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This paper presents a collection of formulas that are necessary for the
treatment of radiation and mode conversion phenomena of imperfect
asymmelric slab waveguides. The coupled mode theory of dielectric wave-
gutdes is briefly reviewed, and general expressions for the coupling coeffi-
cients are given. The field expression of the guided and the radiation TE
and TM modes of the asymmetric slab waveguide are stated, and are used
lo derive formulas for the coupling coefficient for slight core boundary
irregularities.

I. INTRODUCTION

Mode coupling phenomena and radiation losses caused by core-
cladding interface irregularities have been studied extensively for
symmetric slab waveguides and for round optical fibers.!~7 These
results are not immediately applicable to the asymmetric slab wave-
guides used in integrated optics circuits. It is the purpose of this paper
to collect the formulas for the normal modes of the asymmetric slab
waveguides, and for the coupling coefficients between guided modes
and guided and radiation modes caused by core boundary irregularities
of these waveguides.

The coupling coefficients between guided modes are useful for the
design of distributed feedback sections for lasers and for an evaluation
of unintentional mode coupling caused by core boundary roughness.
The results collected in this paper are further necessary for the evalua-
tion of radiation losses caused by core boundary roughness.

Because of the many parameters that enter into the theory, it is
impossible to evaluate the formulas in graphical form for all cases of
practical interest. This paper is thus a collection of the required
formulas which the reader can use to evaluate his particular problems.
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II. SUMMARY OF THE COUPLED MODE THEORY

The coupling theory is based on an expansion of the solution of
Maxwell’s equations in terms of normal modes. The general theory of
the mode expansion and the derivation of the coupling coefficients have
been published by A. W. Snyder.?-* His theory is based on local normal
modes. Loeal normal modes resemble the modes of the ideal asymmetric
slab waveguide with perfect core boundary. However, the boundary
of the perfect guide is allowed to change in such a way that it coincides
with the actual deformed core boundary at the particular point z along
the waveguide axis at which the coupling coefficients are to be eval-
uated. Since the waveguide width parameter is no longer a constant,
the local normal modes are not themselves solutions of Maxwell’s
equations. They must be superimposed with z-dependent expansion
coefficients to form such a solution. The fact that these modes form a
complete orthogonal set and coincide with the modes of a fictitious
waveguide, the width of which is locally (at the point z under consider-
ation) the same as that of the deformed waveguide, explains the name
“local normal modes.” It is also possible to express the general field
in terms of the modes of the ideal waveguide, the constant width of
which differs slightly from that of the actual waveguide. This expansion
suffers from convergence difficulties that are caused by the fact that
the normal components of the electric field are discontinuous at the
core boundary. The modes of the ideal guide are discontinuous at the
dielectric interface of the ideal guide which does not coincide with that
of the actual guide. The expansion in terms of ideal modes of the
waveguide is thus discontinuous term by term at a point where the
entire series must be continuous, and furthermore, it must describe a
discontinuous field at the interface of the actual waveguide at a point
where each individual term of the expansion remains continuous. The
expansion in terms of local normal modes, on the other hand, describes
the field discontinuity with a series, the individual terms of which
are discontinuous in just the right way at the point of discontinuity of
the entire series. The convergence behavior of this latter expansion
can thus be expected to be superior to the expansion in terms of ideal
modes.

The electric and magnetic fields of the imperfect asymmetric slab
waveguide are expressed by the series expansions

E = Z (c:'+) 8,(+) + 6:_) a:——)) (1)

H - E(f+’scf+’+ o5 ). @



ASYMMETRIC SLAB WAVEGUIDES 65

The expansion coefficients ¢{* and ¢ are functions of the length
coordinate z. The superseripts (+) and (—) indicate waves traveling
in positive and negative z-direction. The sums in (1) and (2) are
symbolic representations of a summation over guided modes plus an
integration over the radiation modes of the continuum.*® In order to
simplify the notation, both sum and integral are indicated by the
same symbol. In the integral, the summation index » is replaced by
the continuous variable », and the sum must be understood as the
integral

> — / dv. 3)
v 0
The local normal modes E, and H, are solutions of the equations
FiB,(e. X 37) + V. X 5 = iwen?ey " (4)
FiBy(e: X &) + Vi X &F = — iwpddes” . (5)

The upper and lower signs and superseripts belong together. The
symbols appearing in these equations have the following meaning.

