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Delay probability formulas for batch input o a finite number of con-
stant-holding-time servers are derived under the assumption of statistical
equiltbrium. The service-delay distribution (delay uniil a first request from
the batch enters service) is given in terms of the roots of a transcendenial
equation, while the probability of no service-delay and the average delay are
expressed directly in terms of the number of servers, the holding time, and
the paramelers of the tnpul process. A numerical example with a fired
batch size is discussed.

I. INTRODUCTION

Batch arrivals constitute an important class of input processes in
the theory of queues. The investigation of the problem of batch input
to a group of constant-holding-time servers was motivated by the
existence of installations with multiple Automatic Calling Units
(ACU). Customer-based computer equipment controlling the ACU’s
is capable of originating simultaneous requests. The dial-tone markers,
the first common control equipment in a No. 5 Crossbar central office
to serve the requests, can be modeled as a group of constant-holding-
time servers.

Another example comes from an information transmission system.
Messages containing a (small) random number of characters (a batch
of characters) arrive according to a Poisson process and must be
transmitted to some destination. Delayed messages are stored in a
buffer. Since the transmission time per character is usually fixed, this
system provides another example of the model studied.

In Section II, the mathematical model used in this study is de-
seribed and the input process defined; the state equations are written
and used to derive the generating function for the equilibrium state
probabilities. The probability of no service-delay is found in Section
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II1, while the average delay is computed in Section IV. The service-
delay distribution is given in terms of the roots of a transcendental
equation in Section V. A numerical example with a fixed batch size is
discussed in Section VI. The effect of this batching scheme on the
average delay and the service-delay probability is examined.

II. MATHEMATICAL MODEL

The model studied here is that of a queuing system with a finite
number of servers, batch arrivals, and constant holding time. The
assumptions are

(7) Requests arrive according to a compound Poisson process, that
is, requests arrive in groups or batches and the instants at
which the batches arrive constitute a Poisson process.

(#7) There are ¢ servers and each request has access to any one of
them.

(z#2) All requests have the same constant service time, 7.

(tv) The delayed batches wait until service becomes available and
are served in order of arrival. The service discipline for requests
within a bateh is arbitrary, i.e., not specified here.

(v) The system is in statistical equilibrium.

Systems with simple Poisson input have been studied as early as
1920, when A. K. Erlang' obtained expressions for the probability of
delay for arbitrary values of ¢ and the average delay forc¢ = 1, 2, and 3.
The first complete treatment of such systems was by Pollaczek.?:3
Crommelin,** using a method which is simpler than that of Erlang
or Pollaczek, also derived general formulas for the probability of delay,
the average delay, and the delay distribution. A simplified and concise
account of Crommelin’s work is given by A. Descloux,® who also shows
how Pollaczek’s formulas can be deduced from Crommelin’s results.
The development herein is an extension of Crommelin’s results to the
case of compound Poisson input using the simpler methods employed
by Descloux.

We now define the input process. Consider events which happen in
groups rather than singly, that is, requests arriving in batches at a
group of ¢ servers. For k = 1, 2, - -, let Nx(f) be a Poisson process
with intensity A; which governs the arrival of k-sized batches. Assume
independence of the processes Ni(t), k =1, 2, ---. Let N(f) be the
total number of requests that have arrived in the interval (0, ¢].
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Then
N(t) = 2 kNk(t) (1)
k=1

is called a compound Poisson process (Ref. 7, page 271).
The probability that an arriving batch is of size & is equal to Ax/A,
where

From eq. (1), we see that the mean and variance of the number
of arrivals per unit time are

o0

M1 = Z k?\k and e = Z kﬂ)\k, (2)

k=1 k=1
respectively. The generating function of the probability distribution
ma(t) = P{N() =n},n=20,1,2, ---,is given by

o

T(te) = 2 ma(t)zr = e,

n=0

where
B(z) = 2- Az™ — A,

n=1
and hence the probabilities 7, (t) are given by

(M) E1(Aat) B2 - - (Ant) En

Ta(l) = e MY n=20,1,2, --- 3)
o Eylka! - k! ’ e
where 4, is the class of all sets of nonnegative integers {ki, k2, - - -, kn}

such that &y + 2k + +++ + nk, = n.

