Copyright © 1973 American Telephone and Telegraph Company
Tae BeuL SysTeM TEcHNICAL JOURNAL
Vol. 52, No. 10, December, 1973
Printed in U.8.A.

Information Management System:

The Natural Dialogue System

By B. W. PUERLING and J. T. ROBERTO
(Manuscript received October 5, 1972)

The Natural Dialogue System (NDS) is a software system designed
to permit the easy implementation of time-shared computer programs
which employ sophisticated forms of man-machine dialogue to converse
with members of a nonprogrammer user audience. The heart of the system
15 a syniax-directed translator which recognizes user input messages and
translates them into an internal text of integers for use by the program.
NDS allows the language designer to specify the syntax of the statements
in his language, the form of their translations, methods for diagnosing
errors in user's tnput, diagnostic messages to be generated, and the style
of dialogue which will exist between the programs and their users. This is
accomplished through a dialogue description and a language description
conststing of syntactic specification elements with semantic procedures
embedded within them. Use of NDS allows the language designer to
produce an interactive language which is tailor-made for both his users
and his programs. NDS relieves the language designer of the necessity of
writing a complex message analyzer, thereby substantially reducing the
effort required to produce systems that offer these forms of man-machine
dialogue. Furthermore, use of NDS allows such systems to be implemented
by less sophisticated programming talent than would otherwise be
necessary.

I. INTRODUCTION

The Natural Dialogue System (NDS) is a tool to aid programmers in
the implementation of time-sharing-based computer systems which
employ keyword-oriented languages and a variety of styles of man-
machine dialogue to converse with members of a nonprogrammer user
audience. By keyword-oriented languages we mean languages of the
type illustrated by Sinowitz! and suggested as an alternative to natural

1725

1726 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

language for communicating with information management systems
by Chai? NDS provides the designer of such a language with the
ability to define the syntax of the statements in the language, the
forms of their translations, methods for detecting errors made by users
of the language, and diagnostic messages to be sent to users when
errors are detected. In addition, NDS provides facilities for the
language designer to specify the style of dialogue which will exist
between the system and its users.

NDS has been operational on an experimental basis since 1970. It
has been implemented under five different host operating systems
(including one batch system). Its primary use has been in the area
of interactive query languages for information management systems,
including inventory management systems, a budget control system,’
a work force administration system, information retrieval systems
based on surveys of financial and equipment data, and a general-
purpose hierarchical data base management system.® Other uses have
included a data checking specification language, a report generator
composition language, and bulk data input/output format specifica-
tion languages. NDS has also led to further work in the area of tools
for interactive language design presented by Heindel and Roberto.®

In order to get a feel for what can be done using NDS, some concepts
concerning styles of man-machine dialogue are presented, followed by
a description of the styles of dialogue obtainable using NDS. NDS
itself is then described, including an overview of the modules of the
system and certain details concerning the specification of systems to be
implemented using it.

II. DIALOGUE CONCEPTS

In making conversational software systems available to non-
programming audiences for purposes of information retrieval and
problem solving in general, a broad spectrum of conversational styles
has evolved. At the extreme ends of this speetrum we have machine-
initiated dialogue and user-initiated dialogue. In the machine-initiated
style, the user is asked questions by the computer. These questions
are designed to find out, in an orderly way, what the user wishes the
system to do for him. In the user-initiated style, the user presents his
problem to the system and directs its action. The two styles are best
illustrated by example.

() Machine-initiated dialogue.
Computer: WHAT IS THE VALUE OF EXPENSE?
User: 50000

NATURAL DIALOGUE SYSTEM 1727

Computer: DO YOU WANT THE VALUE OF PROFIT?
User: YES
Computer: PROFIT IS 40000
(#7) User-initiated dialogue.
User: EXPENSE IS 50000. WHAT IS PROFIT?
Computer: PROFIT IS 40000

Coupled with these different styles of dialogue is the problem of
conversational dynamics where at some point in time during the
conversation the subservient participant wishes to seize the initiative.
For example:

(2) User seizes initiative from computer.
Computer: WHAT IS EXPENSE?
User: IGNORE EXPENSE. REVENUE IS 80000.
(77) Computer seizes initiative from user.
User: TAX IS 59, WHAT IS PROFIT?
Computer: PROFIT CANNOT BE COMPUTED YET,
WHAT IS EXPENSE?
User: 50000