8, = propagation constant of mode »

e; = unit vector in z-direction

V., = transverse part of the operator V

w = radian frequency

eo = dielectric permittivity of the vacuum

4o = magnetic susceptibility of the vacuum

n = dielectric constant of the waveguide [n = n(z, ¥, 2)].

It

Substitution of the field expansions (1) and (2) into Maxwell’s equa-
tions and use of the orthogonality relations [see (9)] lead to the set

X ny >n3
o X= flz)
n /
2 /
/-L\ z
P n— >
s —— —~——
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ny d | CORE
— — N _ = -
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~ x = —d+h(z)

Fig. 1—Sketch of the asymmetric slab waveguide with distorted core boundaries.
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of coupled wave equations?:3-

de ) -
= — i + > Koo + Ko7 (6)
de, ) ) ) &
= zﬁ#cﬂ - Z ( + K}w v )- (7)
dz
The coupling coeflicients have the form?-
+)
1 * d8&, *
Ko =— {:l: ( X g, )-e,
4P J_» 9z
-+
* axe,
—-p (SEH X )-ez} dr. (8)
9z

The asterisk indicates complex conjugation. The superscript p stands
for (++) or (—) while the factor p assumes the values +1 and —1.
P is a normalization parameter which is related to the power carried
by the modes via the relation

%f (&5 x 37"y -eudx = Péy. (9)
The symbol §,,r indicates the Dirac delta funetion if both » and #'
represent continuous variables, it represents the Kronecker delta
symbol if both » and »’ are discrete labels, and it is zero if one subscript
belongs to diserete modes while the other indicates a mode of the
continuum.

The coupling coefficients (8) are not very easy to evaluate since they
are expressed in terms of derivatives of the mode functions. A. W.
Snyder? has shown that the coupling coefficients can be transformed

to the following more useful form. (8, = —g,*?)
on? -
ik — / 8" -8 de. (10
4p(5<i) — 5(:)) B az

The coupled wave equations (6) and (7), with the coupling coefficients
(10), provide an exact description of imperfect dielectric waveguides.
The one-dimensional integral in (10) constitutes a specialization to a
two-dimensional problem in view of our interest in the asymmetric
slab waveguide. By extending the integration over the cross-sectional
z, y plane, the general coupling coefficients are obtained.
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For our purpose, it is advantageous to derive approximate coupling
coefficients for asymmetric slab waveguides with discontinuous index
distributions. We use the fact that the normal component E., of the
electric field obeys the relation

1Bz = naBaes. (11)

It is shown in Fig. 1 that n; and n. are the values of the refractive
index at either side of the interface. In order to derive the desired
expression for the coupling coefficient, we assume that the discon-
tinuous index distribution is smoothed out (in an arbitrary way) into
a continuous distribution. We assume that the wavelength of the
radiation is very much larger than the region over which the refractive
index varies continuously and write
2

51
E. = —Eun. (12)
n?

We show in the appendix how the integral in (10) can be evaluated and
obtain the result

2
(+.2) weg { 2 2df|:n1 (2)* _(») )+

uy (nl - nﬂ)_ 25;[.1: gvz + gpy ‘)

8.y

4P(g® — W)

dh [ns
+ sﬁf"é’ff’] — (nl = S [Jsif"aff’
2= (2) dz

2

(X)* ,(p) (£)*

+ guy gvy + é’nz

(»)

8" ] } . (3)
r=—d+h(z)

The index distribution can now again be considered as discontinuous.
The functions f(z) and A(z) deseribe the deformation of the upper and
lower side of the core boundary (see Fig. 1). The field components are
taken inside the core region at the core boundary. The refractive index
of the core is n, while n, and n; are the indices above and below the
core region. The electric field components are related in the following
way.

