Copyright © 1973 American Telephone and Telegraph Company
THE BeLL SysTem TeEcHNICAL JOURNAL
Vol. 52, No. 10, December, 1973
Printed in U,S8.A.

Information Management System:

MASTER LINKS—A Hierarchical
Data System

By T. A. GIBSON and P. F. STOCKHAUSEN
(Manuscript received Oectober 5, 1972)

MASTER LINKS is a software system used to buzld, admanister, and
access hierarchical data bases. It is designed lo operate in a time-sharing
environment, and, in particular, it allows multiple concurrent updates
and retrievals on the same data base.

A BUILD module is used to specify the hierarchical configuration of a
data base and an initial ‘“‘storage mapping” of the elements of the hier-
archy into a particular file layout. A set of administrative routines is
provided for altering the mapping and other such maintenance purposes.
The access routines have three levels of interface, from primitive and
flexible to sophisticated and functional. The interfaces are all defined in
terms of the hierarchical structure and independent of the storage mapping.
Thus, an alteration of the storage mapping for a data base does not
require changing any programs that access data using these interfaces.

The lowest-level interface enables the calling program to add to the
data base, update a value, or retrieve a value, in terms of a hierarchy
posttion. The second-level interface facilitates traversal of a hierarchy
by enabling the calling program to specify portions of the hierarchy over
which a process is to operate. Such a specification, called an “access tree,”
consists of data which can be generated at execution time by the calling
routine. As in the first level, data are transferred one at a time. The third-
level interface is a function evaluation mechanism which computes values
Jrom data base values and other computed values according to function
definitions passed to it al execution time. Like an access tree, a funciion
definition is itself data which can be constructed at execution time by the
client process.

1691

1692 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

I. MASTER LINKS OBJECTIVES

The Master Links data system is a collection of software that
accesses and manipulates data stored in a hierarchical structure on a
computer’s secondary storage devices. It services requests from
“client” programs to store and retrieve data, and to create and release
space in the data structure.

The Master Links project was designed with the following goals:

(i) Provide a basic “low level” set of access mechanisms to
retrieve and store data items, and to create and delete branches
of the hierarchy. Client programs using these mechanisms
work entirely in terms of the hierarchical structure.

(#%) Provide ‘““high level” access mechanisms that simplify the
programming task for complex retrieval requests.

(#7) Support many concurrent users on a data base, doing both
retrievals and updates.

(%) Operate well in a time-sharing environment.

(v) Enhance portability of the system by basing its design on
machine-independent concepts.

Other goals are presented in the text of this paper.

This report begins with a definition of the elements of hierarchical
data structures, and a description of the basic access mechanisms, in
Seetion II. Section III examines the requirements of typical client
processes. Then high-level access mechanisms are described in Sections
IV and V. Thus, these four sections describe the system as viewed
by its users. Section VI delves into the system design and shows how
the structures are arranged to provide these capabilities in portable
form with high performance. The final section discusses the experience
acquired with current implementations, and presents an outline of
current and future developments of Master Links.

II. ELEMENTS OF HIERARCHICAL DATA STRUCTURE

The elements of a hierarchical data structure are entities, groups,
and fields. Groups and fields are the permanent elements of a data base.
They are established by a process called “building” the data base.
Entities are the dynamic elements. They are added and deleted at any
time by client programs using the basic access mechanisms of Master
Links. Client programs also use the basic access mechanisms to trans-
mit data for a field of an existing entity.

MASTER LINKS 1693

2.1 Entities, Groups, and Fields

A field is a set of data all identified by the same field name. There
are several types of fields: numerical, character, logical, and date.

An entity is an element which holds one value for each of a given
list of fields. We will draw an entity as a rectangle, with the field names
to one side and the values inside, thus:

STORE NAME PLAZA

EARNINGS 10325

A group is a set of entities with the same fields. A group has a name
which indicates the nature of its entities. The name of a group will be
written in an ellipse:

STORE NAME PLAZA MAIN ST RT 46 PLAZA

EARNINGS 10325 69238 21420 96823

A data base is composed of a set of groups which are hierarchically
related. One group is the top group. All others descend in a tree fashion :

DEPARTMENT

This is a STORE and WAREHOUSE data base. It is subdivided by
CITY at the top. Each city of the chain of stores is represented by
one entity in the CITY group. There are several stores per city, several
departments per store, and several items per department. In addition,
certain data are kept on an annual and a monthly basis for each store.
Each city also has zero, one, or more warehouses, and there are several
items of STOCK per warehouse.

Although called a tree, the structure is always drawn “upside
down.” This is not in fact unusual. Corporation organization charts are
frequently drawn this way, as are part lists, inventory lists, ete. It

1694 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973
FIELD NAME GROUP DEPTH

CITY NAME

WAREHOUSE NAME

STORE NAME
EARNINGS

STOCK NO
UNITS

YEAR NAME

DEPT NO
SALES FORCE

DEPARTMENT
DOLLAR SALES

MONTH NAME
NET SALES
ADVERTISING

ITEM NO

IN STOCK

ON ORDER
BACK ORDERED
PURCHASE COST

Fig. 1—A group tree with fields.

places the major components at the top and the detailed ones lower
down.

Figure 1 shows this data base with fields assigned to each group.
Figure 2 shows a blowup of the entities. The ellipsis (---) in a group
indicates several entities not shown.

The parent of a group is the group immediately above it. The top
group has no parent. All other groups can have only one parent.
The parent of an entity is the entity immediately above it. Entities
in the top group have no parent and all others have one parent. The
parental relation of entities must parallel those of the groups. Thus
if group B has group A for its parent:

then all entities of B must have their parent entities in A.

1695

MASTER LINKS

senIue 8y} jo dnmo[q v—g i

I
_ﬁ eg | [&1 ﬁ Pz ! | 6l _ 1500 3SVYHIHNA
oz | | et Lo | | o Q3¥30HO oV
W3l | 9 | oo 12 [O T IR B T ¥3OHO NO
| ot | 1o | | 8L | TN 30015 NI
| €89 | o | ES¥ | _, oL | ON W3ll
| v _ ﬂ £9 _ | oL “ ONISILHIAQY
HLNOW | g0 | ool 682 [ree 1 537¥S 13N
_F 230 “ u 23 | | Nvr __ JWYN HLNOW
I T T T T ﬁ
| 0B9L | | beee | | 2set S31vs H¥110Q
INIWLHVd3a l gz | sss| 19 |ese| 9 | 30HO4 §3VS
“ evs6 | | zve6 | | ozal __ ON Ld30
I T T T T T T T 1
HY3IA | €L | see | ZLV WL L OL) EL L ML 0L JWVYN HYIA
r T T T 1
|16 | €2 | {9 | B | £6 | SLINN
A301S | 80L | (O | & | BOL | (0L | ON 2018
L 1 1]
1 d w | L
T T T
| £2896 | Ozvlz | 96260 | SZEOl " SONINHY3
340Ls | vZvid | 96 14 | IS NIVW | vZV1d | JWYN 3HOLS
L L 1
r
3SNOH3HYM “ IANYN ISNOHIHYM
ALID IJNYN ALID

dNOYO JWYN a7314

1696 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

In Fig. 2 the entities are labeled a, b, - - -, r. These labels are not a
part of the data base, but are used only as references in this paper.

