excitation assumed in (12). Instead of only exciting
cireuit 1, an excitation will also be applied to circuit 2 as shown in
Fig. 3. The set of equations, (12), is modified by letting Z, = Z, = Z;
= Z, and replacing (12b) by

pV1 = Z[Ia(ﬂ) + EQ(O) (14:)
where p is a complex scalar. Obviously, the case p = 0 corresponds to

the situation in Fig. 2 with equal terminating impedances. With this
substitution, (13) becomes

E;ff) 1ty 4l > ? BRI (@) (158)
Br@) _14epry 1P piw (15b)

V1
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Z| I,to) 11“’
A —-c-;.-
+ + +
Vi Eylo) R E () z,
—0 . =
z, Tolo) I,0
—_— - -

— O

+ + +
PV, E,lo) e E,i0) 2,
o~ o

Fig. 3—An alternate means of exciting the coupled transmission lines.

where N Poe™ 4=2) — Pg—v+i-o)
R,(z) = Piﬂe”” _ P.foe_.,ﬂ (16a)
R = T P T (161
Prev! — Ptert
and
Po=1+2 (17a)
Vs
Py=1— % (17b)
Poy =1+ % (17¢)
Py=1— % (17d)

It is now apparent that any excitation of the two coupled trans-
mission lines depicted in Fig. 3 will result in a response which will be a
linear combination of the two functions R;F(z) and R, (z). Therefore,
these functions will be referred to as modes. They will now be examined
in somewhat greater detail.

If p = 1, then (15) reduces to

Ei(x) B, (x)

Vi Vi

Therefore, if the two lines are energized with equal and in-phase
sinusoids, the resulting voltage distributions are given by R.;"(z). Note

= R, (z). (18)




108 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973

that R;F(z) contains terms with a + superscript and does not contain
any terms with a — superseript. This, in turn, signifies that the
propagation constant and the characteristic impedance associated with
R} (x) are given by (6) and (10), respectively. This result will now
be interpreted in terms of the distributed capacitance and inductance
associated with the two transmission lines.

Figure 4 shows a cross section of the two coupled transmission lines,
assuming symmetric excitation (p = 1). According to (18), the voltages
on the two lines are equal at every point z; this fact is indicated on
Fig. 4. The capacitance per unit length of each conductor to the
ground plane is denoted by C,, while the coupling between conductors
is denoted by C1..

Since there is no potential difference across C1., the signals propagat-
ing along the two transmission lines are not affected by it. Therefore,
each signal propagates along its respective transmission line as if the
two lines were uncoupled and with distributed capacitance:

C 4 Cc = Cﬂ' (19)

The distributed inductance can be expressed in terms of C; using the

relationship:
(¢ + Co) (L + L;) = pe, (20)

(See, for example, Chapter I, Sec. 4, eq. (31) of Ref 8.) This
formula is applicable to the case where the frequency of excitation is
sufficiently high that the magnetic field penetrating the metal con-
ductors contributes a negligible amount to the coupling inductance.
Thus

L+ L= (21)
c Cn
Turning now to the case p = —1, eq. (15) yields
Ei(x) Ex(x) _
= — = R,(z). 22
a i (z) (22)

The propagation constant and characteristic impedance associated
with this mode are expressed by (7) and (11), respectively. As with the
previous mode, this mode behaves as if the two lines were uncoupled
but with primary constants R, G, C — C,, and L — L.. To see how
these are related to the physical capacitance, it is convenient to
depict the voltages and capacitances as shown in Fig. 5.

As indicated by (22), the voltages on each transmission line are
equal but opposite in sign. A vertical line between the two conductors
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Ci2

&z . L 2
GROUND PLANE

Fig. 4—Cross section of two coupled transmission lines—symmetric excitation.

must therefore constitute a surface of ground potential. Thus, the
total capacitance to ground influencing a signal propagating along
either line is given by

C - Cc = Cg + 2012. (23)

As in the previous case, one may take (C — C.)(L — L.) = ue if the
frequency is sufficiently high. Thus
ue

L—-L =———. (24)
Ca + 2012
Combining (19) and (23) to solve for C and C, yields
C = Cg + C]z (25)
and
C. = —Ch, (26)
while combining (21) and (24) to solve for L and L, results in
C ¢
L= pe—ttl2 (27)
C,(C, + 2C12)
and o
= 12 (28)

pe———————
Co(Co + 2C12)