=) +)

gv: = gn:
8,(,,_) _ gf:) ] (14)
& = —&7

The approximation involved in the coupling coefficient (13) consists
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in using the = component E,. and z component E,, of the local normal
modes instead of their normal and tangential components with
respect to the interface. The approximation is valid provided that

af

dh
— K1 and — K 1. (15)
dz dz

For many practical applications it is sufficient to use an approximate
solution of the coupled wave eqs. (6) and (7). In particular, for the

calculation of the radiation loss coefficient, we use the approximate
solution of (8) (u = p)

(+) @ &) [T
Cp:t (2) = ¢, eife ‘[ e O
0

-exp [—i f 6 ) - ﬁf,*’)du] du. (16)

The coefficient ¢ is the amplitude of the guided mode, the losses of
which we want to calculate, taken at z = 0. The propagation constant
B, is a function of z since it belongs to a guided mode in a non-uniform
waveguide, 8, is independent of z since it belongs to a radiation mode.
The relative power loss AP,/P, that mode » suffers in traveling from
z = 0 to z = L is given in Refs. 5 and 6.

AP,
P, e

1 ngk
SR [ et @ a7

The sum in front of the integral sign indicates that we must add up the
contributions of forward and backward traveling modes as well as
the contributions from the various kinds of radiation modes that will
be discussed in the next section. The integral extends over the range
of p values that belongs to propagating (non-evanescent) radiation
modes. We show below that the functional form of the radiation
modes is not the same over the entire integration range.

III. MODES OF THE ASYMMETRIC SLAB WAVEGUIDE

We consider only the special case in which there is no field variation
and no waveguide distortion in y direction. This fact is symbolically
expressed by the equation

3
— =0 (18)
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With the restriction (18), the fields of the slab waveguide can be
classified as either TE or TM fields.® The TE fields have only the
following non-vanishing field components

E, H, H.. (19)
The TM fields have the non-vanishing field components
Hy, E., E.. (20)

It is assumed that the refractive indices of the waveguide are ordered
in the following way

Ny > Mo g n3. (21)
IV. GUIDED TE MODES

The z and z components of the magnetic field follow from the E,
component by differentiation

1 oE,
H, = (22)
wuo 02
i E,
wuo 0T

The guided TE modes of the asymmetric slab waveguide are obtained
as follows (the factor exp[Z(wt — B2)] is always suppressed) :

&, = Age " for 0=z <»> (24)
&, = Ag(cos KT — —sm xa:) —d=z=0 (25)
& =4 (cos xd + - sm xd)e””“" for —w<zs—d (26)

The parameters appearing in these field expressions are defined by the
equations:

¥ = B — nak? (27)
0 = 8 — nok? (28)
@ = mik? — @ (29)

k? = wlepuo. (30)
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The propagation constant 3 is determined from the eigenvalue equation

k(v +6)

31
g 31)

tan «d =

The normalization of the mode is obtained by expressing the amplitude
coefficient 4, in terms of the power P carried by the mode.

2 _ Ao P . (32)

1 1
sl(a+ =+ )+
¥ 7]

a

The mode labels », that were used in the coupled wave equations and
the field expansions, are suppressed. The modes are labeled according
to the solutions of the eigenvalue equation (31).

V. TE RADIATION MODES

The propagation constants of the radiation modes do not have a
discrete set of values. However, the asymmetric slab waveguide has
different types of radiation modes. In the range

nyk £ B = nak (33)

we find only one type of radiation mode, the fields of which decay
exponentially into the region three with refractive index ns, but are
standing waves in the space above the waveguide with refractive
index n,. We can visualize the physical mechanism for exciting these
modes by assuming that a source at infinity sends a plane wave that
impinges on the core of the slab waveguide under an angle that is
given by

oosa = - (34)
’nzk

The incident plane wave penetrates into the core region but is totally
internally reflected if the angle a stays in the range given by (33).
This total internal reflection occurs because we assumed that nz < ns.
In the space above the core we find a reflected wave added to the
incident wave supplied by the external source. This explains the occur-
rence of standing waves in this region. It is not possible to find solutions
of Maxwell’s equations satisfying the boundary conditions which have
only traveling waves outside of the core region.