With either of these styles, a user is apt to input information which is
syntactically or semantically incorrect. Input of this nature should not
cause the conversational program to abort. On detecting invalid input
a conversational program may output terse messages such as
“WHAT?? or “SYNTAX ERROR” and then invite re-entry of the
test in question. Alternatively, programs may output lengthy explana-
tions of valid replies and again ask the user to continue his input. The
nature of handling invalid input depends primarily on the experience
level of the end-users as well as the experience level of the person
implementing the conversational software. In general, a language
designer should have the tools at his disposal to tailor his language,
including handling of invalid input, to correspond precisely to the
environment in which it will be used.

In general, a transaction between man and machine can be viewed
as a consulting effort between two “‘experts’ :

(#) the machine, which is an expert in delivering facts or computing
results based on input data, and

(#7) the person, who is an expert in the problem to be solved, the
environment in which the problem arose, and certain subjective
considerations of the possible solutions.

In this situation if the person is burdened by certain conversational

1728 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

constraints, the creative, exploratory environment may suffer. In other
words, the conversation between man and machine should be made as
natural as possible for the person. With this in mind, NDS offers a
variety of dialogue styles which encompass most of the initiative
spectrum with the emphasis on the user-initiated end.

1II. STYLE OF NDS DIALOGUE

A user's message or request to a system using NDS consists of a
series of statements separated by colons. Fach statement in the
language consists of a unique keyword followed by a sequence of
characters called the clause of the statement. A message is ended by
the statement GO:. A message to an information management system
might be:

PRINT ITEM NUMBER, SELLING PRICE/PURCHASE
COST, REORDER DATE:WHEN AMOUNT IN STOCK > 1000:
IN ALL DEPARTMENTS: GO:

This message consists of three statements with the keywords PRINT,
WHEN, and IN respectively. The PRINT statement fills the same
role as a verb in the English language since it directs the information
system to print the information specified in its clause. In general, a
user’s message must contain a single verb statement. The WHEN
and IN statements act as modifiers (adverbial or prepositional) of
the PRINT verb. In general, a user’s message contains zero, one, or
more modifier statements. The statements in a message can be given
in any order since NDS does not consider a message to be complete
until the GO statement is encountered.

An important feature which NDS offers is the automatic edit mode.
NDS remembers the state of the dialogue from message to message.
Once a statement is correctly given by a user, that statement remains
as part of the “current”” message until the user deletes it, or replaces it.
Therefore, after the system acts on the above request, the user may
continue the dialogue by typing:

WHEN AMOUNT IN STOCK > 2000: GO:

The PRINT and IN statements which were given as part of the first
message are carried over as part of the second message. Therefore,
to NDS the second message becomes:

PRINT ITEM NUMBER, SELLING PRICE/PURCHASE
COST, REORDER DATE: WHEN AMOUNT IN STOCK
> 2000: IN ALL DEPARTMENTS: GO:

NATURAL DIALOGUE SYSTEM 1729

Once a verb statement is correctly given by a user, that statement
remains as part of the current message until the user deletes it, replaces
it, or enters the statement for a different verb in the language. Thus,
following action on the second message, the user may continue his
dialogue by typing:

DISTRIBUTE ITEMS BY SELLING PRICE: GO:

The IN statement from the first message and the WHEN statement
given in the second message are carried over as part of the third
message. If the user continues his dialogue by inputting a statement
whose clause has an invalid construct according to the definition of
the clause given by the language designer, the system will print a
diagnostic message (possibly language designer defined) and remove
the statement from the current state of the dialogue.

In addition to verbs and modifiers, a language may contain one or
more special statements termed dialogue service statements. These
statements usually take the form of aids to the user of a language
or debugging tools for the language designer. Services may be included
which provide the user with explanations of terms used in the language,
news of recent changes to the application, instructions on the use of
the language, the ability to change the initiative of the dialogue, or
any other facilities which the language designer deems appropriate.
For himself, the language designer may include statements which
provide dumps or activate traces or timings within his programs.