One final observation is that, in the higher frequency bands of in-

|E-O
¢, | 2,y
l +
E" | E -
Cq =, ’ Cg = E2=-E,
{ _
TS TTI7 7 2 VAT TP

GROUND PLANE

Fig. 5—Cross section of two coupled transmission lines—asymmetrical case.
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terest, the following approximations can be made with little error:

R 1

T*EE—Z—;-F Jwve (29a)

~E jwV e 29b

T Z_+.7w e (29b)
L + L}

e 2
(0+c=) (29¢)
L — L}

z—g( ) (29d)
C—C.

(See Chapter II, Sec. 13, egs. (18), (8), and (6) of Ref. 8.)
Substituting eqs. (25) to (28) into the above equations yields

1 RC, .

yt=— + jwVpe (30a)
2 e
1R(C, + 2C .

= R(Co + 20u) | jwVue (30b)
2 e

I+ = Vue (30¢)
Co

- _\[I;___ (30d)

Cy+ 2C2

Thus, the R, (x) mode has a higher loss and smaller characteristic
impedance than the E,F(z) mode.

It is now possible to outline a measurement procedure that will yield
all quantities required to evaluate (13). Since the effective dielectric
constant surrounding most physical transmission lines is determined
by the detailed geometry of the insulation and shields surrounding
each conductor, the quantity vue will be assumed unknown for the
following procedure, even though p and ¢ may be known for each
constituent material in the transmission line.

Step 1. Measure C, and Cia.

Step 2. Terminate the coupled pairs in four equal impedances Z,
and energize the two lines from the same voltage generator. The
generator frequency should be in the range for which the approxi-
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mations leading to (29) and (30) are valid. In other words, terminate
and excite the lines as shown in Fig. 3 with p = 1.

Step 3. Adjust all four impedances, Z,, until R; (1) is a maximum.
It is easy to show that in this case Z, = Z*. Using (30c) and the value
of C, from Step 1 gives Vue.

Step 4. With Z, = Z*, measure R.'(l) which equals (%) exp (—vy*l).
With y* given by (30a), R can be solved for directly, given the length
of the coupled lines, I.

Step 5. The remaining quantities, v~ and Z~, can now be evaluated
using (30b) and (30d). Note that there is an additional check on the
value of Vue through the imaginary part of y+.

IV. COMPARISON OF RESULTS WITH CLASSICAL CROSSTALK FORMULAS

We now use the results of the previous section to analyze the
‘‘classical”’ crosstalk formulas as derived by Shelkunoff and Odarenko.?
Their analysis assumed uniform weak coupling between two parallel
transmission lines terminated in their characteristic impedances.
Assuming the two transmission lines had identical primary and
secondary constants, they derived the following formulas for near-end
crosstalk (NEXT) and far-end crosstalk (FEXT):

Zlﬂ
= — e 2volw)i
N@) = (1 —e ), (31)
F(w) = ulez 32
(w) - 220 1] ( )

where Z;, Z), are the mutual impedances between the two lines for
NEXT and FEXT, respectively, Z, and v, the secondary quantities
of an isolated line [i.e., (10) and (6) with L, = C, = 0], and ! the
length of the lines. The above formulas were derived neglecting the
effects of the disturbed line on the disturbing line. In the discussion
that follows, we shall examine the validity of this assumption.

Referring to (6), (7), (10), and (11), and assuming L, < L, C, < C,
and Z, = Z,, it can be shown that

Zx = Zo + 6 (33&)
Jw 2
6 = — (L, — C.Zy) (33b)
270
— K1 33
Z: (33c)
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and
yE = yoE € (34a)
(et CZ) (34b)
€ Jw ZZD
Sl (34c)
Yo

Now using (33), (34), (13), (16), and (17) one can show that

0
a0 _ (1 — g2 [cosh (2el) — JZ] sinh (24)])
 Ei(0) %o o

where the approximation is obtained by only assuming weak coupling.
Now for sufficiently small |el|, the term in brackets is approximately
unity so that (35) becomes

(35)

w

0
o~ — eg—2vol
N(w) = 7 (1 — e?nh)
Jw
dvoZy
This agrees with the Shelkunoff and Odarenko result, (31), with
Zi = ju(Le — C.Z§).