In the range of propagation constants given by (33) we find the
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following expression for the field of the radiation modes

& = A, cospr + —B,sinpz  for 0<gz<w (35)
p

& = A,cosor + B,sinex for —d=z=0 (36)

&, = (A;cos ¢d — B.sin ed)e~ 20+ for —woJzx = —d. (37)

H. and H, are obtained from E, with the help of (22) and (23). The
constant B is related to the constant A by the equation

A — ¢ tan od

B, =——A4, (38)
A tan od 4+ io

and the parameters appearing in these equations are defined as follows

o = mik? — B2 (39)
pt = nak? — B2 (40)
A? = mak? — 2 (41)

Note that A is imaginary for g values in the range given by (33).
It is convenient to identify the parameter p with the mode label »
to label the radiation modes. We thus use the identity

by = 8(p — p) (42)
in (9) and find for the amplitude coefficient A the relation
A 2
*} ¢ cos od + — sin d)
. dupoP ? (6 T e
= - (43)

T owlel AN . A ?
pz(o' cos od + —sin od +a'2(a sin ¢d — — cos crd)

2 T

With 8 in the range (33) we find that p is confined to the region

0<p< (ns — ny)k. (44)

Next we proceed to list the radiation modes that belong to propagation
constants in the range

0= B=nk B real

=
_ o . (45)
0= |8] <= @ imaginary

and
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The corresponding range for p is given by

(nz - ni)*k <p <o, (46)

For real values of 8, these modes propagate along the z axis while they
are evanescent waves in 2 direction for imaginary values of 8. It is
again possible to visualize the modes in the range (46) as being excited
by a source outside of the waveguide core located at infinity. This
source sends a plane wave toward the slab whose angle of propagation
with respect to the z axis is given by (34). However, there is now no
longer total internal reflection at the lower boundary of the core so
that we obtain an incident and reflected (in z-direction) wave in the
space above as well as inside the core. Below the core there is a trans-
mitted propagating wave. However, we may now assume with equal
justification that a second source sends a plane wave in the direction
of the core from below. If both sources are turned on simultaneously,
we obtain standing waves (in z-direction) below as well as above the
waveguide core. The exact form of the radiation field depends on the
relative phases between the two sources. It is thus not surprising that
there should be an infinite number of ways in which orthogonal sets
of radiation modes can be constructed.

We list only the £, components of the modes and obtain the H. and
H, components by differentiation from (22) and (23). (« = 1, 2)

& = C,(cos px + EF‘- sin pa:) 0=z <> (47)
p
8§ = C/(cosoxr + Fisinox) —d=z=0 (48)

&, = C’r‘(cos od — F;sin od) cos Az + d)

+§(sinud+F,~c08crd)sinA(z—I—d)} —w<z=s —d (49)

The parameters o, p and A are given by (39), (40) and (41), A is now
a real constant. Whereas the amplitude coefficient B, in (35) through
(37) was related to A, by the boundary conditions, we now face the
situation where the amplitude coefficient F'; remains arbitrary. Equa-
tions (47) through (49) satisfy Maxwells’ equations as well as the
boundary conditions without any further restriction having to be
imposed on the coefficient F;. This freedom of choice is related to the
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arbitrary amplitude and phase of the two plane wave sources of the
radiation mode mentioned above. We must choose F; in such a way
that two radiation modes with the same value of the propagation
constant, but different values of F; become mutually orthogonal. But
even this requirement does not specify the possible values of F;
uniquely. We are thus free to choose F' values according to our own
convenience. Of the infinitely many possibilities, we choose the F,
coefficients such that in the limit n, = n;, even and odd radiation modes
result. In the asymmetric slab waveguide no even or odd modes exist.
But the guided modes become either even or odd as n. approaches
n3. We obtain the same symmetries for the radiation modes by a
suitable choice of the F; coefficients.

