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Formulas on Queues in Burst Processes—I

By B. GOPINATH, DEBASIS MITRA, and M. M. SONDHI*
(Manuseript received July 11, 1972)

Queues arising in buffers due to either random initerruptions of the
channel or variable source rates are analyzed in the framework of a single
switched system. Ezxzamples of systems to which the results of the paper
may be applied are: multiplexing of speech with data in telephone channels
and, tn certain instances, buffering of data generated by the coding of
moving images in the Picturephone® system. The switched system con-
sists of a uniform source, buffer, switch and channel. The source feeds
data to the buffer at a uniform rate. The buffer’s access to the channel is
controlled by the switch; if the switch is closed, the buffer empties to the
extent of the channel’s transmission rate. The on-off pattern of the switch
is tndicated by a 0 — 1 burst process {E;}, 7 =0,1, 2, ---; if E; = 0,
the swiich is closed for the duration [ j, 7 + 1). The burst phenomenon is
iniroduced to account for two different processes responsible for the event
E; = 0. There are relatively long pertods during which E; = 0 uniformly,
and the activity separated by such periods is defined to be @ burst. During
a burst, E; = 0 only infrequently. The duration of a burst is an inde-
pendently distributed random variable with a geometric or weighted sum
of geometric distributions. The inter-burst periods are assumed lo be
sufficiently long for the buffer to empty at some point during these periods
of tnactivity. During a burst {E;} vs a Bernoulli sequence of independent
random variables.

Exact expressions for a variety of performance functionals related to
the system described above are obtained, together with qualilaiive resulls.
Recursive formulas are obtained for the following: (i) steady-state distri-
bution of buffer content for a finite buffer of size N; (i) mean time for
Jirst passage across a level N ; (iti) the probability of overflow, for a given
level N, during a burst; (iv) mean time for first passage across a level N
during a burst. The recursion in each case is with respect to N. The
asymptotic behavior of the main recursions is determined.

* The sequence of names was determined by coin tossing.
9
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I. INTRODUCTION

A convenient framework for an unified analysis of a variety of
digital communieation systems involving buffering-some are discussed
later—is provided by the system in Iig. 1. The source emits data uni-
formly at the rate of one symbol per unit time. The transmission rate
of the channel is (k¢ + 1) symbols per unit time where & is some positive
integer. The buffer has access to the channel only when the switch
is closed. The switch is controlled by a burst process {E;}, 7 = 0, 1,
2, ---. E;, for every j, is either 0 or 1. If E; = 0, the switch is closed
for the duration [j, 7 + 1); otherwise the switch is open. The burst
process is introduced to account for cases where two basically
different types of phenomena are responsible for the event E; = 0.
There are relatively long periods during which E; = 0 uniformly;
the activity separated by such periods is defined to be a burst. On
the other hand, during a burst, E; = 0 only infrequently. The dura-
tion or length of a burst is a random variable. It is assumed that
the burst length is independently distributed with a geometric or
a weighted sum of geometric distributions. The interburst periods
are assumed to be sufficiently long for the buffer to empty during
these periods. The statistical assumption made in the paper about
the controlling sequence {E;} within a burst is that it is a Bernoulli
sequence of independent random variables and Pr{£; = 1} = = where
0 < 7 < 1. In a companion paper, the case where {E;} is first-order
Markov will be considered.

Important aspects of various digital communication systems are
subsumed within the framework of the system deseribed above.
Diverse schemes for multiplexing data with speech on telephone
channels'? are representative of one class of such systems. A summary
of the main features of the system which has been described in some
detail in Ref. 1 follows. The central idea is to utilize the telephone
channel during the periods of silence in speech which amount to as
much as half of the total conversation period to transmit digital data.
The speaker needs to have priority for the use of the channel since
otherwise the quality of speech is impaired. £; = 0(1) corresponds to
the decision that silence (speech) exists during the interval [j, 7 + 1)

UNIFORM

SOURCE BUFFER oo CHANNEL

SWITCH

Fig. 1-—=Switched communication system.
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so that only after it is decided that the speaker is silent does the
buffer have access to the channel. An excellent example of the burst
phenomenon may be found in speech monologues. Due to the presence
of phrases in speech, two types of silences, interphrase and intraphrase
silences, exist;** the former type consists of silences no less than 250
ms long and this is substantially longer than the mean duration of
(uninterrupted) intraphrase silence.

There exists another class of digital communication systems com-
posed of systems with only one source which transmits at a nonuniform
rate. Most of the time the source rate is less than, say, 7, bits per unit
time and 7, is less than the channel rate r. Occasionally, for short
periods of time, the source rate spurts to a level r; which exceeds r.
During such periods buffering becomes necessary. These occasional
bursts of overloading of the channel are indicated by the {E;] process.
The relation to the switched communication system of Fig. 1 is clear
if (r; — r) is normalized to unity, and (r — 7) corresponds to k.