We have made use of the terms “parent of an entity” and “parent
of a group.” This suggests the use of other genealogical terms. The
kth ancestor of an entity is the entity k steps above it. (Hence the
first ancestor is the parent.) The offspring of an entity are all the
entities immediately (one step) below it. The descendants are all the
entities below it.

For each entity, all its offspring in one group form a family. Entities
a, b, and ¢ are a family ; d and e another family ; g and h another family.
Notice that entity a has two families under it, one in STORE and one
in WAREHOUSE. If two entities are in the same family, such as d
and e, they are siblings to another. If two entities have the same parent,
but are in different families, such as d and g, they are step-siblings.

2.2 Building the Data Base and Entity Dynamics

A particular data base is established by defining the group tree and
the fields of each group. This process is called building the data base.
The language for describing the data base is called the build language.
Using this language a data base designer describes the permanent
attributes of his data base and submits the deseription to a utility
program called BUILD. After BUILD has processed the description,
the data base has no entities, and no data, but only a ‘“‘skeleton”
structure.

Entities are the dynamic components of a data base. They may be
added or deleted online, even while other users are working on the
data base. Thus the actual data base grows and acquires data, but
always in accordance with the structure defined by BUILD.

2.3 Basic Access Mechanisms

There are five basic operations which programs can perform on the
data structure:

(7) Select a top entity or an entity whose parent has been pre-
viously selected.
(7) Add a new offspring to a selected entity or add a new entity
to the top group.
(777) Delete a selected entity.
(7v) Select a field.

MASTER LINKS 1697

(v) Transmit data to or from a selected entity for the selected
field.

These five basic operations make possible any manipulation of the
data structure except modification of the permanent attributes of the
data base established by BUILD.

2.4 Identificalions

A user (or a program) accessing the data base must be able to
uniquely identify each element. Users identify elements by names,
such as ‘KANSAS CITY, ‘WAREHOUSE,’ or ‘ EARNINGS.’ Names
are also called external identifiers, because they are used (by people)
external to the software. The Master Links software uses internal
identifiers, which are integers such as group 2, entity 7, field 13. The
term ideniifier refers to both internal and external identifiers.

Fields and groups are given unique identifiers. Figure 2 shows group
and field names. These names are selected at the time the data base is
built and then do not change. Their internal identifiers are positive
integers assigned by BUILD.

The identifieation of entities must be done somewhat differently,
since they are not established by BUILD. The internal identifier of
an entity is a positive integer called the enfily index. The first entity
of a family has index 1, the second has index 2, ete. Thus, the internal
identifier is unique only within a family.

This method of identifying entities allows implicit associations to be
established among the entities of a group. The most common use of
this is to assign the same index to all the entities which have some
attribute in common. In this case the external identifier names that
attribute. For example, a data base with just MONTH and STORE
groups is shown with internal and external identifiers.

1 2 3 MONTH
JAN FEB MAR

/ /\ \ STORE

1 2 1 2 1
PLAZA MAIN ST PLAZA MAIN ST PLAZA MAIN ST
All store entities with index 1 have the common attribute of storing

data for the PLAZA store. One can request processing of all data
for the PLAZA store, and this will cause all STORE entities with

1698 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

index 1 to be processed. To uniquely identify a single entity in the store
group requires specifying both a month and a store identifier.

Another implicit association possible is the ordering of entities.
Again using months as an example, JAN through DEC can be assigned
indexes 1 through 12 respectively.

III. THE CLIENT PROCESS

Processes that access data bases have a strong tendency to access
either many fields from a few entities, or few fields from many entities.
An example of the first type is

ENTER NEW SHIPMENT DATA FOR WAREHOUSE_______.

Values for many fields are to be put into one warehouse entity. For
this type of request the basic access mechanisms are quite convenient.
An example of the second type of request is

FOR ALL STORES IN CITIES ___, ___, AND __, PRINT
STORE NAME, AND 1972 NET SALES PER STORE
DIVIDED BY EARNINGS.

Only a few fields (STORE NAME, NET SALES, and EARNINGS)
are required, but a large number of specific ¢ity, store, year, and month
entities must be accessed to fulfill this request. Further, the values of
NET SALES and EARNINGS that are retrieved must be functionally
combined into the values of 1972 NET SALES per store divided by
EARNINGS.” It is possible to do these tasks by using the basic
access mechanisms, but the programming is tedious and lengthy.
Master Links provides a set of higher-level access mechanisms that
makes programming of the above PRINT request as simple and
straightforward as this:

() Deeclare which entities are to be processed.
(#) Step to each of these entities in turn, and retrieve and print a
value for the requested function.

The entities to be processed are declared with an access free. The
access tree provides directions to the generator which steps to each of
the entities in turn. Finally, the retrieval is performed by the function
evaluator which does all the work of evaluating functions of data
stored in a data base. These tools for client programmers are described
in the next two sections.

MASTER LINKS 1699

IV. ACCESS TREES AND THE GENERATOR

An access tree describes a subtree of the entities of the data base.
Thus any entity on the access tree has all its ancestors on the access
tree. It can also be visualized as a ‘“pruned” entity tree: when an
entity is removed, so are all its descendants. Several concepts underlie
the mechanism for building an access tree:

() The generated group

(42) The refined inclusion of an entity
(#72) The refined set of entities

(#) Independently refined sets

(v) Whole-family inclusion.

These are described in turn. The data base of Fig. 2 is used for all
examples.

4,1 The Generated Group

Some groups of the data base will contain data needed by the process,
and some will not. Those that contain needed data, and all their
ancestors, are the generated groups. The rest of the groups have no
entities on the access tree and therefore will not be generated.

The client process may specify what groups have needed data. It
therefore specifies by implication the generated groups and the groups
to be pruned from the access tree. The generated groups all have
entities on the access tree. They are there either by refined inclusion
or by whole inclusion,

4.2 Refined Inclusion

Refined inclusion means an entity has been put on the access tree
by explicitly giving its group identity and entity identity within its
family. In Fig. 3, KANSAS CITY has been explicitly named to the
access tree, and therefore is a case of refined inclusion. In writing
programs, the internal identities are used: the group number and the
entity index within its family. In our examples in this section, we will
use external identities, as has been done in Fig. 1. It is confusing to
wade through a lot of numerical codes in examples when trying to
learn about concepts.