1 A
F., = 2 _ A2 2¢d + — (o2 — p?
2 (e* — A?) sin 200‘.[(0 ) ooa 2o p (e = #)

A
+ |:(o'2 — A?)?2 + 2—(o? — A2)(¢® — p?) cos 20d
p

A? 4
+2e-r]]. oo
p2
The + sign (— sign) belongs to the odd (even) mode in the limit
n: = n3, A = p. We identify the mode label v again with the transverse
propagation constant p, and obtain from the normalization condition
(9) and (42) the relation between the amplitude coefficient C, and the
power P

A
—(cos ¢d — F;sin od)?
p

s dwueP [

2

2 —1
Z_(sin od + F; cos od)* + 1 + f'—F.-ﬂ:I . (51)
Ap p*

o

-+

We have thus obtained two distinet sets of radiation modes, the
propagation constants of which lie in the range (45). The two sets are
distinguished by the labels 7 = 1 and 7 = 2. F; and F; follow from (50)
if we use both signs of the square root expression. It is noteworthy that
the following relation holds.

Wy, = —1. (52)

This listing contains the complete set of TE guided and radiation
modes consistent with the restriction (18). All modes are mutually
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orthogonal to each other. We have concentrated on the forward
traveling modes. The backward traveling modes are obtained simply
by changing the sign of 8, (87 = —g)).

VI. GUIDED TM MODES

The TM modes are very similar to the TE modes except that the
roles of the field components are interchanged. We now list only the
H, component and obtain the E. and E. components of the field by
differentiation

i dH,
E, = (53)
n”weu 0z
—1i 0H,
E, = 2 (54)
nlwey 9T
3¢, = D~ 0=z <™ (55)
2
nyvy .
i, = D,,(cos Kz — — —sin x:c) —d=z=0 (56)
n «
2
Yy .
i, = D,(cos xd + —, —sin xd)e”“““ —wo<z=Z —d. (57)
n? «
2

The parameters «, ¥ and @ are defined by (27) through (29). The
eigenvalue equation is
nix(n:'y -+ n:G)

tankd = —— (58)
ninid — niyf

and the amplitude coefficient is given by

2 4NEQP
n =
18]
nzn;xz
1
X 2 2 ) 2 2 + (69)
(n4n2 n 'nd'yz)[d n Ny k> + vy nmng k% 4 6° ]
’ ! v n;xz + n:72 ] n;u2 -+ 'n:B2
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VII. TM RADIATION MODES

The TM radiation modes must again be split up into two ranges.
In the range 0 < p < (ni — n3)ik, the fields have the form

2

T o
¢, = D, cos pz +—:—G,sinp:c 0=zr<w (60)
np
1
¥y, = D, cos or + G, sin ox —d=zx=0 (61)
¢, = (D, cos ed — @, sin ad)e A (=+d) —w=<z = —d (62)

The boundary conditions require that G, is related to D, in the following
way:

2 L2,
n1A cos od — inge sin od

G (63)

r = . .
an sin od + 'm,ztr cos od

The parameters o, p and A are defined by (39) through (41), —1A is
a real positive quantity. The amplitude coefficient D, is related to
the power coeflicient P

2 4n:weoP 1
= 4 . (64)
'"'|3| ne ot G,
n: p? D2

In the range (n2 — n3)% =< p = = the radiation modes have the form
(z=1,2)

2
n
Je, = Sr(cos px + —: ER,- sin px) 0=z <= (65)
n:p
1
3, = S;(cosox + R;sinex) —d=<z=0 (66)

i, = S,I(cos od — R;sin od) cos A(z + d)

2
+ n_: %(sin od + R, cos od) sin A(z + d)

n
1

—0<z< —d (67)
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The coefficients R; are again arbitrary. Our choice

1
Ry, = {(ﬂ;rr2 — n:N) cos 2od
(n‘a — n‘Az) sin 2¢d

2

ns A 4 4 ng A2 4 4
+ ——(ﬂgﬂ' - nlpz) =+ | (n3e? — n1A2)2 + — —(ngo? — nyp?)?
n P n; p?