An example of such a system for which the analysis of this paper is
relevant arises in buffering of data generated by the coding of moving
images in the Picturephone® system.® In this case, of course, r, and
r1 should be interpreted as average rates® in the two regimes, or, when
the worst case is of interest, as the extreme rates. The results of this
paper appear to be relevant” for variable rate in-frame coding, since
during bursts of high detail, the correlation of the data rates for
successive picture elements is not high. For frame-to-frame coding
the first-order Markov model, to be treated in a companion paper, is
of interest.

Exact expressions for diverse performance functionals related to
the system in I'ig. 1 are obtained, together with qualitative results.
As a whole they provide a rather comprehensive set of criteria for the
design of the important parameters of the system, such as the buffer
size and the transmission rate of the channel. A summary of the main
contributions follows.*

(7) A recursive formula is obtained for the steady-state distribution
of buffer content for finite buffers. The recursion is with respect to N
where N is the size of the buffer.

(#7) It is proved that Fy, the mean time for first passage through a
level N, is given by

1 1 —=

Fy =-Fy_1—
™

1
Fy_ i1+ —
T

™

* N is used to denote both the buffer size [as in (z), (i7) and (vz)] and a level [as
in (72) and (7¢) ]. In what follows, the definition of N should be clear from the context.
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(741) gw, the probability of overflow of a buffer of size N during a
burst, the duration of which is distributed geometrically with a param-
eter p is given by

( 1 1 1—m 1 )‘1
gy = (—- - . .
pT gN—1 T gN—k1

(iv) A closed expression and a recursive formula are obtained for the
mean time for first passage through a level N during a burst; the
recursion is with respect to N.

(v) The asymptotic behavior of all formulas in items () through
(771), as N becomes large, is given. The derivation is dependent on the
following : of the roots of the polynomials associated with the recur-
sions, either one or two roots, depending on which recursion is being
considered, lie outside the unit circle.

(vi) Itis proved that under certain conditions on the initial probabil-
ity distribution of the contents of the buffer, the probability of a
buffer being full is a monotonie, nondecreasing sequence with respect
to time ; if the buffer is initially empty, the above-mentioned conditions
are satisfied. One of the main implications of the result is that the
steady-state probability of the buffer being full is an upper bound
on the probabilities of the buffer being full at any instant. Furthermore,
a particularly simple recursion is obtained for Py, the steady-state
probability of a buffer of size N being full :

1 1 1 — 1 -1
A
T Py_1 T  Py_r

(Observe that 1/Py is also the mean time for recurrence of the state
corresponding to a full buffer.)

The closed expressions obtained are for all £ and N, and the recur-
sions hold for all N = 2k + 1. Wherever applicable, the buffer is
assumed to be initially empty. An important feature of the given
formulas is that they are also given in the form of recursions. The
advantages of recursive formulas over the alternate versions need to be
emphasized. For a given N, typically, a closed expression for a recursion
involves inverting a matrix of order N. For large N, the effort is
substantial. If, in addition, it is borne in mind that a designer is
interested in functionals associated with a range of possible buffer
sizes, the advantages of recursive formulas of the form given in this
paper become overwhelming. This is only to be expected since the
recursions are obtained by taking into full account the structure of
the matrices involved.
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1I. EQUATIONS OF PROCESSES

Let B; be the number of symbols in the buffer at the jth instant.
For a finite buffer of size N,
By = Max{B; — k,0} if E;=0
Min{B; + 1, N} if E;=1.

Since B; depends only on B;_; and E;_,, the state of the Markov chain
of interest at the jth instant, S;, is determined by the value of B;
where B; € {0, 1, 2, -+, N}. Let P, (n) denote the probability of the
state Sm» = n. Then

Pn(0) = (1 —m) _EkSOPm-l(J') (1)
Pu(@) = 7Pua(i — 1) + (1 — m)Pma(d + k)
i=1,2---,N—k (2
Pn(i) = 7Ppna(i — 1)
i=N—-k+1,N—k+2 --,N—=1 (3)
Pu(N) = #a[Pna(N — 1) + Pn1(N)]. (4)

It is well known from the theory of Markov chains® that the limiting
distribution of the states P(7) is obtained from (1) through (4) by
equating P,.(¢) and Pn_,(%) to P(2).

2.1 Equations for Some New Probabilities
Central to most of what follows are the probabilities Q..(7), where

Qu(i) = Pr{(Sm =9 M (B; = N, j £ m)}

and the buffer size exceeds N. For convenience, let X,, denote the
event S; € {0, 1,2, ---, N} forall 7,0 = 7 = m, so that

Qm(i) = Pr{(Sm = ’B) M Xm] (5)

The equation governing the transitions of {Q;} is derived. It is shown
that there exists a matrix A which relates {Q:} to {Q._1}, i.e,,

Q:(j) = >_: 43Qi1(1) (6)

or, in matrix notation, Q; = AQ,;_,.
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In (5)72€ {0,1, -+, N}, so that
Qn(i) = Pr{(8, = 1) M X1}

N
= L Pr{(Sm =1 N Xna M (Smo1 = J)}.