The year entity whose name is 70 is not unique. There are several
such entities, one for each STORE entity. They have the same ex-
ternal identity, 70, the same internal identity, index 1, and therefore

1700 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

REFINEMENTS

REFINE REFINE REFINE REFINE
GROUPS LIST 1 LIST 2 LIST 3 LIST 4
CITY KANSAS CITY KANSAS CITY TOPEKA KANSAS CITY
STORE PLAZA MAIN ST RT 46
WAREHOUSE WEST

INDEPENDENT REFINEMENTS

GROUPS REFINE LIST 1 REFINE LIST 2
YEAR 71 72
MONTH DEC JAN

GENERATED GROUPS

CITY, STORE, YEAR, MONTH, WAREHOUSE, STOCK

RESULTING ACCESS TREE

KANSAS CITY TOPEKA

WEST

PLAZA MAIN ST RT 46

K l\ l\ 107 108 437

172 7172 772
R

DEC JAN DEC JAN DEC JAN

Fig. 3—DBuilding an access tree.

have an association from family to family by identity. Wherever this
condition exists, a single refinement can describe many entities in the
data base. This is called multiple refinement. A refinement to

GROUP REFINE LIST
YEAR 70

denotes every 70 entity of Fig. 2.
Refinements can depend on specific ancestors. This happens when
a refine list has two or more entries. Thus:

GROUP REFINE LIST
CITY KANSAS CITY
STORE PLAZA

MASTER LINKS 1701

identifies the PLAZA store only in KANSAS CITY, not the one in
LOS ANGELES. PLAZA is called a dependent refinement.

A refinement can be both multiple and dependent, hence is called a
multiple-dependent refinement. An example is

GROUP REFINE LIST
YEAR 70
MONTH JAN

which specifies a set of 70 entities, and the JAN entities under those
70 entities.

A refinement is not restricted to immediately adjacent levels of
the data base. The following refinement is acceptable:

GROUP REFINE LIST
CITY KANSAS CITY
MONTH JAN

The groups of a refine list must proceed down the data base from
ancestors to descendant. However, groups may be skipped in the list.

4.3 The Refine Set

A refine set is a set of refine lists on particular groups. The groups of
the refine set may be any groups, but the first group must be an
ancestor of all the others. Figure 3 shows a refine set on the groups
CITY, STORE, and WAREHOUSE, and another refine set on YEAR
and MONTH.

A group can only be involved in one refine set. Every refine list
of a set must start with an entity from the set’s first group. Hence,
to be a legal refine list, it must proceed to give entities ancestor to
descendant down one path of the group tree, and from groups in the
refine set.

A refine set allows a multiplicity of dependent refinements. The
English clause

FOR PLAZA AND MAIN ST STORES AND WEST WARE-
HOUSE IN KANSAS CITY AND RT 46 STORE IN TOPEKA

is easily represented as a refine set. In fact, Fig. 3 gives the refine lists
to do this.

1702 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

4.4 Independent Refine Sets

Refine sets alone cannot be used to represent independent refinements.
The clause

FOR CITIES , , , , and , IN THE YEARS
, and

]] tl

represents five cities, and five years in each city. The list of cities is a
refine set on one group, CITY. The list of years is a refine set on another
group, YEARS. What the entire clause specifies is the independent
combination of these two refine sets. This leads to the concept of
independent refine sets.

Refine sets are independent if their groups are mutually exclusive,
i.e., any group can be in only one of the refine sets. Figure 3 shows a
pair of independent refine sets and the resulting members of the access
tree. Any number of independent refinements can be put on an access
tree.

4.5 Whole Inclusion

Figure 3 has all stock items of the WEST warehouse on the access
tree. Any generated group not in a refine set is included on the access
tree on a whole inclusion basis. This means that whole families of the
group are either included or excluded from the access tree, depending
on whether their parent is included or excluded respectively.

Using Fig. 2, other examples of whole inclusion are:

(i) CITY group refined to KANSAS CITY, STORE group whole,
all other groups pruned from the access tree. This puts entities
a, g, and h on the access tree.

(#) CITY and STORE groups whole. All other groups pruned.
This puts all cities and all stores on the access tree.

(#55) CITY refined to KANSAS CITY and TOPEKA. YEAR
independently refined to 71 and 72. STORE and MONTH
whole. All other groups pruned. This puts entities a, b, g, h,
and i; all 71 and 72 entities under g, h, and i; and all month
entities under those year entities onto the access tree.

4.6 Generating Entities on the Access Tree

The generator accepts an access tree as an input. It generates only
entities on the access tree. For brevity in this section we will say
“offspring,”’ “sibling,” ete., but always mean ‘offspring on the access
tree,”’ “sibling on the access tree,” ete.

MASTER LINKS 1703

On each call the generator takes one of the following actions:

(A) Takes a step to the “next” entity of the access tree, opening
that entity for data accesses. The entity reached is said to be
generated. The client program is informed of the group of the
entity and the entity’s identity among its siblings.

(B) Notifies the client process that the previous entity generated
was the last of a family on the access tree. A new entity is not
generated on this call. This action gives the client process an
opportunity to perform summary processing on families.

(C) Notifies the client process that the previous entity generated
was the last on the access tree. This action gives the client
process an opportunity to perform final summary processing,
and to exit from the processing loop.

On the first call, the entity generated is the leftmost entity of the
top group. This becomes the current entity. On subsequent calls, the
generator tries to step from the current entity to another entity in the
following order:

1. Leftmost offspring of the current entity.
2. Sibling of the current entity.
3. Step-sibling of the current entity.

The first of these that succeeds becomes the new current entity. If all
fail, the current entity is redefined as the parent of the current entity,
and the above process resumed at step 2. The effect is to continue the
list with

4. Sibling of the first ancestor of the current entity.
5. Step-sibling of the first ancestor of the eurrent entity.
6. Sibling of the second ancestor of the current entity.

ete.

This process defines the meaning of “next’” entity for action A.

Actions B and C allow the client program many opportunities to
perform processing on individual entities, summaries after families of
entities are generated, and a summary at the end of the tree. Process
loops are generally organized with the generator at the top of the loop.
Following this is a section of code that tests which action was effected
by the generator, and at what group. If an entity is generated in a

group where retrievals are to be made, control is passed to a section of
code that makes the retrievals from that entity and processes the data.

1704 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

If a “done with family” action is signaled on a group for which family
summaries are being made, control is passed to a section of code that
effects the summaries for that group. After each of these code sections
is complete, control is returned to the generator to take the next
step. Eventually the “done with tree” action is signaled. The process
then exits from the processing loop and executes terminal processing.

Only the generator looks at the access tree data structure, and it
confines the process to entities on the tree. Entities not on the access
tree simply do not exist, as far as the process loop is concerned.

The process can direct the generator to break from its normal
sequence of ‘‘next” entity steps. Thus further screening by data
dependent “match’” conditions of the entities to be processed can be
done. When an entity of a particular group is reached, the client
process can retrieve data from it and test for a match condition. If the
match condition is satisfied, other data are retrieved from the entity
and entered into the process. Then the generator is told to generate
the next entity, usually an offspring of the current entity.

But if the match condition is not satisfied, the client program goes
directly to the generator, calling it with a skip option that causes all
descendants of the current entity to be skipped. Normally the next
entity generated in this case is a sibling of the current entity. Other
skip options are available. Thus the process has final control over the
entities entering the process, within the confines of the access tree.

4.7 Summary of Access Trees and Generators

The generator and access trees provide a mechanism for efficiently
accessing in a subtree of a data base those entities which may supply
the data needed to process a particular request. Access trees have a
natural derivation from English clauses that delimit the scope of a
request. The generator can directly access the entities specified by an
access tree. Thus, together, they constitute a very significant bridge
between natural-language query and efficient retrieval algorithms.