ﬂ.; A 4 4 4 4 }
+ 2—2‘ '—(7130'2 —_ nlAz)(nga’ - n,pz) cos 2ad (68)
np
2

causes the modes with index 7 = 1 to be orthogonal to the modes with
index 7 = 2 and, in addition, assures that these modes become even
and odd in the limit n. = n;. [The + sign (— sign) belongs to the
odd (even) mode.] The normalization is given by

2

— -l————(smard—l—R cos od)?
78| ] n‘P nt pA

9 4weJ" 1 ?12 O’

Dy =

-1
+ — —(cos od — R;sined)?} . (69)
n? p

All amplitude coefficients for the TE and TM modes were taken to
be real quantities. This assumption does not lead to a loss of generality
since the necessary phase factors are incorporated in the expansion
coefficients c,.

VIII. COUPLING COEFFICIENTS

With the help of the expressions for the normal modes and the
coupling coefficients (10), any problem of the asymmetric slab wave-
guide with arbitrary irregularities of its refractive index distribution
can be solved, provided that the restriction (18) is imposed. Problems
caused by core boundary irregularities or by gentle tapers can be solved
with the help of the coupling coefficients (13). For convenience, a few
coupling coefficients will be worked out explicitly.

As long as the restriction (18) applies, TE modes do not couple to
TM modes. All coupling coefficients between TE and TM modes
vanish. We restrict the discussion to listing the coupling coefficients
between guided TE modes, guided TM modes, and to coupling from a
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guided TE or TM mode to its respective radiation modes for the case
of core boundary irregularities.

The coupling coefficients between two guided TE modes can be
obtained from (13) and (25). (p = + or —)

[df sin k,d sin x,d dh:[
Kukyl =7 — 7——— " —~
d in «,d sin «,d| d
K:f'p) _ z  |sin k. sin x,d| dz . (70)
() (» 1 1 1 1\ ¢
Yu 0, Y g,

The eigenvalue equation (31) was used to express (70) in this simple
form. This coupling coeflicient (and all others to be listed below) holds
for the special case f(2) < n/k, h(2) K =/k with ¢ of (29). Instead of
using the values of the field at x = f(2) and x = —d + h(z), the field
values at z = 0 and x+ = —d were used. In order to see the agreement of
this coupling coefficient with the coupling coefficient for the symmetric
case [eq. (7) of Ref. 77, it is necessary to note that the core thickness
d of this paper corresponds to 2d of Ref. 7. In addition, we need to
keep in mind that only the Fourier components of f(z) and h(z)
with spatial frequency ,Bii) — B contribute to coupling between
modes ¢ and ». The derivatives appearing in (70) are thus equivalent
to the products ¢(8.* — B) f(z) and i(8\* — BP)h(z). Keeping
these remarks in mind, complete agreement of (70) with (7) of Ref. 7
is obtained for the special case n: = ns, v = 8.

The coupling coefficient for coupling between a guided TE mode »
and a TE radiation mode p follows similarly from (13), (25), and (36)
for radiation in the range 0 < p £ (n2 — nd)k

2 2 A .
(ny — nz)*kx,p(a cos ad + — sin ad)
)

(B(:i:) — ,5‘(3:))

-adz  |sin kd] \n2 — n2 A dz
1 ' ocosod + — sin od
7

{df sin «,d /'ni — n: H T dh}

11 AN\
. [rﬁpﬁ,|(d +— 4+ w)[,oz(cr cos od + — sin ad)
Yy By T

A 27 4
+ az(a sin od — — cos crd) :” .