Hence, =
N
Qn() = XL Pr{(Sm =12)|(Sma1= )N Xna}Pr{(Sna=7) N Xn}
N
= T Pr{(Sn = )| (Sn1 = ) N Xn-1}@na(3)
. k
(1 =m) 2 Qua(s) if ¢=0 (7a)
1Qu1(i ="1) + (1 = M)Quar(s + k)
= if =1,2 -, N—Fk (7b)
Ter—l(i - l)
| if i=N—-k+1L,N—k+2 -, N. (7

(7) defines the (N + 1) by (N 4 1) matrix A. Sometimes when the
need arises, the (N + 1) by (N + 1) matrix A associated with a given
N will be specified by A(N).

1 2 k+1 k42 N+1
((1 —x) (1 —m)-++(1 —m) 1

T 0 (1_'"')_

B —

- m|N—k41

. N

L m 0 N + 1

It will be observed that the only difference between (7) and the
transition equations (1) through (4) for a finite buffer of size N, is
that eq. (4) is modified since a transition from state N to state N is
not possible in the present context. I'or the same reason, the matrix 4
is not a Markov matrix since the sum of the elements of the last,
ie., (N + 1)th column is (1 — =), the remaining columns sum to
unity as is the case for all columns of Markov matrices.

* The dots indicate continuation of the values of the adjoining elements; remaining
elements are assumed to be 0.
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If the transition matrix of the basic Markov process, i.e., the matrix
defined by egs. (1) through (4), is irreducible, then (I — pA4) is
nonsingular for |p| < 1. The proof follows from a well-known result
in matrix theory® which in this case states that if all the columns of
(I — pA) are weakly column-sum dominant and at least one column
of (I — pA) is strongly column-sum dominant, then the matrix is
nonsingular.

III. STEADY-STATE PROBABILITIES FOR FINITE BUFFERS

In this section, a formula is given for recursively generating the
steady-state probabilities P(7) where the recursion is, with respect to
N, the size of the buffer. To distinguish the steady-state probabilities
for different buffer sizes, the symbol P¥(z) is introduced to denote
P(7) for a buffer of size N.

If N = k + 1, as is almost always the case, an equation of the type
given in (2), namely,

"PNG + k) = 0 )

PYG — 1) — —P¥() +
m

occurs at least once and since N > k usually, the main body of equa-
tions defining the steady-state probabilities is of that form. It is
proved in Ref. 1 what may reasonably be expected, namely, every
solution of the homogenous set of equations that define the steady-
state probabilities is of the form

k+1 N—j
PN(]) = Zbi#i j=01 1:"'1N (10)

=1
where u; are the simple roots of the polynomial
1 1—=

k1 _‘u.k +
™ ™

u (11)

If the polynomial has multiple roots the obvious modifications must
be made. [Note: Sinee 0 < 7 < 1, the polynomial in (11) has distinct
roots whenever = # k/(k + 1) ; when = = k/(k + 1), the only repeated
root is 1.]]

The complete recursive formula for P¥(j) is obtained in two parts.
First, a recursive formula for a set of solutions g~ (7) to the steady-state
equations is obtained and, second, a recursive formula for the
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normalizing constant Zy is obtained. Finally,

1
PY¥(j) = g;QN(j) i=0,1,---N. (12)

3.1 Recursions for {qn(5)}

Let
gn(N) =1 (13)

and suppose {gn(Jj)} satisfies the steady-state equations of a finite
buffer of size N. Hence, g% () has the form given in (10).* For fixed N
andi=1,2, .-,k + 1, let
A K i1
d" = Z Qi
=1

The transformation {a;} — {d;} is invertible since the Vandermonde
matrix i8 nonsingular. Now,

k+i N—(N—i+1)
di = 2 au;
J=1
=gy(N —2+4+1) i=1,2 .-,k + 1. (14)
Also, from the steady-state equations themselves,
di = gv(N) =1 (15)
di=gv(N—i+1) = : i=23,--,k+1. (16)
T

Hence, significantly, {d;} is independent of N from which it follows
that {a.} is also independent of N.

k+1 .
. N+k+1—j
ansr1(d) = 2 aipi

=1

E+1 1 1= »
= a =M 2T from (11)

i1 (T T

1 . 1 — . .
= ;QN+1¢(J) - gn (J) j=01,---, N (17)

The formula for {gy4xs+1(7)} is complete if (15) and (16) are appended,

*To distin%uish between {P¥(j)} and {gn~(j)], denote the coefficients in the form
for the latter by {ai}, i.e., bi = (1/Zw)a:.
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ie.,