Through the semantic facilities provided by NDS, a language
designer is capable of detecting syntactic or semantic errors in a
user’s input, informing him of the error, and then allowing him to
correct just that part of the text in question. Using this approach a
typical interaction might be:

User: PRINT STORE NAME, EARMINGS: WHEN
DEPRECIATION > 409%: GO:
Computer: ‘EARMINGS’ IS A MISPELLED NAME, REENTER.
User: EARNINGS
Computer: DEPRECIATION CANNOT EXCEED 25%,
REENTER.
User: 209,

Note that the user need correct only that part of the text which is
incorrect.

FFor certain applications or for certain user experience levels, com-
puter-initiated dialogue is a meaningful style of man-machine inter-

1730 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

action. A language designer may implement this style of dialogue
using the semantic facilities of NDS. The user must initiate the change
in the style of the dialogue through a statement in the language.
From that point in time, the machine may have the initiative and
may interact with the user in a question and answer style illustrated
by the following example:

User: HELP:
Computer: WHAT DO YOU WANT TO DO? (PRINT, RANK,
PLOT)
User: PRINT
Computer: WHAT INFORMATION DO YOU WANT
PRINTED?
User: EARNINGS
Computer: FOR WHICH STORES?
User: BUFFALO, SYRACUSE

Thus, a wide variety o.f dialogue styles is obtainable using NDS. The
system itself is now described.

IV. AN OVERVIEW OF NDS

As illustrated in Fig. 1, NDS consists of two phases, a setup phase
and an execution phase. These two phases interface with two different
audiences, a language designer and the set of end-users of the language
designer’s system.

The language designer prepares a description of his language and
dialogue style (details of which will be described later) to be presented
to the setup phase of NDS. The setup phase translates these descrip-
tions from a form suitable to the programmer to a form suitable to the
execution phase of NDS. These translations are written by the setup
phase onto a set of language analysis and dialogue monitor driving
files for later access by the execution phase. The language designer
also prepares a set of program modules containing programs to perform
the tasks corresponding to the verbs and dialogue service statements
in the language. At appropriate times during the dialogue, the execu-
tion phase of NDS will pass control to these program modules to
perform the appropriate tasks.

Users communicate with the system through the execution phase of
NDS. The execution phase consists of a dialogue monitor, a language
analysis module, and a set of “built-in” dialogue service functions
which are accessible to all languages. The dialogue monitor accepts

NATURAL DIALOGUE SYSTEM 1731

DIALOGUE AND NDS
LANGUAGE
LANGUAGE DESCRIPTION SETUP PHASE
DESIGNER

AND/OR

APPLICATION

PROGRAMMER
APPLICATION LANGUAGE
PROGRAM DIALOGUE ANALYSIS

MODULES DRIVING

DRIVING

.
.
FILE
[\ T T T —/
I DIALOGUE LANGUAGE I
|

FILE

USER { ANALYSIS
MONITOR MODULE
NDS

|
| EXECUTION
|
|

| PHASE

“BUILT-IN" DIALOGUE |
SERVICE FUNCTIONS

Fig. 1—An overview of NDS.

input from the user of the system in the form of a series of statements,
each beginning with a keyword and ending with the character colon
(:). The dialogue monitor breaks out the clause of each statement and
passes it to the language analysis module together with the clause
description as specified by the language designer. The lJanguage analysis
module attempts to parse and translate the clause into an internal
text of integers as specified by the clause description. The algorithm
employed by the language analysis module is an extension of the
top-down left-to-right algorithm given by Cheatham and Sattley.®
Successful translations returned by the language analysis module to
the dialogue monitor are placed in translation space for later access
and a record is kept regarding which statements are currently active
in the dialogue.

The GO statement is used to indicate that the user’s message to
the system is complete. When it is encountered, NDS makes a series
of checks, called GO-analysis, which insure that any interstatement
relationships declared by the language designer have been fulfilled.
There are really two kinds of GO-analysis. One occurs when the current

1732 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

verb is different from the last verb which was successfully executed.
The system checks that a current verb exists, that all required modi-
fiers of the current verb are active, and that no modifier (required or
optional) of the current verb is inactive because it was incorrectly
given since the last time the GO statement was encountered. The other
type of GO-analysis occurs when the current verb is the same as the
last verb which was successfully executed. The system makes the
same checks described above, but also checks that at least one modifier
of the current verb (required or optional) has been correctly given since
the verb was last executed. If other interstatement relationships exist,
facilities are provided for the language designer to specify additional
checks to be executed as part of GO-analysis. If GO-analysis is success-
ful, NDS passes control to the program module corresponding to the
current active verb. When execution of the module is complete, control
is returned to the dialogue monitor and the dialogue with the user is
resumed.