(3
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The coupling coefficient of the guided TE mode » to the TE radiation
mode p in the range (n2 — n2)¥%k = p < =« is given by

2 2
(+.m) (ﬂl —np) e,
K = —

1 1\}
(B(i) - B(p})|:.". ‘ Bp.Bvl(d-l" —+ *)
e v Y¥v 0,

. 2 2
df sinxd (nl —Ng

L . dh
_ ) (cos od —F; sin od)—
dz |sin xd| dz

n?—n?
1 2

(72)

2 i

A R a? . g° a9
|:——(cos od—F; sin od)?+—(sin od+F; cos crd)2—|-1+—F,-:|
P pA p?

The factors F, and F» are obtained from (50). The radiation modes do
not all propagate along the z-axis. Propagating modes are confined to
the range 0 = p £ nsk.

The reader should not be startled by the fact that the coupling
coefficients (70) have the dimension m~! while the coupling coefficients
(71) and (72) have the dimension m—* The different dimensions are
attributable to the fact that the coupling coefficients between guided
modes oceur under a summation sign while the coupling coefficients
that describe eoupling to radiation modes occur under an integral sign.
The integration is performed with respect to p, the dimension of which
is m~L. The product ¢,k ,.dp has the dimension m~! in agreement with
the dimension of the coupling coefficients for guided modes."

Finally, we list the coupling coefficients for the TM modes. Coupling
between guided TM modes is described by the coupling coefficient

(p=+or—)

2 2

(9 (n1 — n2) DDy { 2 (1) _(p) 2 df

K™ == n s v —

’ 4P(BE) — B )wemin! (naBu” B ) -
M v

. i 2 2 40 42, 42 4 2
sin «,d sin kud Ny — N I:(Tisz,, + n1y,) (nex, + nl-y,,)]*

|sin x,d sin kd| 72 — n2 L (n%2 + ni@?)(n'%* + ni6?)
1 2 3w 1w 3 u 1u

2 (1) (p)

dh
(38 + nl,0,) —}- (73)
dz

The coupling coefficients for the TM modes are far more complicated

t Note that /"|c,|*d, is dimensionless so that the dimension of ¢, is m?}.
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than the corresponding coefficients for the TE modes. To simplify the
notation, we did not substitute expression (59) for the mode amplitude
into (73).

The coefficient for coupling from a guided TM mode to a TM
radiation mode in the range 0 £ p £ (03 — n3)¥k is

2 2

K(:l:.p) - _ (nl - ﬂ'ﬂ)DwDrp {( (ilﬁ('p) — oy Grp)id.j
o 4P — ﬁ(p))weon‘fni P ’ D,,/ dz

p v

. ) 2 42 $ 2,
sin k,d 11 — N3 I:??vzxv + 711%-:| [ (&) (p)(

Gy .
B, By cos od — ——sin od
n:xz + n‘:ﬂﬂ
v v

|sin «,d | n —n? o

, G, dh
+ af, (sm od + — cos ad)] —] - (714
D,, dz
The amplitude coefficients Dy, Dr, and G,, are obtained from (59),
(63) and (64).

The coefficient for coupling from a guided TM mode to a TM
radiation mode in the range (n3 — n3)tk < p < = is given by

2 2
) n1 — n2) DSy d
K:;Ii ») - _ ( 1 2 o [ [(B;i),@:p) _ O"YuRi) _f
4P(BE — ﬁ(”’)weunfi.‘rli dz
p v

. 2 2 4 2 4 2

sin K,d Ny — Nz | MKy + Y. H +) _(p) .

- — B, B, (cosed — R;sin od)
|sin x,d | n —n? ni? + nif?
v v

dh
+ o6,(sin od + R, cos crd):l d—l» - (78)
2

The amplitude coefficients D,,, S., and R are obtained from (59),
(68), and (69). The index ¢ assumes the values 1 and 2, and corresponds
to the two types of radiation modes that are distinguished by the +
and — signs in (68). The superseripts, + and —, attached to the
coupling coefficients are supposed to indicate whether the modes
travel in + or — z-direction.