V. FUNCTION EVALUATOR

An application program interacts with a data base at each entity
generated. For retrieval processes, the values to be displayed are often
combinations or functions of the stored data. The function “NET
SALES per store divided by EARNINGS” has one value per entity
of the store group. The values for this function could have been given
a name at build time, and established as a field of the data base. In

MASTER LINKS 1705

theory, any possible function that has one value per entity of some
group could be a stored field of that group. In practice, only those of
sufficiently high usage are stored, and the others are computed on
request. Thus there must be some mechanism which can deliver upon
request the value of a stored field or of a function of stored fields. This
mechanism is called the function evaluator.

This section presents a definition of several classes of fields whose
values are not stored but can be derived from the stored data and from
the hierarchical structure itself.

5.1 Summarizing a Field

A hierarchy provides a structure for efficiently summarizing data.
For example, a user of the sample data base may require the total
DOLLAR SALES for each store. To obtain such a total for a given
store, the values of “DOLLAR SALES” must be summed over each
department in that store. Repeating this summation for each store
produces a set of values for the derived field “total DOLLAR SALES
per store,” defined at the store group. This type of function is called
a level raise because it raises the level of definition of a field from one
group to a higher group.

The set of entities used to evaluate a level-raise function for the
store group consists of one entity of the store group and a collection
of descendants of that entity. A subtree under group @ is defined as an
access tree containing at most one entity of group G. Hence, in the
descendants of G a subtree under group G may branch out, but from G
up to the root there is only one entity path. Let G be an ancestor of G’
and " a stored or derived field of G’. A level raise produces a value for a
field f of group G by summarizing a field f' of group G’ across the G’
entities in a subtree under group G. Values entering into the level
raise are those of f’ for entities of the subtree. The set of values it
produces for all entities of G defines a field f of group G.

In the level-raise function “total DOLLAR SALES per store,”
“total” is an instance of a level-raise operation, “store” is G, and
“DOLLAR SALES” is f', where G’ is the department group. In order
to construct an efficient computation algorithm, level-raise operations
are restricted to those which can operate sequentially on a set of
values for the field {’ to produce a single value of f. Examples of level-
raise operations are total, average, minimum, maximum, and standard
deviation for numeric-valued fields; any, all, and none for logic-valued
fields; and concatenation for character-string fields.

1706 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

5.2 Retrieval Within an Entity

A derived field measuring average sales might be defined as
“DOLLAR SALES divided by SALES FORCE.” Since both com-
ponent fields are defined for each department entity, their quotient is
also defined for each department entity, and hence describes a derived
field of the department group. Any function of fields is called a field
function. The operands of a field function may be level-raised, as in
“maximum DOLLAR SALES per store divided by EARNINGS.”
This is a function of two store fields, “maximum DOLLAR SALES
per store” and “EARNINGS.” A field function can be defined in
terms of fields of different groups, as in “DOLLAR SALES divided
by EARNINGS.” The numerator is a department field, the denomi-
nator a store field. The expression has one value for each department,
and hence defines a field of the department group.

A field funetion for group G is defined as any function of constants,
fields of G, and fields of ancestors of G. These fields may be stored or
derived. A field function produces a new field of G. It is applied at a
single entity and produces a value defined for that entity. The class
of field functions contains such operations as the standard arithmetic,
Boolean, and trigonometric operations; logarithms; and IF-THEN-
ELSE assignments.

Arbitrary nesting of level-raise and field functions is well defined
since a function of either class generates a field. An example of such
nesting is “maximum per store of (DOLLAR SALES minus total per
department of (PURCHASE COST times the sum of ON ORDER
and BACK ORDERED)).” This expression is equivalent to the
following statements:

x = PURCHASE COST times the sum of ON ORDER and BACK
ORDERED

y = total x per department

z = DOLLAR SALES minus y

f = maximum z per store.

X, v, z, and f are derived fields. x is an item field, y and z are department
fields, f is a store field.

5.3 Entity Specification and Qualification

The functions considered thus far generate new fields. The next
discussion treats functions which modify the set of entities over which
a field is evaluated. An entity-specification function describes a process

MASTER LINKS 1707

which, given a subtree under group G, selects another subtree under
group G using only the intrinsic order of the entities in each group or a
constant entity designation. In the sample data base, the years and
months are ordered within their respective families. Therefore, the
request “ADVERTISING divided by previous year ADVERTISING"
is defined for each month. Given a particular month the numerator
is obtained directly, whereas the denominator is retrieved for an
entity whose location in the tree structure is determined relative to
the given month by the operation ‘“previous year.” This is called a
relative entily specification.

Constant entity specification denotes a fixed subtree under group G
which overrides the given subtree. The ratio of NET SALES to
January NET SALES describes a constant entity specification.

Hierarchical structures make entity specification an efficient process
for selecting the entities over which to evaluate an expression. A more
general but less efficient selection is that of entity qualification, as in
the “with” phrase of “average per year of (BACK ORDERED with
PURCHASE COST greater than 500).” Entity qualification is in-
dependent of the order of entities in a group. All entities must be
examined according to a criterion, such as “PURCHASE COST
greater than 500.” Each entity is assigned the value ‘“‘accept’” or
“reject.” When an entity is rejected, all of its descendants are rejected
as well. The descendants of an accepted entity are likewise accepted
as far as that criterion is concerned. The qualification process is
inefficient because data must be retrieved for all candidate entities;
in entity specification no test data are retrieved from any entities.
Hence, the earlier example with a January specification might be
equivalently phrased “NET SALES divided by total NET SALES
with MONTH NAME = JAN.” In the denominator, each month
entity must be examined to determine whether or not its name is
January. Although constant entity specification can be contorted
into entity qualification if entity identifiers are stored values, the
relative entity-specification functions, such as “previous,” cannot be
expressed at all with entity-qualification, unless the family-order
relations are also stored as data values.

In summary, level-raise and field functions ean be computed for
all entities of a group. A function of either type produces one value for
each entity of a group, and hence defines a nonstored field of the group.
Entity specification and qualification funetions produce a subtree at
each entity of a group. A function evaluator enables the user of an
interactive data system to dynamically define and redefine derived

1708 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

fields and retrieve values for these fields, all in an interactive communi-
cation in real time. A field is either a data-base field or a function of
fields, such that it has one value for each entity of some group. A
function evaluator enables a client program to retrieve values of a
field without having to distinguish whether the field is stored or derived.
To accomplish this, a function evaluator must be able to accept
function definitions during the dialogue, rather than have them com-
piled into machine-executable code. In addition, it must be capable of
evaluating arbitrarily nested functions if the user can truly ignore
distinctions between stored and derived fields. Otherwise the user
would be constrained to use only specific types of fields in each class of
functions.

5.4 The Retrieval Process

This section presents an algorithm for an evaluator capable of
computing values for derived fields over a hierarchical data base. The
algorithm is a recursive procedure.

Input: A four-tuple: (f, G, t, S).
Arguments:

f: A field defined at group G.