When the dialogue monitor recognizes a dialogue service statement
in a user’s message, control is passed to the appropriate program
module immediately. When execution of the module is complete,
control is returned to NDS and the dialogue continues.

NDS provides a set of “built-in” dialogue service statements to
provide services common to all languages. These include:

STOP disconnect the user from the system

RETURN return control to the host operating system

DELETE remove rather than replace a currently active
statement

CLEAR remove all currently active statements

RECAP print out to the user all currently active
statements

DETAIL cause automatic recapping of the current

message when the GO statement is recognized
VOCABULARY print out to the user a list of keywords and
their synonyms for all statements in the

language

INPUT direct NDS to take its input from a previously
prepared character sequential file

DUMP print out the translation of a currently active

statement or all currently active statements

The language designer may redefine any of these “built-in” dialogue
service statements by including in his language a dialogue service

NATURAL DIALOGUE SYSTEM 1733

statement of the same name and providing a corresponding program
to perform the function he desires. The corresponding ‘‘built-in”
statement is then not accessible to users of the language.

V. SYSTEM SPECIFICATION

In order to create a system using NDS, the language designer must
supply a dialogue description and a language description to the NDS
setup phase and prepare a set of programs to be called by the NDS
dialogue monitor to perform whatever tasks may be requested by his
users. The general forms of these specifications are now described.

5.1 Dialogue Description

The dialogue description of a language written using NDS consists
of a descriptor for each statement in the language. Each descriptor
consists of a series of attributes which are to be assigned to the state-
ment. These attributes define certain properties of the statement and
may define certain relationships between the statement being described
and other statements in the language. In general, the attributes of a
statement are the statement identifier, statement keyword(s), clause
syntactic type, translation allocator, verb indicator, required and
optional modifier specifications, additional GO-analysis checks, dia-
logue service indicator, program control information, and Polish
indicator.

The statement identifier is a unique positive integer which can be
thought of as the internal identifier of the statement. This number is
used as a key to locate, store, and interrogate the translation of the
statement in translation space. The statement keyword, a unique
character string containing no blank characters, is the external identi-
fier of the statement. NDS allows a statement to have an arbitrary
number of keyword synonyms which again must be unique for the
entire language.

If a statement in a language is to have a clause following its keyword,
then the language designer must specify a clause syntactic type as
part of the descriptor for that statement. The clause syntactic type
is the link between the dialogue descriptor of the statement and that
part of the language description which defines the syntax and semantics
of its clause. A statement having a clause syntactic type as an attribute
must also have a translation allocator. The translation allocator is
used to specify the length of the largest possible translation of the
clause of the statement. If the user inputs a statement whose trans-

1734 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

lation size exceeds that indicated by its translation allocator, the
dialogue monitor will output a standard message indicating that the
statement is too long.

If a statement in the language is to be recognized as a verb, then
a verb indicator must be specified as one of the attributes of the
statement. A verb statement may require other statements to be
present in the current message when the user types the GO statement.
These are called required modifiers. If a verb requires other statements
to be present, the language designer specifies these statements accord-
ing to their respective statement identifiers as part of the verb’s
descriptor. Statements which are not required in the same message
with a verb, but which somehow change the meaning or action of the
verb, and may therefore be thought of as optional modifiers, are
specified in an identical fashion. If other, more complex relationships
are to exist between a verb and other statements in the language,
facilities are available for the language designer to include, in the
descriptor of the verb, checks of these relationships to be performed as
part of GO-analysis.

If a statement is to be recognized as a dialogue service statement, a
dialogue service indicator must be part of its descriptor. A dialogue
service statement may have a clause, in which case a clause syntactic
type and translation allocator must be given as part of its deseriptor.
For both verbs and dialogue service statements, program control
information must be specified as an attribute in the descriptor of the
statement. This information identifies the program module which
contains the program corresponding to the verb or dialogue service
statement being described.