1—
gnie1(N + 1) = e 1=1,2, .-,k (16)
T —i+1
gysra(N +k+1) = 1. (15)
3.2 Recursion for the Normalizing Constant
Let
g .
Iy = 2 an(J). (18)
j=0
Now ’
N+k+1 k 1 1
T real) =1+ 0-0E (2
j=N+1 i=1 \T
19
1 (19)
= ~

Summing both sides of (17),

1 1 1 l1—m
Iyttt — — == Zvpe — — | — N

% T rhtl T

1 l—r
—Z N —
m m™

INyksl = ZN. (20)
(20) is the recursion for the normalizing constant. The derivation of the
recursive formula for {P¥(7)} is now complete.

Observe that in the course of the above analysis, a simple recursive
formula for the rather important steady-state probability of the buffer
being full, i.e., PY¥(N), has been obtained.
gn(N) _ 1

= (21)

PY(N) =
(N) e Za

and Zy, of course, is obtained from (20).

IV. MEAN FIRST PASSAGE TIME

Suppose N is a fixed positive integer and the buffer capacity is
greater than N. A functional that provides substantial insight into
the problem of designing a buffer for which the probability of overflow
is small is Fy, the mean time required for the buffer contents to first
exceed N. It is particularly useful in the context of burst processes
where only incomplete data are available concerning the burst length
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distribution—provided that the length of bursts is bounded, a simple
comparison of the bound with Fy provides an useful guide. In this
section a recursive formula for Fy, the recursion being with respect to
N, is obtained. To correspond with the practical situation, the buffer
is initially assumed to be empty ; the same recursive formula holds for
the other interesting initial condition, namely, the buffer initially
contains an unit symbol.
X . 1s the event that §; € {1,2, ---, N} forall j,0 = j = m.

0; 2 Pr{overflow occurs for the first time at 7} (22)

= PI'[(E“_J = 1) M (S;‘_]_ = N) ﬂ X{_]}
7 Pr{(S;.y = NN X,_,)}, from the independence of {E,}

= Qs (N) (23)
where {Q;} is as defined in eq. (5). It has been shown in Section 2.1 that
Q: = AQ: .. (6)
Hence,
0: = ‘H'Qi—l(N )

W(Os "ty 0: l)Qi—l
7"(0) -0, 1)Ai_lQ0

Il

= re,A-1Q, (24)

where e; denotes the vector* with a single element equal to unity at the
#th loeation and all remaining elements 0; r = N -+ 1. Finally,

Fy = Mean time for first passage through level N
0: (25)

o
= 3 7
i=1
* t
=7 ¥ ie,A"1Q
i=1

=1rei (i iA{_l) Qo
i=1
= me,(I — A)(I — A)-1Qo- (26)
Let A
zt = eI — A

* The superscript ¢ denotes the transpose of a vector.
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so that

2t(I — A) = e.- (27)
But

1
xt=—(1:1)"':1) (28)

is a solution of (27) since the elements of the last, i.e., (N 4+ 1)th
column of A sum to (1 — 7) and the remaining columns sum to 1.
Moreover, (28) is the unique solution of (27) since (I — A) is non-
singular. Hence,

Fy=(1,1---,1)T — A)7'Q,
=11 — A)7Q (29)

where 1 denotes the vector with all elements equal to unity. In the
following section, the above formula with @, = e; is analyzed further
to yield a recursive formula.

4.1 Recursive Formula for Fx

Henceforth, it is necessary to be specific about the dimensions of
A-the matrix A associated with a given N is denoted by A(N).
The buffer is assumed to be initially empty, i.e., 8, = 0 or, equiv-
alently, Q¢ = ei.

Since* |I — A(N)|[I — A(N)J'ex is the vector of (signed)
cofactors of the 1st row of [1 — A (N)]

I — AWN) 111 — AN)T'er = [D(N)] (30)

where D(N) is the (N + 1) by (N +1) matrix obtained from 4 (N) by
replacing all elements of the first row of A(N) by unity. Then, from
(29),

[D(N)|
N=——"" (31)
[I — A(N)|
Adding rows 2, 3, ---, (N + 1) of [I — A(N)] to the first row,
it can be verified that
|I — A(N)| = =¥+, (32)

In Appendix A it is shown that
ID(N)| = [DIN = 1)| = (1 —=mr*|D(N —k — 1)| +=¥. (33)

* | X'| denotes the determinant of the matrix X.
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Hence,
D(N) 1 |[D(N —1) 1 —m)r% |D(N —Fk —1) 1
D@)| 1 DV =1 (= mr* |D( ol e
a1 T v k1 Nk T
ie.,
1 1—7 1
Fy=-Fy_,— Fy_g—1+—- (35)
T T T

The above relation is the desired recursive formula for the mean first
passage time. It was obtained under the assumption that the buffer
is initially empty. An alternative assumption about the initial distribu-
tion, which is also of interest, is that the buffer contains an unit symbol,
i.e., So = 1. It may be shown that even for this case the mean first
passage time satisfies the formula (35) though, of course, the initial
conditions to the recursion in the formula are different.