G: A group.

t: An entity-selection funetion for group G.
S: A subtree under group G.

The argument f can be a stored field, v; a field function, p; or a
level-raise function, /.

p: A field function whose nth argument is the triple (f., Ga, ta):
f.: A field for group G..
G..: A group, either G or an ancestor of G.
t.: An entity-selection function for group G..
I: A level-raise function with three arguments:
f': A field for group G’.
G’: A descendant of G.
t': An entity-selection function for group G'.

The argument t can be an entity-specification function, s, or an
entity-qualification funection, m.

s: An entity-specification function with one argument:
t;: An entity specification for group G.

m: An entity-qualification function with three arguments, having
the same definition as a triple in p, above.

MASTER LINKS 1709

The algorithm for this evaluation is as follows.

1. If t has the form s(t,), perform the specification function s on 8
at G to produce a new subtree S;; then evaluate (f, G, t, S,).
Return.

If t has the form m (f,, Gy, t1), set t’ to null, evaluate (f;, Gy, t/, 9),

and perform the qualification function m on the result to produce

S1. If 8y contains an entity of G evaluate (f, G, t1, S1) and return;

otherwise return a null value.

3. If f is a stored field, v, retrieve its value for the entity of group G
on 8. Return.

4. If f has the form p{(fy, Gy, t1), (f5, Gs, ta), -+ -}, do step 4a for
each component (f., G., t.); apply p to the resulting values and
return.
4a. If G. = G, evaluate (f,, G, t., S); otherwise construct S,

as the subtree under group G, containing the entity of G,
present on S and containing all of that entity’s descendants,
and evaluate (f,, G., t., S,).

5. If f has the form (", G’, t'), select S’ as a subtree of S under group
G’, containing the first G’ entity of S. Evaluate (f/, G, t', 8.
For each succeeding entity of G’ on 8, do step 5a. Return.
5a. Construct a subtree S’ for group G’ using the G’ entity

specified in step 5, and evaluate (', G/, t, 8'); then apply {
to the previous result and the new value.

[

This algorithm is summarized by the following production.

(f, GJ t: S) - (f; G: S(tl}l S) {
(f, G, m(fy, Gy, t1), 8) |
(v, G, t,8) |
(p[(flj Gl: tl); (fﬂs GE! ti’); Tt]r t; S) I
(', G, t), G, t, 8)

5.5 Unavailable Data

Some of the fields in a data base may not have values at some time.
For example, a new stock item, X, may be ordered although its selling
price has not yet been determined. Now someone designing a new
product using parts X, Y, and Z needs to determine the total selling
price of the components, that is, a summation level raise restricting
items to X, Y, and Z. Clearly, if the value of ‘“selling price’”’ is un-
available for X, then the value of the sum is also unavailable. Should
an unavailable unit of data be assigned the value zero, the level raise
would produce 0 plus Y plus Z as the material cost of the product—an

1710 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

alarming situation at best. Similarly, the field function “selling price
times IN STOCK” must yield a result of unavailable if the value of
either operand is unavailable. Notice that this situation is not one in
which the user has entered a value of null, but rather one in which the
data are not available or have not been entered. NA (not available) in-
dicates that no significant data are present.

Unavailable values occur as well in logical-valued fields, particularly
when level-raising with operators of “any” and “all.” “Any X" has
the value “true’ if the field X has the value “true’’ for any descendant
of the current entity. “All X" is true only if X is true for all descend-
ants. If X has a value of NA (not available) it could be true or false,
but we do not know which. Representing TRUE, FALSE, and NA
numerically such that TRUE < NA < FALSE, an investigation of
each possible situation will verify the following:

any X = min (X)
all X = max (X)
any not X = not all X
all not X = not any X
where: not NA = NA,
not TRUE = FALSE,
not FALSE = TRUE.

In eriteria evaluation, such as testing if X is less than Y, the result
must be NA if the value of either X or Y is NA. If either value is
unknown, the criterion may or may not be satisfied; the result is
unavailable.

NA is a value which describes the absence of a value. Entity-
qualification functions produce an accept or reject status. “Reject”
describes the absence of an entity. In “average (ON ORDER with
PURCHASE COST greater than 500) per department’ the qualifier
rejects entities in the averaging. “Reject” is needed as a value of
stored and derived fields as well. It enables IF-THEN-ELSE state-
ments to express entity qualification. Moreover, suppose that before
April of a certain year the entire sales of a department was recorded
in the NET SALES field, while after that time the sales were broken
down into NET SALES and SALES TAX. Now if SALES TAX is
given the value zero in the first months, the expression ‘“‘average tax
per year” for any department will produce a peculiar result because
of the zeroes averaged in. NA is unacceptable as the value of SALES
TAX in the early months since it would cause a field such as “average
(NET SALES plus SALES TAX) per year” to return a value of NA,

MASTER LINKS 1711

although the true value is well defined. Instead the stored value
“reject’” is used. Operationally “reject’” is the identity for PLUS,
MINUS, AND, and OR. For other operations, if any operand has the
value “reject” the result is also “reject.” Hence, when adding 5 to
“reject”” the result is 5, and when testing whether or not 5 is less than
“reject” the result is “reject.”

VI. POINTER AND DATA STRUCTURE

The previous sections have defined Master Links from the user’s
point of view. To implement the features described, and to achieve
the other stated goals (high performance in a time-sharing environ-
ment, portability, and multiple concurrent users), require a new
approach to the layout of the data base elements onto the host systems
files. In the classical approach to data-base design, records are used
for many purposes. One purpose is to associate data values ; another
is retrieval efficiency: data values used together are stored together
in a record. Update interlocking is a third use: exclusive control of a
record or set of records is granted to a process so that it may make a
series of changes to their contents without interference from other
processes.

Master Links provides three distinct tools to achieve these three
results, without having to rely on physical-storage records:

(¢) Association of data items is accomplished by the pointer
structure described in Section 6.2.1.
(#22) Retrieval efficiency is achieved by a parametrized layout of
the data values into a data block, Section 6.2.2.
(z2) Multiple concurrent updates by many users is made possible
by the concept of a lock unit, described in Section 6.1.

With Master Links, programs (and people) work with the logical
structure of a data base, unhampered by its physical layout on the
direct-access files. The details of record and file boundaries are in-
visible at the logical level. The basic concepts of Master Links, as well
as all or most of the detail logic that implements the concepts, are
independent of any machine or host system.

The mechanism used to achieve this freedom is the stream.

6.1 Streams

A word is an arbitrary unit of storage, the meaning of which is
determined by the host system. A stream is a series of words. A particu-

1712 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

lar word in a stream is identified by its position in the series. This
ordinal number is called WIS (word 4n stream). The size of a stream
in words may be increased or decreased to accomodate changes in
data-base size. A data base is built from several streams. A stream
therefore needs an identifier, which is designated 8. A particular word
of a data base is completely determined by S and WIS. A stream is
made up of a series of records, where a record is defined as a set of
words transmitted between primary and secondary storage by the
host system as a single unit. A pointer into a stream is always in terms
of WIS, never in terms of record number, or word in record, or any
other host-system concept.