The Polish indicator is used to specify that the clause of a statement
consists of a function containing operators and operands and that the
language designer has followed certain rules in defining the clause
syntactic type of the statement. When a successful translation of a
statement with the Polish indicator is returned to the dialogue monitor,
it will be converted to early-operator Polish postfix notation? before
being stored in translation space.

5.2 Language Description

The clause deseriptions for the statements in a language are written
in a language specification meta-language. This meta-language is
really a combination of two distinet languages: a descriptive language
which is used to describe the syntax or structure of a clause and,

NATURAL DIALOGUE SYSTEM 1735

embedded in it, a procedural language, called the Natural Dialogue
Semantic Programming Language (NDSPL), which is used to specify
context-dependent syntax checks, modifications to the normal clause
translations, diagnostic messages, error correction methods, and
changes in the initiative of the dialogue.

In the descriptive meta-language, a syntactic type is indicated by
a name surrounded by { and). A syntactic-type definition consists
of a syntactic type followed by an equal sign (read as “is defined as’’)
followed by a sequence of language specification elements which define
the syntactic type. The language specification elements are members
of the following set:

() syntactie type
| exclusive or (alternation indicator)
& and (conjunction indicator) used to indicate that a

portion of a clause is to be parsed and translated in more
than one way

[---](:,5) arepeating group of specification elements to be repeated
at least 7 times but not more than j times, j = 7 = 0,
Jj > 0,7 =j = 1if the parenthesized pair is omitted

foaut a semantic procedure type consisting of one or more
NDSPL statements enclosed in primes

“...7(t, p) a non-null terminal character string enclosed in quotes,
called a literal, with its translation number ¢ and, if the
literal is to act as an operator, its precedence p, null
translation if the parenthesized pair is omitted

S any member of the terminal class string, consisting of all
non-null character strings
N any member of the terminal class number, consisting of

all numbers, signed or unsigned, with or without a
decimal point
Vv any member of a language-designer-defined terminal class

The complete specification of a language consists of a syntactic-
type definition for each of the clause syntactic types associated with a
statement in the dialogue description part of the system deseription.
This specification provides instructions to the language analysis
module of the dialogue monitor to parse and translate user input
statements. Once the dialogue monitor has recognized a keyword in a
user’s input statement, it passes the clause following that keyword
along with the clause syntactic type associated with the statement to

1736 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

the language analysis module for parsing and translation. The parser
applies the clause syntactic-type definition on the input clause from
left to right. If the parser encounters an element representing a
terminal class (V, N, 8, or literal), it must match an initial substring
of the remaining input clause as a member of that terminal class and
add to the translation of the clause appropriately. If the parser
encounters a syntactic-type definition, it must apply it left to right
on the remaining input clause. If the parser encounters a semantic
procedure type, it must execute it. When the parser simultaneously
encounters the end of the clause syntactic-type definition and the
end of the user’s input clause, the parse is successful and the completed
translation of the clause is returned to the dialogue monitor to be
placed in translation space.

Of the language specification elements available to a language
designer using NDS, two deserve more detailed discussion: the
terminal class V and the semantic procedure type. The terminal class
V consists of a set of character strings defined by the language designer.
Each member of the class is assigned a set of integer attributes. The
occurrence of a V in a syntactic-type definition instructs the parser
to match an initial substring of the remaining input clause with a
member of this set of character strings, to append the value of its
first attribute to the translation, and to make the values of its other
attributes available for examination by suceeeding semantic procedure
types. The use of the terminal class V allows the language designer to
specify the skeleton of a language where certain terminal class members
must be chosen from a particular set. The composition of this set may
then be changed without affecting the language specification.