V. PROBABILITY OF NO OVERFLOW IN A BURST

The results of this section are useful when information concerning
the length of bursts is available. It is assumed that the distribution of
burst length may be expressed as a weighted sum of geometric distribu-
tions. Given below are formulas which yield the probability that the
contents of the buffer during bursts do not exceed N, a given positive
integer.

At this stage, assume that the distribution of burst length is geomet-
ric; the generalization to distributions that are weighted sums of
geometric distributions will be taken up later. If the burst length is
denoted by I, then

Pril=12} =1 —p)p*t i=1,2, ---. (36)

for some p, 0 < p < 1. Let Gy 2 pr {buffer contents do not exceed N
during a burst}. The usual decomposition into mutually exclusive
events yields

GN: ZPI‘{SJ;G(O,].,"',N), .7=‘0:1::m:
mz=1
and burst length = m}
= 2 Pr{X.MNIl=m}
m=1
= Y Pr{X.}Pr{l = m}. (37)

m=1
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The last relation holds since, Pr{X..|l = m} = Pr{X.}. Now,

PriX,} = § Pr{S, =1MN X}

= 2 Qn(7) from (5),

=0
1Qn

= 1tA™Qy (38)
where 4 is the (N + 1) by (N 4 1) transition matrix defined in

Section 2.1 and €, is the vector given by the initial distribution—it
may be assumed that Sy € (0, 1, - - -, N). Hence

Gy = 2 1'A™Qo(1 — p)p™!

mz1

-4z 1={ 3 (pA)m} Q

p m=1

1—0p
= (I — pA) = I1Qo

=(1—P)
p

(141 — pA)7'Qo — 1}~ (39)

In the sequel, a recursive formula for G is developed for the case
where Sy = 0 or, equivalently, Qo = ei.

5.1 Recursive Formula for Gy

The matrix A associated with a given N is denoted by A(N).
|I — pA(N)|{I — pA(N)}'e; is the vector of (signed) cofactors of
the first row of {I—pA(N)}. Therefore, |I—pA(N)|1¢{1—pA(n)} e
is the determinant of the matrix B(N) obtained by replacing every
element of the first row of {I — pA(N)} by unity.

|B(N)|
[I — pA(N)|
Let the (signed) cofactor of the element {I — pA(N)}1: be denoted by
CY% 1=1,2, ---,N + 1. From the definition of B(N),

|B(N)| = X Cv- (41)

i=1

141 — pA(N)}~'er = (40)
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The elements of the (N + 1)th column of {I — pA(N)} sum to
{1 — p(1 — 7)} and the elements of the remaining columns sum to

(1 — p). Hence, by adding the rows 2, 3, - - -, N + 1 torow 1, it follows
that

N
[I —pAN)| = (1 —p) ZC¥+ {1 —p(1 — =)}jC-¥*!

=1

N+1

= (1—p) T Ct [1=p(l —7) — (1 = p)}CLN=

= (1 = p)|B(N)| + prC1.¥*t from (41),

1.e.,
B N 1 CI.N+1
BN _ _pm , (42)
I —pAN)| 1—p 1—p|I—pA@)|
Recapitulating,
1 —
Gy = — L [1H1 — pA(N)}~tes — 1] from (39)
p
1 - B(N
_ "[ [BOV) —1] from (40)
p [T — pA(N)]
(1,841
=] -7 from (42). (43)
[T — pA(N)|

The remainder of the derivation is in two parts. First, a closed form
expression for C':¥+! is obtained. The second part is on the recursive
formula for | — pA(N)| and this formula is derived in Appendix B.

1 23 k+14k+2 N+1
((L+N XX 1
b 10 A 2
I —pA(N) = L C (44)
T L10 N [ N—k+1
‘u .1 0 N
1 JN+1
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where —p(1 — 7) = A and —pr = u. C1-¥+ the (signed) cofactor to
{I — pA(N)}1, 541, is the signed determinant of an upper triangular
matrix;
CLNHL = (—1)¥42uN = (—1)N+2(—pg)N
= pNg¥, (45)

In Appendix B it is shown that if zy, a scalar, is used to denote
|I — pA(N)|, then the following recursive formula holds:

IN = IN-1 — pH’l‘n"‘(l - ’Jr):L‘N_kél. (46)
Hence,
Ty =i( TN )_1—77( TN_k-1 ) (a7)
TN p \mN-1pN-1 T wN—k—1N—k-1
Let
T | I — pA(N)|
Yn < NNN = N N( (48)
o T™p
so that,
1 1—=
YN = — YN—1 — YN—k—1. (49)
mp
From (43) and (45),
T NHN
Gy=1— ——
11— AW
ie.,
T
Gy=1— —- (50)
Yn

(49) and (50) together provide the desired recursive formula for the
probability that the contents of the buffer does not exceed a given level
N during bursts if the buffer is initially empty and the distribution of
burst lengths is geometric.