The expression given in (3) is not suited for computing r,(t). These
probabilities are more conveniently computed from the recurrence
relation

i k
7r-’=+1(t) = m,‘go (k - J + 1)>‘k—5+17rj(t)1 k=0,1,2---, (4)
mo(t) = e,

Equation (4) is easily obtained from the relation k!mi(f) = =#®) (¢, 0),

where the superseript denotes differentiation with respect to z.
Special cases of the compound Poisson process are obtained by

choosing different convergent sequences of the positive constants
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A1, Az, ---. One such sequence is obtained by setting \; = o/r",
r>1 j=1,2, ---. This special example has become known as the
“stuttering”’ Poisson process.® In this case, a simple expression for
m.(t) can be obtained by noting that the generating function has a
power series expansion in 2, the coefficients of which are given in terms
of the Laguerre polynomials L,, that is,

2\ = Z\"
gtfz) = g\t (1 - —) > L.(—olr) (*) )

T n=0 r

since
B(z) = —— —
) = —

1—z/r
It follows that
mo(f) = e

e—)\z (5)

ma(t) = — [Lu(—clr) — La_1(—atr)], n=12---
rﬂ

We will now obtain the equilibrium state equations, and find the
probability generating function of the stationary distribution for the
general case. Let X (£) be the number of requests (waiting or in service)
in the system at time t. Let

pi(t) = P{X(@®) = j|X(0) =1}

be the transition probability functions of the process {X(t), t = 0}.
It is clear that X (f) is not Markovian. If, however, we examine

X = X(k"')x k= 0,1, 2) T (6)

we see that this sequence is Markovian and, in fact, { Xi, £=0,1,2, - - -}
is a homogeneous Markov chain with one-step transition probabilities

pl'J':P{Xk+1=j‘X’ﬂ=i}: k=0,1,2,---,

given by
;i (1), for 0=i=¢
Pij = TI','_H_C(T), for ¢<1 = ] +c
0, for j4+c<d.

We will be interested in the distribution of the number of requests
in the system encountered by an arbitrarily arriving batch (a batch
arriving at a time point a long way from the origin, i.e., after statistical
equilibrium has been reached). But since the instants at which the
batches arrive constitute a Poisson process, this distribution is the
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same as the stationary distribution

p; = lim py;(1), i=012---,

t—sm
of the process [ X (), t = 0}. Moreover, if this limit exists, then so does

lim P{X, = j| Xo = 1}

k—»m
and they are equal. Consequently, the distribution of interest to us is
given by the stationary distribution of the imbedded Markov chain
(6). This distribution is obtained by solving the Chapman-Kolmogorov
equations

Po = ‘JTu(T)ac

n+c (7)
Pn = ma(r)8c + X PuTnomic(7), n=12---
m=c+1
where
a, = z Pm
m=0

We will assume that u;r < ¢ so that the stationary distribution {p,}
exists.

We need to solve the system (7) for the unknowns p,. To do this we
introduce the probability generating function

f(2) = X paz"
n=>0
Multiplying both sides of (7) by z" and summing over n, we have

J(2) = ace™®® + 3 3 peyjmaj(r)2”

n=1 j=1

™Ms

PeyiTn_j(T)2"

om0
= ae + ¥
j=1 n=j

Il

1
ae® + et f(2) — g(2)]
zC

where

g(z) = 2 paz™
n=0

Thus the probability generating function of the sequence pa,
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n=0,1, .-, is given by

) = S8 —Fae @)

1 — zee8(2)

III. PROBABILITY OF NO SERVICE-DELAY

We say that the service of a batch is delayed if upon its arrival all
servers are busy. Hence, the probability of no service-delay will be
defined by a._,, that is, the probability of at most ¢ — 1 servers busy.
An explicit expression for this probability will now be found.

We start with eq. (8). Since the p.’s are probabilities, f(2) is holo-
morphic in |z| < 1 and, therefore, the zeros of the denominator and
numerator in |z| < 1 must be the same and have the same multi-
plicities. We will show that the denominator of (8) has ¢ distinct
roots in |z| = 1 and that all of them, with the exception of z = 1, lie
inside the unit circle.