For larger values of I/, the exponential term in (35) can usually be
neglected for lossy lines. In the lossless case, the term in brackets will
cause a departure from the classical formula for sufficiently large lel|;
however, in weak coupling situations, the length and/or frequency
required to invalidate the approximation cosh (2el) =2 1 are usually
large enough to invalidate the lossless assumption. Thus, for most
practical situations involving weak coupling, eq. (31) is adequate.

We now consider far-end crosstalk. Again referring to (13), (16),
and (17), letting z = [, and assuming the conditions for weak coupling
exist, it can be shown that

Fw)=

(Lo — CZy)(1 — e-2nt). (36)

et — g7t

ert 4 el . @37
Substituting (34a) into (37) results in

e—d —_ etl
e—el + eel

= —tanh (el). (38)

Fw)=
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Referring to (34b), for sufficiently large w, Z, is a real constant and ¢
is an imaginary number; thus, (38) can be written as

F(w) == —jtan (— jel) (39a)

>~ —¢ for |ed| =

|y

(Lot 20

Jo o7, (39b)
Therefore, for |el| = (7/6), eq. (39b) agrees with (32) with Zj,
= — jw(L; + Z§C.). Shelkunoff and Odarenko® point out that (32)
must not be carried to an absurd conclusion: namely, that most of
the far-end power will reside in the disturbed circuit for sufficiently
long transmission lines. They conjecture that, in the limiting case, the
far-end power will divide equally between the two lines. Equation
(39a) indicates that the far-end power oscillates back and forth between
the two lines as a function of I (or frequency, since e is a function of w).
Equation (39a) is valid over a larger range of ! than (32) (or 39b),
although it is not valid for all I, since it is based on an approximation,
(34), which is multiplied by I. To be more specifie, (6) and (7) can be
written as

v = [(v0 = @’LL2) £ jove(ZeC + Lo/Z0)) T}
. \ ,
- 70[1 + 2 L+ 0.2) - “’—L.,G,:l . (40)
Yoo Yo

Assuming the conditions for weak coupling (L, < L, C. < (), the
third term in the brackets is much smaller than the second term, and
the second term in the brackets has a magnitude much less than unity,
so (34) is a good first-order approximation to (40). Now for Z, a real
constant, e is an imaginary quantity. However, for any given frequency
the higher order terms from (40) contain real parts which will dominate
the behavior of the exponential terms in (37) for sufficiently large I.
Thus, referring to (37), in the limit as [ — <,

1 — elvt=—7)t

lim |F(w}| = lim m

(B lsm

= 1. (41)

The same result is reached by fixing ! and letting w — .
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In summary, when weak coupling conditions exist, the effect of the
disturbed line on the disturbing line can be neglected for most NEXT
caleulations; however, for a sufficiently large | and/or w, the effect of
the disturbed line on the disturbing line cannot be neglected for
FEXT calculations. This is because, for certain values of | and/or w,
the far-end power in the disturbed line will be comparable to the far-
end power in the disturbing line.

V. CONCLUSION

An analytical model for analyzing crosstalk between two identical,
parallel, uniformly coupled transmission lines with ground return has
been presented. Using this model, formulas were developed for the
two sets of modal voltages and currents on the transmission lines. It
was found that each mode has associated with it a propagation factor
and characteristic impedance which, in general, are different for each
mode.

By applying different sets of excitation voltages to the two lines
(changing boundary conditions), the effect of each line on the other
can be analyzed in terms of the modal quantities. Using this technique,
formulas were derived for the coupling eapacitance and inductance in
terms of the distributed capacitance and distributed inductance of an
isolated line, the distributed capacitance to ground for the nonisolated
lines, and the permeability and permittivity of the medium surround-
ing the transmission lines.

The mutual influence of the two lines was also studied by assuming
weak coupling between them and then deriving NEXT and FEXT
formulas using this model. These formulas were compared with the
classical formulas which do not take into account the influence of the
disturbed line on the disturbing line. In the case of NEXT, the effect
of the disturbed line on the disturbing line was found to be negligible
for most practical cases. In the case of equal level FEXT, however, the
effect of the disturbed line on the disturbing line can be quite signifi-
cant for sufficiently large line length and/or frequency.
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