Suppose the distribution of burst lengths is the weighted sum of

geometric distributions; i.e.,
J

Pr{burst length = 7} = 3 a;(1 — p;) (p;)* . (51)
i=1
It may then be shown that Gy = ¥7/_,a;G; v where G; y is obtained
from (50) and (49) with p replaced by p; in the latter equation and
G;,n identified with Gy.
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VI. MEAN TIME FOR FIRST PASSAGE IN A BURST

In Section IV certain formulas for the mean time for first passage
across prespecified levels are given. In burst processes where data
regarding the length of bursts is available, a more meaningful funetional
is one in which a level is defined to be crossed only if this event occurs
during a burst. Bursts, then, may be visualized as a period of observa-
tion of the buffer. First passage across N, a positive integer, is defined
to oceur at z if

(S;<£N,j=0,1,2 ---,7—1and 8; = N + 1 and,
burst length =7}.

Let R; denote the probability of this event. The functional of interest
is Hy = Y=, iR;. The burst length distribution is assumed to be
geometric ; generalization to larger classes of distributions may be un-
dertaken as indicated in the preceding section. Hence, if | denotes
burst length,

Pril=1} = (1 —p)p* ©=1,2,--- (52)

for some p, 0 < p < 1.
In the notation of Section 2.1,
Ri=Pr{Sia=NNX, 1 NE_;=1N12=1
= Pr{E;; = 1}Pr{S;y = NN X[l = ¢} Pr{l = ¢}
=7Pr{S:.1 = NN X ,}Pril = 4}
=mQi_1(N)p*™

= res(pA) Q0. (53)

A is, of course, the (N + 1) by (N + 1) matrix defined in Section 2.1
and @) is the initial condition vector.

Hy = me,(E i(p4))Qo
ie., =

Hy = wer(I — pA)(I — pA)~'Qs. (54)

The above concludes the derivation of the closed formula for H y—the
rest of the section is concerned with recursive versions of the formula
for the case where the buffer is initially empty, i.e., @ = e:. Once again,
it is necessary to revert to the use of the symbol A(N) to denote the
matrix 4 associated with N.
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For fixed N,
2(p) & e X pHAN(N)ey
izo
= pe, T {pA(N)}ie,
120
= pe,{I — pA(N)} ey
Hence,

er 3 (i + 1)pidi(Nes

=20

I

Z(p) = i z(p)

er 3 i{pA(N)} e

izl

1
—Hy-

™

Returning to z(p) and (55), observe that

pC‘I,N+1
2(p) = ————
[I — pA(N)|
QLN+l = pNgN,
Hence,
pN+l’II'N
2(p) = ————
I — pA(N)|

and, from (56),

d pN+l.n.N+1
=
dp (|1 — pA(N)]
Let
1 A pN+11rN+1

ov |1 — pA(N)|

25

(55)

(56)

(57)

(45)

(58)

(59)

Since vy = (1/pm)yny where yx has been defined previously in (48) and
the recursion in (49) for yy is linear, v» satisfies the same recursion.

Hence, with uy = (d/dp)vn(p), the following formula is obtained :

Uun
Hy = — —
2
UN

(60)
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and, 1 1 —=
VN = — UN-1 — UN—k—1 (61)
p m
1 1—= 1
Uy = ;; UN—1 — . UN—k—1 — pz_’rﬂN—ln (62)

VII. ASYMPTOTICS OF RECURSIONS

The main recursions occurring in the paper are of the following
forms:

1 1—=

TN = —IN-1 — TN—k—1 (63)
T T
1 1 —m 1

YN = —Yn-1 — YN—k—1 T+ — (64)
T T
1 1—r

ZN = —2ZN_1 — ZN_k_1 where 0 < p < 1. (65)
pT T

Equation (63) oceurs in the formula for the (unnormalized) steady-
state probabilities and in the formula for the normalization constant;
(64) occurs in the formula for the mean first passage time ; (65) occurs in
the formula for the probability of no overflow during bursts. The
fundamental solutions of these recursions are obtained from the roots
of the following polynomials.

1 —

1
F(p) & pbtt — —wtt (66)

™

1 —=

1
G(p) = p*tt — —uh + - (67)

pT T
Equation (66) is associated with (63) and (64); (67) with (65). The
two results given below enumerate and estimate the roots of #(u) and
G (u) outside the unit circle.

Lemma 1" : Except for one positive real root 1/6, and 1, all other roots of
F(u) lie inside the unit circle |p| < 1. The root 1/6 lies outside the unit
circle if and only of k > =/(1 — =).