For |z| = 1 + §, with § sufficiently small and positive, we have

oo
|er.ﬁ'(z)|§ e exp { Z )\kzlkl = grr1b+0(52)
k=1

where u, is defined by (2).
Since ru1 < ¢ by assumption, we have

et < (1 + 8)° = [z]°,
and by Rouché’s theorem, the equation
eTBlz) — z¢ = ()
has exactly ¢ roots within the region |z| = 1 4 8. Let these roots be
denoted by 21, 25, - -+, 2.1, 2.(= 1). Then

(€) 1, 24, 24, « -, 2.1 are distinet.
(#) |za| < 1forn=1,2,---,¢— L

To prove (%), first note that the root z = 1 is simple because
1 — zeg 7R

lim—————— =1 — ¢ # 0-
z-+1 2_'1

Similarly, for any root z;,, 7 =1, 2, -+, ¢ — 1,
. 1 — zce—rﬂ(z) —1 @ k
lim—————— =2; e |73 khzi —c |-
k=1

z>zi 2 — 2
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The first two factors cannot vanish for any admissible choice of the
root 2;, so that if 2; is to be a root of second or higher order, we must
have

raz + 202 + 3033 + 1) = ¢

But this is not possible since
TNz 4 22 32 + | S T < ¢,

and the roots 1, 2y, 2s, - - -, 2z._; are therefore all distinct.

To prove (71), suppose that |z,| = 1forsomen,n = 1,2, ---,¢ — 1,
then |exp [78(2.)]| = 1 and hence the real part of 78(z,) must be
zero, that is, ®R[8(z.)] = 0. Hence we must have

cwen= [ (i1 -0

Since all terms in the sum are nonnegative, we have ®(1 — z¥) = 0
for all k, and therefore z, = 1, contrary to the assumption. It follows
that |z.] < 1forn=1,2 ---, ¢ — 1.

Since the numerator of (8) is a polynomial of degree ¢, f(z) has

the form
(z—=1D(—2)(z—22)---(2 — Zo-1)

f) = A — ()
The condition f(1) = 1 determines A :
T—¢
H1 (10)

A= .
(I —z)(1 —2z9) -+ (1 — 2ccq)

In computing a._, it is convenient to introduce the generating function
F(z) = X anz"-
n=0
Then, since an — @n_y = pn, n = 1, 2, -- -, we have
(1 = 2)F(2) = f(2),

1)
1—2

or

F(z) =

Now, making use of (9), we obtain

(z —z1)(z —29)--- (2 — zckl)'

Fz) = —A e
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The probability of no service-delay, a._1, is given by the coefficient
of z¢~! in the expansion of F(z): '
c — T

A= .
(1- z20)(1 — 29)- -+ (1 — 2e1)

An expression for a._; which does not involve the roots z; is obtained
through an application of the generalized argument-principle (Ref. 9,
page 151). That is, suppose ¥ (2) is holomorphic and ¢ (2) is meromorphic
on and inside the contour C. Let e, k = 1, 2, - - -, be the zeros with
multiplicities 7z, and 84, k = 1, 2, - - -, the poles with multiplicities sx
of the function ¢(z) inside C. Then the generalized argument-principle
states that

(11)

Qe—1 = —

if ‘f’(z)‘ﬁ‘(Z)dz = X rip(ar) — 2 sy (Be) -
2rt Je ¢(z) k k

Taking the logarithm of eq. (11), we have
e—1

log a._1 = log (¢ — par) — 2 log (1 — z)-

i=1

We will eliminate the roots z; from the second term of the right-hand
side of the preceding equation. Let

95(3) = erB(z) — Z",

and note that #(z) has simple zeros at 2 = 2, 25, ++, 2-1. Choose
¥(2) as the principal branch of log (1 — 2). The generalized argument-
principle yields