Exclusive use of a segment of a stream, called a lock unit, is re-
quired for updates. In fact, the lock unit may be a record, a set of
records, a file, etc., depending on the capabilities of the host file-
management system. The interlocking of multiple concurrent updates
anywhere in the data base occurs correctly regardless of the boundaries
of the lock units. A lock unit is, from the traffic point of view, a re-
source. It is important that as few lock units as possible be locked for
the shortest time possible in servicing an update, and that a lock unit
cover the smallest possible area.

One can plan efficient use of streams in terms of 8 and WIS alone.
The probability that two words, WIS and WIS + K, of the same
stream are in the same record is 1 for K = 0 and linearly decreases to
zero with the magnitude of K. That is, words close together in the
stream are likely to be in the same record. The same is true of two
words and a lock unit. Thus, by adopting a probabilistic viewpoint,
efficient use of streams can be planned without a detailed knowledge
of file and record boundaries.

Streams are implemented in the Master Links software using
direct-access files. Catalogued, direct-access files with a fixed number
of unformatted, fixed-length records are used because such files are
generally available and operate efficiently on existing time-sharing
systems. This is the simplest and most commonly available type of
direct-access file available today. A file set is a (possibly null) series
of direct access files. Each file of the series has the same dimensions:
RPF records per file, and WPR words per record. A file of a file set is
identified by its ordinal position in the series; this number is called
FIFS (file 4n file set). A file set forms a series of computer words when
the files are viewed as logically concatenated in the order of their
FIFS numbers, with the records of each file being logically concate-
nated in the order of their record numbers. Thus, graphically, a file set

MASTER LINKS 1713

can be pictured as follows:

L1 J2]-[reF[1[2] - [ReF[---[1]2]...[RPF |
l€«——FIFS = 1I—>{«—FII'S = 2—>| - .. |«—FIFS = K—>|

Each box represents a record ; its record number is shown inside the box.
This construction does not imply that the files, or even the records of a
file, be physically concatenated on secondary storage. The actual
allocation of files upon dircct-access devices is a responsibility of the
host file-management system. A file set can grow, and the unit of
growth is a file. A new file is assigned the next ordinal number available
for the file set to which it is assigned. A file set is, therefore, a finite but
extensible series of computer words, and hence is an implementation
of a stream. Several file sets are used to implement the several streams
of a data base.

To access word WIS in stream S, the file set for 8 is determined
from S. Then the dimension RPF and WPR are determined. By
integer division and modulo arithmetic on WIS, the FIFS, the record
number, and the word in record are calculated. Thus the word is
described in terms of files and records, and can be accessed.

6.2 Pointer Structure

This section describes the pointer structure of Master Links. The
design derives from the following goals:

() The data structure must be designed for auxiliary storage.

(7z) Data may be updated and elements added to and deleted from
the hierarchy by simple, efficient algorithms.

(772) These operations serve multiple concurrent users.

(2v) The integrity of the data structure must be maintained in the
event of a machine failure.

(v) A single set of algorithms must access any hierarchical data
base.

(vi) The storage of the hierarchy must provide efficient hierarchical
traversal; that is, at any position in a hierarchy, the accessing
routines must be able to directly address any subordinate or
sibling.

6.2.1 Development of the Pointer Structure

In Section II, entities were described as having data and structure.
Structure connects an entity to its relatives. In order to attain efficient
traversal from an entity to any of its siblings or offspring, regardless

1714 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

of the number of offspring, the structure part of the entities in a
family must be stored contiguously. Otherwise, a sequence of reads
would be needed to follow the chain of sibling pointers through
auxiliary storage. For families to grow in real time and still have their
members contiguous, the growth process requires copying the old
family description to some available space and then appending new
entities. If data of an entity were stored with the structure, this copy
process would become expensive and would leave large amounts of
space vacant. Rather, the data are stored separately in a matrix, or
data block. The columns of the matrix correspond to entities, the rows
to fields. Therefore, the structure information for an entity must
include a reference to the data-block column number assigned to
that entity.

STRUCTURE
INFORMATION

-H H I

1 2 3
Data Block ‘
Column Numbers
in Entity Structure | | | | |
Information
Data Block

Column numbers, rather than absolute storage locations, are used to
reference the data block, allowing separation of structure from data.

The hierarchical structure is completely divorced from the data
storage structure. Whichever way the matrix is stored—by row, by
column, by submatrix—has no bearing on the hierarchical structure
information. The Master Links data-block storage arrangement is
discussed in Section 6.3.

The offspring of an entity are linked to the entity by means of
pointers which specify their storage locations in a stream. Every

MASTER LINKS 1715

entity has one offspring pointer for each family of offspring. The
collection of the data-block column number and the offspring pointers
for one entity is called an entity pointer set.

data-block pointer to pointer to
column an offspring another
number family offspring family

(one word) (one word) (one word)

An entity pointer set (EPS) contains the structure information for an
entity in a contiguous stream of words.

Since each entity in a group has the same number of offspring
families, the entity pointer sets for all entities in one group are the
same size. Therefore, since siblings are adjacent, a pointer to the
beginning of a family provides direct access to each member of the
family. If the siblings were chained together, a null pointer in the
chain would indicate the end of a family. However, with the siblings
contiguous, the size of each family must be stored instead. It is most
convenient to store the family size just before its first entity pointer set.

Family
Size EPS, EPS; e EPS,
(n)
A family of n entities is described by a one-word family size, n, followed
by n entity pointer sets (EPS), one for each entity in the family.

The entity index is the ordinal position of the entity pointer set in
the physical pointer structure for one family. In deleting an entity
from a family, it is important not to change the entity index of other
entities in the family. Therefore, a special flag is encoded in the entity
pointer set to show that the entity is deleted. Entities which are
physically present in a stream but which have been flagged as deleted
have reserved status. They are not considered present in the hierarchy.
If the delete flag of a reserved entity is later turned off, the entity
becomes active and is then treated as part of the hierarchy.

All the family pointer sets of a group are stored in a stream. This
stream is called the master link of the group.

In summary, the description of the entities in a group is stored
in a stream of words. A group is made up of families. A family is
described by a family size, followed by a set of pointers for each entity
in the family. An entity pointer set consists of a data pointer and a
collection of offspring pointers. The data pointer is a column number
of the data block for the group. The offspring pointers specify word
positions of the appropriate streams. Entities allocated in the pointer

1716 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

structure are either active or reserved ; the latter do not appear in the
logical structure of the data base.

6.2.2 Pointer Structure Algorithms

The algorithms which modify the data-base structure must be safe
over abnormal termination of the process. A process can be abnormally
terminated in many ways, such as by a user interrupt, a hardware or
software failure in the host environment, or an intentional stop by the
host system for exceeding some resource allocation. The key to making
a transaction safe over unexpected terminations is to first allocate
any new space needed, then fill out the new space, and finally link the
new space with the old by a single pointer. If the write of that pointer
succeeds, the new information is secure. If it fails, the area remains
disconnected and wasted, but the data structure remains intact.