Lemma 1 is a specialization of a result proved in Ref. 1. Bounds on

6 are also given there.

Lemma 2: G () has k roots inside the unit circle |u| = 1, no roots in the
annular ring 1 = |u| = 1/p, and one real, positive root outside the

circle |u| £ 1/p.
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Proof:
o) =-""s0
1
G(l)=—(1—-1/p) <0
1l —= 1
G /p) = — [1 _ F] <o.

Since G(0) > 0 and G(1) < 0, there exists a real positive root of
G(u), v, where r < 1. Since G(1/p) < 0 and G(u) > « as u— ©,
there exists a real positive root of G(u), R, where R > 1/p. The
following theorem which is stated without proof may now be applied.

Pellet’s Theorem :"® Given the polynomial
f(z) =ao+az+ - +az?+ - + a.2", a, =0,
If the polynomial
Fyp(z) = lao| + aslz + - + [ap_s]2m
- [a,|z" + [aﬂ+1|zp+l + - laalz®

has two positive zeros r and R, r < R, then f(z) has exactly p zeros in or
on the circle |2| < r and no zeros in the annular ring r < |z| < R.

Identifying p with k, n with k + 1 and f(z) with G(u) the rest of
the proof follows.
The reader may now verify that, for large N,

™

zy == () if k<

1 —7

~C+CN  if k=n/l—x

1 N
ECl'f‘Cz(E) if k>

1—r

™

yn=C) + NC, if k<

l1—7

_DJ:CI+NCQ+N2C;1 lf k=1r/l—1r

I\ M
'EC1+N02+C:;(B) if k>

1—=

2y = C1(R)V
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where, R and 1/6 are roots previously defined and the C’s are constants.
The constants may be obtained by fairly straightforward computations.

The qualitative difference between the forms of the expressions
corresponding to k < =/(1 — =) and k > =/(1 — =) are noteworthy.
This is not unexpected, since it may be recalled that in Ref. 1 it was
proved in a more general context that the Markov chain associated
with the infinite buffer is positive recurrent if and only if & > =/(1—m).

VIII. A MONOQTONICITY PROPERTY OF THE PROBABILITY OF A FINITE
BUFFER BEING FULL

The steady-state probability of a buffer being full, i.e., P(N) where N
is the size of the buffer [see Section III and, in particular, eq. (21)]
may be expected to be an important factor in the practical design of
buffers. This is so not only because of the immediate implications of
the definition but also because 1/P(N) is the average recurrence time
of state N. However, this approach would appear to overlook the
possibility that the probability of the buffer being full in the transient,
i.e., in the approach to steady state, is seriously underestimated by
P(N). Such an event is not easy to rule out because, after all, P(N) is
an element of only one (normalized) eigenvector of the transition
matrix while all the modes or eigenvectors and eigenvalues of the
matrix contribute to yield P.,.(N) when m is finite. However, one of the
implications of the result in this section is that, under certain conditions
on the initial probability distribution of the contents of the buffer,
P(N) is indeed an upper bound on Pn(N), ie., P.(N) £ P(N),
m =0, 1, --- ; furthermore, the important case of the buffer being
initially empty satisfies the conditions just mentioned.

For a buffer of size N, the result states the following. Suppose at the
mth instant the state probabilities satisfy the inequalities:

itk

TPn(d) — (1 —7) X Pu(p)20 ¢=0,1,--,N—k (68)

j=it+1

mPn(t) — (1 —m) 2 Pa(j) 20
j=itl

i=N—-k+1,N—k+2---,N—1 (69

Then (a) Pm(N) = P,;1(N), and, as shown below, (b) the inequalities
in (68) and (69) are satisfied with P, (I) replaced by Pny.1(l) forl = 0,
1,2, ---, N. Therefore, if (68) and (69) hold, Pi(N) = Pi;1(N) for
all 4, 7 2 m; i.e., the probability of the buffer being full is a monotonic,
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non-decreasing sequence. (a) may be trivially verified. The proof of
(b) is as follows.

(7) 1 =0.
TPmp1(i) — (1= m)[Puya(i + 1) + Prga(i 4+ 2) -+ + Puia (1 + k) }
X [Pn(0) + Pu(l) + -+ Pu(k — 1)] — (1 — 7)2[Pu(k + 1)
= (1 —m)[aPn(k) — (1 — m){Pu(k + 1)
+Pm(k+2) +Pm(2k)}]g.0
(#7) 1= ¢ =N — 2k

TPmp1(?) — (1 = 7){Pup1(P+ 1) + Prsa(24+2) o+ + Pupr (G + k)}
=7(1 = m)[Pn(0) + Pu(l) + -+ + Pu(k)] — (1 — m)x[P(0)
+ Pu(l) + -+ + Pulbk — )] — (1 — 7))[(Pu(k + 1)
+ Pk +2) + -+ + Pu(2k)]
= (1= m)[aPnlk) — (1 — m){Pulk+1)
+Pulk+2)+ -+ + Pu(2k)}]1 =0
(i5) N—2k+1<i<N—Fk— L