T log (1 — 2,) = 2i j log (1 — 2)d[log 6()] = J
c

n=1 me
where C is the contour |z] = 1 — e and €(>0) is chosen so that
Za,n=1,2 -+, ¢c— 1, lie inside C but z.(=1) is exterior to C. We

will now show that

o 1 @
J=log(c—mm) + 2 - 2 mi(nr),
n=1 Jj=ne

and hence
=] 1 |
logacy = — 2 — X mi(nr)- (12)

n=1M j=ne

d
Note first that the prineipal branch of log (1 — 2) = [z¢'log (1 — 2)]
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is holomorphic in |z| £ 1 — e Since its integral on C is zero, we have
1 1 — z=cem#@
J=— log (1 —2z)d| log —————:|
T -z

Integration by parts yields

1

J=-— lo[
21r'£cg

1- z"’e"ﬁ(”:l dz

1—zt Jz—1

The integrand above has a simple pole at z = 1, and its residue there is
equal to log (¢ — pir). Choose §(>0) such that the only zeros of
#(z) in the disk |z| < 1 + s are 1, z1, 25, - - -, 2.1, and let C; be the
contour |z| = 1 + &. Noting that the integral of log (1 — 27)/(z — 1)
on C, vanishes, we have

1
=log (¢ — mr) — — | log[1 — zce=)]
211"2 C z — 1

Now since |z=%8()| < 1 on Cy, the power series for log [1 — 277 ()]
converges uniformly on 01, and termwise integration is allowed, so that

Iog (C — HIT) + — Z [ eruﬂ(l) d

2‘1!'?, ne=1M

-1

1
= log (¢ — mar) + Z [1 - — Z ef"ﬁ(”z—“*'"dz]-

n=1T T i=0 C1

Expanding the integrand in powers of 2z, and integrating term by term,
we see that the integral is zero for all terms except one, and that there
it is equal to 277 times the coefficient of z7'. But the coefficient of 2~
is exactly mnc—j—1(n7), so that

n=1T

@ 1 nec—1
=log (¢ — ) + 2 — |:1 - ¥ wnc_;_l(nr)]
i=0

o 1 -]
=log (c —mr) + X — = mi(nr),

n=1MN j=ne

and this is the result stated earlier.
For the case of a simple Poisson input, we have \; = X\, \; = 0,
j =23, -, and (12) reduces to [Crommelin, Ref. 5, eq. (5)]

®» ] = (Nn'r)j
logac:s=— 2 — X —— g~ Mt

n=1M j=ne J!
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Note that this expression and eq. (12) differ only in the terms = ;(nr)
and ((Anr)#/j)e~>»7, which represent the same probabilities in two
different systems: both are equal to the probability of exactly j
arrivals in the time interval nr. As we shall see later, these probabilities
appear again in the expressions for the average delay and the service-
delay distribution.

For “stuttering” Poisson input, eq. (12) reduces to

® g—lonrr/(r—1)] = 1
loggey = — > —— > > [Li(—ontr) — Lioy(—enr)]
ne=1 n j=nc

where the L, (&) are Laguerre polynomials.

IV. AVERAGE DELAY

Under equilibrium conditions, the average delay D is equal to the
average amount of waiting per unit of time divided by the average
number of arrivals per unit of time. The average amount of waiting
per unit of time is equal to

o0

Z (?1 - C)Pn:

n=c}1
so that D is given by
1 = 1 =
D=— Y (n—¢pn=— X Npa— T
M1 n=c+1 M1 n=0

where u, is the average number of arrivals per unit of time defined by
(2). An explicit expression for D can be readily obtained by noting that

Y np. = lim [if(z)}. 2l< 1,
n=0 z=1 dz

where f(z) is the generating function given by (8). Straightforward
differentiation of (8) and application of L’Hospital’s rule lead to

D 1 <t 1 + wir(uir — 1) —ec(c — 1
=z Z + HaT K1 (#1 ) ( ) (13)
T w1t icy 1 — 2; 2u17(c — p17)

where 2, 2;, + + +, 2.1 are the roots defined previously. Again we wish

to eliminate these roots. The method used in the previous section
suggests the application of the generalized argument-principle with
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(1 — 2)~' as ¢(2), and ¢(z) as before. Thus we have