The algorithms must also work correctly when several concurrent
users are trying to execute them. This is assured by locking a word to
be updated (the lock unit must cover the entire physical record
containing that word), reading the record to obtain a fresh copy,
updating the value and any other values in the same record, re-writing
the record, and then relinquishing the lock.

There are three functions which modify the pointer structure. An
entity’s status can be reversed (from active to reserved or back
again) ; new entities can be added to an existing family; and a family
can be created and linked to its parent.

To reverse an entity’s status, the stream location of the first word
of the entity pointer set is computed. The process then requests of the
host environment exclusive control of the lock unit containing this
word. When exclusive control is authorized, the record is read, the
required word is updated, the record is written back to auxiliary
storage, and the exclusive control is relinquished. If the process is
terminated before the write, it can be re-executed because nothing
has been altered. If it is terminated after the write, a restart procedure
can read the record to determine that the update was successful, and
skip re-doing it.

Extra entities are added to a family by first locking the record which
contains the word pointed to by the parent’s offspring pointer. This
word, called the linkage word of the family, is the single word to be
made a pointer to the new space. The first time that this algorithm
is applied to a given family the linkage word contains the family size.
Next, a sequence of contiguous words in the stream is allocated and

MASTER LINKS 1717

locked. The existing entity pointer sets of the family are copied into
the new space; new entity pointer sets are constructed by generating
parent pointers, new data column numbers, and null offspring pointers;

any of the new entities that are to be reserved for future assignment
are marked reserved; and, finally, the new family size is placed into
the first word of the new space. After this new area has been written
and unlocked, the linkage word is updated to point to the new area.
The record containing the linkage word is then written and unlocked.
This update of a single word links the new family pointer set to the
existing hierarchy and disconnects the old family description from it.
The whole process is called a bubble-out; the wasted space containing
the old family description is called a bubble

parent’s stream of parent
offspring of bubbled-out
pointer family
linkage new stream of
word | --- | family | EPS, | EPS; | --- | EPS, | bubbled-out
size family
I

The linkage word is a single word connecting the new family deserip-
tion to the previously existing structure.

Notice that the linkage word had to be locked from the start to the
finish to keep other users from adding to the same family at the same
time. Such interference could cause the family update to be lost
entirely.

Creating a new family adds one complication to the bubble-out
algorithm. Here, there is no linkage word, so the parent’s offspring
pointer must be locked and re-read instead. If the parent’s offspring
pointer to this group is still null after locking and re-reading, it is
updated to point to the new family. If non-null, another user has in the
meantime attached a family to the parent, so either the status-change
or the bubble-out algorithm is entered.

6.2.3 Further Considerations

There are several considerations which affect the performance of
the bubble-out algorithm. Among these are the handling of available
space, the disposition of bubbles, and the use of an entity reservation

1718 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

factor for assigning sets of entities at one time. These considerations
involve important balances between execution speed and auxiliary-
storage space.

For each master link, the WIS for the next available word of the
stream is stored as a header to the master link. The bubble-out algo-
rithm first locks the header, then the linkage word. The new family
size is calculated and the header is updated, written, and unlocked.
Then each record to be written is locked, written, and unlocked before
the next one is locked. Since the linkage word is already in use it
must lie somewhere between the header and the available space. Hence,
the locations locked are within one stream, and in numerically in-
creasing order of WIS. This precludes any chance of a deadlock since
a stream is stored in an ordered set of records. As for the bubbles, a
utility can be run in the background from time to time to remove
them. The bubble-out algorithm assigns column numbers to the new
entities, so it must update an available-data-block-column word at
the same time it updates the stream available-space word. Hence, the
appropriate place to store this available-column number is the master
link header.

A parameter of the bubble-out process allows the reservation of
extra (inactive) entities. Assigning the extra entities causes only one
bubble-out for all of the entities created, releasing only one bubble.
The status-change algorithm is considerably more efficient than the
bubble-out algorithm, so the average entity creation cost is reduced.
The bubble-out algorithm assigns data-column numbers to the new
entities, so data for the entities of a family are stored in sets of con-
tiguous columns. As explained in the next section, this usually makes
data accessing more efficient than if the columns of a family were
scattered throughout the block. The cost of reservations is the cost of
carrying the extra entities in storage before they are activated. The
reservation factor can specify a constant increase or a growth factor
as a percentage of the current family size.

6.3 Data Blocks

Data-base processes have a strong tendency to access either values
of many fields from a few entities, or of a few fields from many entities.
In the latter case the entities tend to be requested in an order deter-
mined by the hierarchy of the data base. A given data base will have
a mix of these two types. If the first type predominates, it is efficient
to order the values column-wise. If the second is more common,
efficiency is gained by arranging the values row-wise, and by assuring

MASTER LINKS 1719

that entities processed together occupy, with high probability, adjacent
columns.

For Master Links, the mechanism for storing values is the data
block. A data block is a matrix of values with one eolumn for each
entity, and one row for each field. An element of this matrix is one
value, which takes up one or more words. The number of words needed
to store one value is a parameter of the field, called its size. Thus all
the values of one row are of the same size, but the values in two
different rows may have different sizes. For each group of a data base
there is one data block. The arrangement of a block into records is
controlled by several block parameters which- are attributes of the
corresponding group. These parameters provide a variety of possible
structures, of which the column-wise and row-wise layouts are special
cases. Using the block parameters as inputs, a single algorithm can
access any block arrangement.

6.3.1 Layout of a Data Block

A data block is stored in one stream. The block has two parameters,
words per column, WPC, and columns per subblock, CPSUB, which
are used to divide the block into subblocks. WPC is an integer equal
to the sum of the sizes of the fields. This is the vertical dimension, in
words, of the block, and also of the subblocks. The parameter CPSUB
defines the horizontal dimension of a subblock. The first subblock
consists of columns 1, - - -, CPSUB; the second is columns CPSUB + 1,
+++, 2.CPSUB; ete. A block is then a horizontal concatenation of
subblocks.

The ordering of words in a block is established by keeping the words
of a multiword value together, and arranging the values in row-wise
order within a subblock, and then concatenating the subblocks from
left to right. This is the ordering used to store a block in a stream.
The order of values in a block is illustrated below. Each solid arrow
indicates contiguous storage of CPSUB values.

|«—CPSUB—=|«—CPSUB—>|<

wpc | T =/ :
1 I . data block

subblock, subblock,

1720 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

It should be noted that the subblock plays no further role except to
establish an ordering. It does not correspond to a file, a record, or any
other host-system concept. In fact, the mapping of block words onto
stream words is performed without concern for record or file boundaries.

6.3.2 Example of Block to Stream Mapping

Consider a block with three rows and five columns, where SIZE
(words per value) is set to 1, 2, and 1 for rows 1, 2, and 3, respectively.
Suppose a numeric value takes one word, and character value takes
one word for every four characters. Then a sample of the block looks
like:

1.00 2.00 3.00
AAAAAAAA | BBBBBBBB | CCCCCCCC
10 20 30)
£.00 5.00
DDDDDDDD | EEEEEEEE
40 50

Words per column (WPC) is four. The mapping of this block onto a
stream is shown below for three different values of CPSUB.