TPmi1()) — (1 — ) [Pyt + 1)
+Pm+1(i+2)+ +Pvn+1(7:+k)]
=a[Pu(i— 1)+ (1 — m)Pu(i + k)] — (1 — )
X7[Pu(®) + Pu(i+ 1)+ - + Pu(i + k — 1)]
— (=) [Pui+k+ 1) +Pai+k+2) + -+ + Pa(N)]
=7[wPn(i — 1) — (1 — 7)[Pu(i) + Puli + 1)
+ o+ P+ k= 1D+ (1 — D)[7Pali+k) — (1 —7)
X {Pu(i+k+1)+Puali+k+2)+ - +P.(N)}]]=0

(w) i=N — k.

TPois()) — (1 = 1) {Poya(i + 1)
+ Poali+2) + - + Pupi + k)
=a[rPn(t — 1)+ (1 —m)P.(i + k)] — (1 — ma[Pn(i)
FPuli+ 1)+ 4 Pulitk— 1] — (1 — m)aP ()
=a[rPn(i — 1) — (1 — 7){Pna(i)
+Pai+ D)4+ Puli+k—1)]]120
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W N—-k+1<isN-1L
TPmir(1) — (1 = 7){Pmpr(i + 1) + Pra(@ + 2) + -+ + Pua(N)}
=mP,(i—1) — (1 = D)a[Pu(i) + Puli+1) + -+ + Pu(N)]
= q[7Pu(i — 1)—(1 — M) [P + Pa(i + 1)
+ o+ Pa(N}120

(b) is proved.

Observe that Pn(0) = 1, Pn(?) = 0,7 =1, 2, -+, N satisfies the
inequalities (68) and (69). However, the other initial distribution of
interest, namely, Pn(0) = 0, Pn(1) = 1, Pn(i) = 0,2 = 2,3, ---, N

does not satisfy the inequalities. Also, it may be verified that for the
latter set of initial conditions, the monotonicity property does not hold.

It is interesting to note that if (68) and (69) hold, then P..(0)
> P,;1(0), so that together with (b), P:(0) = Pi;1(0) forall ¢,z = m,
i.e., the probability of the buffer being empty is a monotonic, non-
increasing sequence.

APPENDIX A
Recursive Formula for |D(N)|
1 2 kE+1 N N+1
1 1. . - . . . . 0. .1 1 h 1
—x 1.0 =1 0 2
D(N) = . - .
“x 71 0 r—1)|N—-k+1
- 1.0 0 |N—k+2
S 0o |~
L e 1 JN+1
Expanding |D(N)| along the (N + 1)st row yields
ID(N)| = |[D(N — 1| + =[X] (70)

where
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12 kE+1 N1
SRR P |
—x10 (r—1)
X & Zx 1 0 =1
- 1 0 0
—7 10 0
w1

L -

Expanding | X | along last column:

| X| = (= 1D)¥(—m)¥ L 4 (r — 1) (= 1)¥+ @@=kt | V|

where

>

.

Expanding |Y | along the last (¢ — 1) row.

Y| = (=0 DV =k = 1)].

N

(=]

(r—1)

N -1

.1

]

31

2
N—-—Fk-—1
N —k
N-—-Lk+1
N

(71)

1

2
N—-k-1
N -k
N -1

(72)
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Combining (70) through (72):
ID(N)| = [DIN = 1)| = (1 = m)x*[D(N — k — 1)|. (73)

APPENDIX B

Recursive Formula for |I — pA(N)|

I — pA(N) is given in (44). Let z, denote | — pA(N)]. Also,
A= —p(l—7) and p = —pm.

(7) Expand |I — pA(N)| along the last, ie., (N + 1)th row, of

[ — pAN)].

zy = zx-1 — p|X| (74)

where
1 2 kE+1 N
MM+2A A . . . A 0 0) 1
m 1 0 A 2

so>
>oo
===
(N
= e
+

'_u']. 0
L w 0N

(77) Expand | X | along the last, i.e., Nth column of X.
|X| = (—1)(N=btD+N) | V|

= (=Y (75)
where
1 2 k+1
1+X A A 1
B 1 A 2
y 2

w10 AMN—k—1

g 10 0|N -k
0 w10 O0N-—k+1

.“‘1
ul N —1
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(747) Expand | Y| along the last £k — 1 rows.

Y| = p* ey s (76)
Hence,
Ty =y — p| X| from (74)
=zy1 — p(—1)\|Y]| from (75)
=2y — p(—1)* N zy s from (76)
= IN-1 — p"“ﬂ'k(l — T)IN_k-1- (77)
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