E 1 1 1 ¢'(2)

Sil—z, 2m)el —z é(2)

z =K. (14)

d
Noting that the integral of (1 — z)“gz {log [2**(1 — 2)]} on Cis

equal to (¢ — 1)2x7 (the residue at the simple polez = 0is¢ — 1), eq.
(14) becomes

K ( b+ 1 ]' 1 N 1 — z—cerﬂ(z)]
= c — —_— og— |-
2ri e (1 = 2) [g 1— 2

Integration by parts yields

1 1 — zce™B(2) dz
K=(c—1)——_flog[ ] (15)
2mi Je

T 1 —2z1 1 - z)z-

The integrand in (15) has a pole of second order at z = 1, and its
residue there is found to be

clc — 1) — rua(rpr — 1) — 7pe —e—1)

2(c — 1)
Consequently,

_ clc — 1) — rua(ruy — 1) — 72

2(c — )
1 1 |:1 — z“e’ﬂ(":I dz (16)
— o -
orife, Pl 1—27 (-2

Combining (14) and (16) and noting that the integral of
(1 —2)2log(l—27
vanishes on C,, we obtain
b - — ! f log[1 — z—ce™8=)] ( dz
A

T 2miu,y 1 —2)*

Recall now that |z—¢e#)| < 1 on Cy, and hence log [1 — z°¢7#(=)]
has a uniformly convergent power series representation in z—°e7#() on
C1, so that

S Sl . a7

D 1 1 =1 enB(z)g—ne
T par 27t i o, (1 — 2)2
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The integrand in (17) has poles at z = 0 and z = 1 with residues

ne—l

; (nec — k)m(n7)

and
n (f-‘ 1T — C) ]

respectively, giving us the final result

D 1 =1-=
= Y =Y kmnesr(nr). (18)

T B1T n=1 T k=1

V. SERVICE-DELAY DISTRIBUTION

For the purpose of obtaining the service-delay distribution (delay
until a first request from the batch enters service), let us define g ()
as the probability that among the requests present at some time &,
at most m of them are still in the system at time ¢, + ¢{. Considering
the state corresponding to gmei.—1(t), we see that, at most, me + ¢ — 1
of the requests preceding the given batch will be in progress at time ¢
later, and consequently, at most, ¢ — 1 of them at time mr + ¢ later.
This is the condition for the service-delay d to be less than mr + §,
or in symbols

Pld < mr + t} = gmesena(t), O0=t<7. (19)
To determine gn(t), we introduce the generating function

Ged) = 3 gnld)zm.

m=0

Upon noting that 35 —¢ Tn-m(t)gm(f) = a., we have

o0

0 Y g T D)z

m=0 n=0

G(z,t)

I o

n=0 m=0

w0
= ¢t ¥ g,z = e FEF(2).

n=0
Substituting for F(z) we obtain
(z—21)(z — 20) - (2 — 2o1)e” P

Gzt) = —A . (20)

1 — zoe=78(2)
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A direct expansion of the right-hand side of (20) in powers of z is
not desirable because the coefficients of z involve sums the terms of
which have alternate signs and, therefore, are not well suited for
computation. To circumvent this difficulty, we first obtain a Laurent
series expansion of G(zt) in the annulus 1 < |z| < |£|, where £ is
that root of z¢ exp [—78(2) ] — 1 = 0 which has the smallest modulus
exceeding 1. The existence of such a root can be proved as follows.
Since x¢ exp [—78(x)] takes on the value 1 at x = 1 (2 = real part
of z), has a positive derivative there, and vanishes at infinity, the
equation z¢exp [—78(z)] — 1 = 0 has at least one root outside the
unit circle.