The semantic procedure type is the means by which the procedural
part of the meta-language is embedded within the descriptive part.
It consists of one or more NDSPL statements surrounded by primes
and can succeed or fail just as all other language specification elements
can succeed or fail. The statements available in NDSPL are the

following :

SET arithmetic assignment statement

IF control for conditional execution (similar to the logical
1F statement in FORTRAN 1IV)

FOR, NEXT iteration control statements

GOTO unconditional transfer

STASH add to the current translation

UNSTASH remove from the current translation

NATURAL DIALOGUE SYSTEM 1737

PRINT print a message to the user

FAIL cause unconditional failure of a semantic procedure
type

S&F arithmetic assignment and cause unconditional failure
of a semantic procedure type

P&T print a message to the user and cause unconditional
failure of a semantic procedure type

TEST cause conditional failure of a semantic procedure type

T&P cause conditional printing of a message to the user
and failure of a semantic procedure type

READ cause a recursive call on the parser to ask the user for

additional input and to parse it according to some
syntactic-type definition

CALL cause control to be passed to a language-designer-
provided own-code semantic procedure which may
succeed or fail

The data which are available for manipulation in NDSPL include
numeric constants; a set of language-designer-declared variables; the
current translation; the attributes of the most recently matched
members of V, N, and S; a set of variables provided by NDS which
give a picture of the current state of the parse; and the current state
of the dialogue. Messages printed to the user through NDSPL may
include any of the above data plus constant character strings ; the most
recently matched members of V, N, and S; and the character string
which the parser most recently attempted to match as a member of
V, N, or S.

The semantic procedure type and the facilities of NDSPL give the
language designer a powerful tool for creating an interactive language
and style of dialogue which are tailored to both his end-user’s needs
and the needs of his programs. First of all, he has the ability to do
context-dependent syntax checks by setting flags or saving the at-
tributes of terminal class members at one point in the parse for later
examination to determine what course the parse has taken or should
take. He also has the ability to add to, delete from, or modify the
normal clause translations using arithmetic functions of the available
data. Thus, the translations of the user’s input can be tailored to the
needs of the application programs. The output facilities of NDSPL
provide him with the means to supply his users with timely, relevant
error diagnostics when errors are detected in their input statements.
Moreover, the READ statement gives him the ability to seize the

1738 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

initiative in the dialogue. This can be used to ask for error corrections
in mid-parse or to change the style of dialogue from user-initiated to
computer-initiated.

5.3 Programs

Except for any own-code semantic procedures needed by the
language, the only programs which must be supplied by the language
designer are the programs for each verb and each dialogue service
statement in the language. When a user issues a dialogue service
statement or executes a verb using the GO statement, the NDS
dialogue monitor uses the program control information given in the
dialogue description to pass control to the proper program module.
The program has access to translation space and to a set of NDS-
provided variables which give a picture of the current state of the
dialogue. An application program can be as simple or as complex as is
necessary to perform the desired task. When execution of the module is
complete, control is returned to NDS and the dialogue with the user is
resumed.

5.4 A Simple Illustrative Example

Suppose that one wishes to implement an information retrieval
language which allows users to do scatter plots of one variable versus
another. The values for these variables are to come from a data base
containing data for the years 1961 to 1973. The plot process is to be
implemented as a verb, specifying the variables to be plotted, and one
required modifier specifying a range of years for which data values are
to be included in the plot. The specified variables must, of course,
have numeric values. The user will be allowed to make requests
such as

PLOT EMPLOYEES BY REVENUES: FOR 1965-1971: GO:
and
PLOT REVENUES BY EXPENSES: FOR 1961 THRU 1970: GO:

The computer program which has been written to carry out the plot
request requires as input the internal numeric identifiers of the two
variables and two numbers from one to thirteen, in increasing order,
which specify the span of years to be included. The problem is to
design a language to translate a user’s request into the necessary
computer program inputs insuring that a valid request has been made.

NATURAL DIALOGUE SYSTEM 1739

Suppose that the terminal class V contains, in part:

Symbol Attributes
Varno Type
YEAR 1 1
COMPANY 2 3
EMPLOYEES 3 1
REVENUES 4 2
EXPENSES 5 2

where the symbols are variable names and the attributes of a variable
are its internal numeric identifier and its type (1 for integer, 2 for
floating point, and 3 for character).

The specification of one possible language for communicating with
the plot processor is given in the appendix. This language specification
could result in a dialogue similar to the following (user input shown
in lower case):

REQUEST) plot employees by revenues: for 1965-1970: go:

The PLOT processor would produce a plot of variables 3 and 4
at level 2 for years 5-10.

REQUEST) plot employees by company :

COMPANY IS A NON-NUMERIC VARIABLE ILLEGAL FOR
PLOT

REQUEST) plot revenues by expenses: go:

The PLOT processor would produce a plot of variables 4 and 5
at level 2 for years 5-10.