It can be shown that the coupling coefficients derived in this paper
specialize to the correct expressions*® of the symmetric slab waveguide
in the limit n, = ng, v = A, p = 6.7

t Equations (9.5-26) and (9.5-27) of Ref. 5 must be divided by nj, eq. (9.5-31)
must, correspondingly, be divided by ni.



80 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1973

IX. CONCLUSIONS

We have collected the formulas for the modes of the asymmetric
slab waveguide and have used this information to derive the coupling
coefficients between guided modes as well as between guided and
radiation modes for the case of very slight core boundary imperfections.
Also presented is the general theory of coupled modes of dielectrie
waveguides and the general formulas for the coupling coefficients.
The theory collected in this paper is useful for the description of mode
conversion and radiation phenomena. Phenomena such as the grating
coupler and the interaction of acoustic waves and guided light waves
can readily be treated with the theory presented here. For an applica-
tion to statistical irregularities of the core boundary, the reader is
advised to consult Refs. 5, 6, and 7.

APPENDIX
Evaluation of the Integral (12)

We consider the index distribution of the slab waveguide as being
smoothed out to avoid the discontinuity at the core boundary. It is
assumed that the index varies only in a direction perpendicular to the
core boundary. We use a coordinate system ', 2, the axes of which are
perpendicular, and parallel to the tangent at a particular point of the
core boundary as shown in Fig. 2. In this coordinate system, we assume
that the refractive index is of the form

n? = F(z'). (76)

For values of z' £ 0 we have F = n?; for values 2’ > £ we have
F = n2. At the end of our discussion, we let £ — 0. The scalar product

4 x

\* ,
\ dx "2
\\ dx’ | N
\ \\ 7 ~ ~~TANGENT OF
CORE BOUNDARY
\ "
\ ~
dz
\ %
[l -

Fig. 2—Sketch of the coordinate systems used for the evaluation of integral (10).
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of the electric field vectors can be expressed as
a:'sv = 8:_-,_-’8#:' + g:ggvl- (77)

The coordinate ¢ indicates a direction parallel to the core boundary.
&,. is continuous at the core boundary and can be taken out of the
integral. 8,., on the other hand, is discontinuous. We express it in
terms of the field just inside of the core and, using (12), write

?Ii
gv:‘ gnz =0
For e (78)

The scalar product can thus be written in the form

E;~ 8,. (811:’81!: ) =0 + gptgv: (79)

F 2( ')
We thus have to deal with two different integrals. We first consider
the integral

r=— dz. (80)

[“’ aF (z") p az' = oF(z')
0 0z dz 0 6.‘1:'

We obtain from Fig. 2 the relations

oz’ ) 81)
Py = 8Sln
and
dz’
dx = . (82)
cos a
The integral can thus be evaluated
aF (z')
f 2 dz = [P(®) — FO)]tan e (83)
0

At the upper core coundary, we have tana = df(z)/dz, and at the
lower core boundary we have tana = dh(z)/dz. Taking both core
boundaries into account, we find with the help of (76),

an? df
[ —3— 8,,15,.@:1: = - (”1 - ﬂ:) (‘gpt(gwt)z—f
—w Z

+m_®£@mm%b@@
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The integral associated with the normal field components is essentially
of the form

I

© 1 oF(z" 1 oF (n:
f dz = (tan ) [ dz’
o FXz') oz 0

F(&) — F (0)
(tan G:) W (85)

The integral containing the normal field components results in

an? df
f M & Bowds = — (nh — ﬂz)— (Erer€oer)oms —
—w 02 n dz
2
n * dh
+ (?l: - n:) _21 (8nz'8y;\:’)z——d+h -5 (86)
n dz

In (13) we replaced =’ with x and ¢ with 2. These approximations are
valid provided that the inequalities (15) apply. The error is of second
order in the derivatives of f(2) or A(z).
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