CPSUB = 1:
[1.00 [AAAA [AAAA [10 [2.00 | BBBB | BBBB | 20 | 3.00b

(GEGC [CCCC 30 4.00 | DDDD [DDDD | 40 | 5.00
EEEE | EEEE | 50 |

CPSUB = 5:
[1.00 [2.00 [3.00] 4.00 [5.00 [AAAA [AAAA [BBBB [BBBB |y

CCGC [CCCC | DDDD] DDDD EEEE!EEEE[10 b
20304050]

CPSUB = 3:
[[1.00 [2.00 [3.00 [AAAA [AAAA [BBBB | BBBB| CCCC h

q’CCCC 10 120130 4.00[5.00] | DDDD [DDDD N

U EEEE | EEEE | | [40 [50 |]

MASTER LINKS 1721

6.3.3 Accessing a Value from a Data Block

For the nth row of a block, SIZE, is the number of words for one
value in the row, and DIC, is the displacement in column of the row
which is defined as one plus the sum of the SIZE’s of the first n — 1
rows. Thus for the example in Section 6.3.2. :

n SIZE (words) DIC (words)

1 1 1

2 2 2 (=14 8IZE))

3 1 4 (= 1+ SIZE, + SIZE,)

The inputs to the algorithm for accessing a value of a data block
are the identifier of a field, and a column number, COLNO. DIC,
SIZE, and the group of the field can be determined since they are
attributes of the field. WPC, CPSUB, and the stream identifier, 8,
are then determined since they are attributes of the group. From these
the following calculations are made using integer arithmetic :

SUBBLKS = COLNO/CPSUB
WPSUB = WPC-CPSUB
WORDSABOVE = CPSUB- (DIC-1)
WORDSLEFT = ((COLNO-1)modulo CPSUB)-SIZE
WIS = 1 4+ SUBBLKS-WPSUB + WORDSABOVE
+ WORDSLEFT

SUBBLKS is the number of subblocks previous to the subblock
containing the sought value. WPSUB is the words per subblock.
WORDSABOVE is the number of words above the sought value in its
subblock. WORDSLEFT is the number of words to the left of the
sought value in its row of the subblock. WIS is the word in stream of
the first word of the sought value. Hence S and WIS and SIZE are
known. These are the inputs needed to access a stream, as described
in Section 6.1.

6.3.4 Row-wise, Column-wise, and Intermediate Layout

Note that when CPSUB equals 1 the order of storage is column-wise.
When CPSUB equals the words per record, storage is row-wise. An
intermediate setting of CPSUB between 1 and WPR. will for certain
usage patterns achieve performance superior to either column-wise
or row-wise organizations. This is illustrated in the following example.
Suppose that a block has 100 rows and 100 columns. Suppose that
process R uses all the data in one row, and that process C uses all the

1722 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

data in one column, and that these processes are run equally often.
Suppose also that WPR = 100. Then if CPSUB = 1, C must read
one record, R must read 100 records. The average records per process
run is 50.5. If CPSUB = 100, C must read 100 records whereas R
reads only one, for the same average. If CPSUB = 10 the block is
divided into a 10 X 10 checkerboard of records. Each process must
read 10 records for an average of 10 records per process. This is the
optimum CPSUB for this example.

A utility called CONVERT can be used to change a block from one
value of CPSUB to another. Modifying CPSUB adjusts the data base
to reflect a changed or unpredicted pattern of usage. It also makes
possible periodic changing of the data layout to conform to a cyclic
pattern of usage. All programs accessing a data block do so in terms
of column numbers and fields. The assignment of a value to a block,
row, or column is unchanged by CONVERT, and hence no program
is invalidated.

6.4 Review of the Advantages of Streams

The process of design involves constructing transformations to
achieve a desired structure using available structures as media. The
desired structures for Master Links are a hierarchy and data blocks.
The transformation is carried out in two steps, from direct-access
files into streams and from streams into blocks and pointer sets. The
structures and their attributes are summarized in this table:

STRUCTURE ATTRIBUTES
Catalogued Direct-Access Internal Identity (FSNO, FIFS)
Files NAME

Records Per File (RPF)
Words Per Record (WPR)

Streams Stream Identity (8)
Word In Stream (WIS)

Blocks Block Identity (B)
Words Per Column (WPC)
Columns Per Subblock (CPSUB)
ROW n
SIZE for ROW n
Displacement In Column (DIC) For
ROW n
Column Number (COLNO)

MASTER LINKS 1723

It is no accident that streams, the intermediate structure, are so
simple. They amount to an idealized direct access media. The advan-
tage of using this intermediate structure is that it crystalizes the
separation of the Master Links structures from the physical-storage
media. The programs that implement the desired structure are coded
independent of the actual direct-access media. In particular, the
parametrized layout of a block would be very cumbersome to imple-
ment directly in terms of files, records, and word in record. It is very
straightforward in terms of word in stream.

Since the Master Links structure is separated from the physical
media, media management utilities such as CONVERT ecan be run
without altering any Master Links programs. The separation of
structure from media also makes possible the implementation of
alternative media. Streams might be implemented as arrays in primary
storage for small data bases, or implemented in an entirely different
manner upon direct access files, such as with all streams in one exten-
sible file. Finally, this separation enhances the portability of Master
Links allowing most of the logic of the system to be based on a machine-
independent direct-access structure.

VII. EXPERIENCE AND FUTURE EXTENSIONS

An experimental version of Master Links was operational in 1970.
It was based on the concepts and supported all the features reported
in this article, except portability and certain utilities. A production
version was completed in May 1972. It supports all features, including
portability, all utilities, two different stream implementations, plus
improved performance. These versions have been used for a variety
of different types of projects: inventory, financial, budget and resource
allocation, and construction program administration data bases.
Together with the Natural Dialogue System! it forms the basis of the
Off-The-Shelf-System.2

Several efforts are under way to extend and improve the system:

(1) Networks—allowing a group to have more than one parent.

(22) Field length data—allowing strings of data, such as a time
series of values or a paragraph of text, to be stored efficiently
as a single value.

(447) Function evaluation—computing in parallel all requested level
raises that are defined over a common subtree. Hence, in
“total IN STOCK divided by total ON ORDER,” the numer-
ator and denominator totals will be taken simultaneously in a
single pass over the item entities of a department.

1724 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

(iv) Access tree generator—allowing execution-time determination
of the hierarchy. Suppose, for instance, that a new item field,
item class, describes the level of supervision required to approve
acquisition of the item. Then “total IN STOCK by item
class” is a meaningful funection, but the hierarchy formed by
partitioning item entities according to their values of item
class must be computed at execution time, if the “by’ field is
allowed to be arbitrarily specified by the user.

(v) Report generator—accepting a description of the content and
layout of a report and on request producing an instance of the
report.

REFERENCES

1. Puerling, B. W., and Roberto, J. T., “The Natural Dialogue System,” B.S.T.J.,
this 1ssue, pp. 1725-1741.

2. Heindel, L. E., and Roberto, J. T., “The Offi-The-Shelf-System—A Packaged
Information Management System,” B.S.T.J., this issue, pp. 1743-1763.