Forl < |z| < |¢|, the absolute value of 27¢ exp [78(2)] is less than
unity. Expanding the denominator in powers of z—¢exp [73(z)] and
the exponential function in powers of z, and collecting like-power terms,
we obtain, for 1 < |z| < |£],

=] c—1 o
Gt) = L | Z @0 X Tojerr—al(F+ D7 —t]p ¢ (21)
k=0 n=0 3=0

where g, is the coefficient of 2" in the polynomial
Az — z2))(z — z2)- - (2 — 2.1).
Since z = 1 is the only singularity of G(z,t) in |z| < |£| (asimple pole
with residue —1), G(z,t) + (z — 1)~' is holomorphic in |z| < |£| and
hence for |z| < |£|
1 o0
G(zt) + P expansion (21) + 3 z7n.
z —_

n=1

Therefore, for |z| < 1, we must have

G(z,t) = X z* + expansion (21) + X z".

n=0 n=1

From this equation, we obtain the service-delay distribution

@

Hd<m7+ﬂ=1“iQnZTWﬁMq4Uj+DT—ﬂr

n=0 j=0
m=01,2 -, 0<t<r (22
VI. A NUMERICAL EXAMPLE

We examine a fixed-size batching scheme which provides some
insight into the effect of batch arrivals on the average delay and the
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probability of service-delay. Suppose customers arrive in batches of
gize m. Then A\; = 0 for j #m, p1 = mh, and

(Amt)* .
g Amt ) for j=km
'Il'j(t) = k'

0 , otherwise.

Figure 1 shows the average delay experienced for an arbitrary customer
as a function of the occupancy p = rui/c, for various values of m.
We assume that the holding time is unity, and that ¢ = 4.

Equation (18) written in the form

0 nc—1
p=L5 Ll —ctemn+ T (e - dmin
M1 n=1T j=1

was used to obtain the curves drawn in Fig. 1. We might point out
here that the above series converges slowly when the occupancy is near
unity. In the interest of speedy computation it may be necessary to
solve for the roots of the denominator in eq. (8) and then use (13)
to calculate the average delay. The same remarks apply to eq. (12)
which is used to compute the probability of no delay.

Beecause holding times are constant, several interesting phenomena
are observed. First, if the batch size is an integer multiple of the number
of servers, say m = kc, then the mean time until the service of an
arriving batch (or the first customer from the batch) begins is the
same as the average delay in a one-server system with single Poisson
arrivals and holding time k. From the Pollaczek-Khintchine formula,
this number is given by

kp
2(1 — p)
Hence the mean delay which an arbitrary customer experiences is the

average of the above number and the mean delay experienced by the
last eustomer in the batech to be served. Thus we have

kF—1 ok
= +
2 2(1 — p)

D (m = ke).

Note that as p — 0, D — (k — 1)/2.
On the other hand, if the number of servers is an integer multiple
of the batch size, say ¢ = jm, then the system may be viewed as a
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AVERAGE DELAY IN UNITS OF HOLDING TIME

0 0.2 0.4 0.6 0.8 1.0
p, OCCUPANCY

Fig. 1—Average delay in an M/D/4 queue when arrivals oceur in batches of size m.

collection of single-server systems with constant holding time and
j-phased Erlangian input of mean offered load u1/j. This can be seen
by imagining that the sets of m servers required to serve the arriving
batches are chosen in c¢yelic order.

Figure 2 shows the probability of service-delay (the probability that
the serviee of an arriving batch is delayed) as a function of the oc-
cupancy, for various values of the batch size m and ¢ = 4. From eq.
(12) we obtained and used the following expression for the service-
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0.004

PROBABILITY THAT THE SERVICE OF AN ARRIVING BATCH IS DELAYED

0.002—

0.001 ] 1 1 1 | | 1|
0.01 0.02 0.04 0.06 0.08 0.1 0.2 04 06 0810

p, OCCUPANCY

Fig. 2—Probability of service-delay in an M/D/4 queue when arrivals oceur in
batches of size m.

delay probability :
L | ne—l
1 —exp{— > -*I:l -2 T:'(ﬂ):”‘

n=17 i=0

Phenomena similar to those observed in Fig. 1 exist here also. For
example, if the batch size is an integer multiple of ¢, say m = kc, then
the probability of service-delay is the same as the probability of delay
in a one-server system with single Poisson arrivals, i.e., it is simply p.

On the other hand, if ¢ = jm, then the service-delay probability is
the same as would be found in a system with single Poissonian arrivals
of intensity Am and j constant-holding-time servers.
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