REQUEST) for 1970 thru 1975:

1975 MUST BE A YEAR BETWEEN 1961 AND 1973
INCLUSIVE

REQUEST) for 1968 thru 1962: go:

The PLOT processor would produce a plot of variables 4 and 5
at level 2 for years 2-8.
REQUEST)

VI. CONCLUSION

NDS provides a means for the easy implementation of time-sharing-
based systems which employ a keyword style of man-machine dialogue.

1740 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

Tacilities are available to specify the syntax of the keyword clauses;
the forms of their translations; timely, relevant error diagnostics; and
a spectrum of dialogue styles, ranging from computer-initiated dialogue
to user-initiated dialogue.

NDS has been used to produce a variety of application systems
primarily in the area of interactive query languages for information
management systems. Use of NDS substantially reduces the pro-
gramming effort required to implement such systems; and moreover,
the implementation may be done utilizing less sophisticated pro-
gramming talent than would otherwise be necessary.

APPENDIX

ATTRIBUTES VARNO, TYPE
SCRATCH CELLS TEMP

NOTVAR = T “IS NOT VARIABLE NAME"

NONNUM = V “IS A NON-NUMERIC VARIABLE ILLEGAL
FOR PLOT”

BADYR = T “MUST BE A YEAR BETWEEN 1961 AND 1973

INCLUSIVE”
(PLT) = (NUMVAR) “BY” (NUMVAR)
*

* I SYMBOL NOT IN TERMINAL CLASS V, PRINT NOTVAR
* JF SYMBOL IS A NON-NUMERIC VARIABLE, PRINT
NONUM

—~ % *®

NUMVAR) = [V | 'P&F NOTVAR'] 'IF (TYPE = 3) P&F
NONUM’

*

* IF YEARS NOT GIVEN IN INCREASING ORDER, REVERSE

* THEM

*

(FOR) = (YR) [“THRU” | “—"] (YR)
'IF (TRANS (1) (= TRANS (2)) GOTO X; SET TEMP
— TRANS (1); SET TRANS (1) = TRANS (2); SET
TRANS (2) = TEMP; X’

*

* IF YEAR SPECIFIED IS NON-NUMERIC OR IF YEAR OUT

* OF RANGE,

NATURAL DIALOGUE SYSTEM 1741

* PRINT THE ERROR MESSAGE BADYR

*

* IF VALID YEAR MATCHED AS N, REMOVE IT FROM
* TRANSLATION AND

* SUBSTITUTE YEAR~-1960 WHICH IS A NUMBER BETWEEN
* 1 AND 13

*®
(YR) = [N | 'P&F BADYR'] 'T&P VAL) = 1960 -AND- VAL
(= 1973, BADYR; UNSTASH 1; STASH VAL-1960’

STATEMENT 1: “PLOT”: “P”: VERB: REQ MOD 2: SYNTAX
(PLT): MAX TRANS 3: PROGRAM GPLOTR:
STATEMENT 2: “IFOR”: “F"”: SYNTAX (FOR): MAX TRANS 2:

REFERENCES

1. Sinowitz, N. R., “DATAPLUS—A Language for Real-time Information Retrieval
from a Hierarchical Data Base,”” AFIPS Conf. Proe,. 32, 1968.

2. Chai, D. T., “Language Considerations for Information Management Systems,”’
unpublished work.

3. Chai, D. T, “An Information Retrieval System Using Keyword Dialog,”
Inform. Stor. Retr., 9, July 1973, pp. 373-387.

4. Heindel, L. E., and Rnberto J. T., “The Off-The-Shelf System—A Packaged
Information Mrmagement H\ stem,” B.S.T.J., this issue, pp. 1743-1763.

5. Heindel, L. E., and Roberto, J. T., “LANG- PAK—An Interactive Incremental
Compller—Compiler,“ Proc. ONLINE 72, Int. Conf. Interactive Computing, 1.

6. Cheatham, T. E., and Sattley, K., “Syntax Directed Compiling,”” Proc. Eastern
Joint Computer Conf. AFIPS, 25, 1964, pp. 31-57.

7. Hamblin, C. L., “Translation to and from Polish Notation,” Comput. J., 4,
October 1962, pp. 210-213.

