Copyright © 1973 American Telephone and Telegraph Company
Tue BeLr System TecHNICAL JOURNAL
Vol. 52, No. 10, December, 1973
Printed in U.S.A.

Information Management System:

The Off-The-Shelf System—A Packaged

Information Management System

By L. E. HEINDEL and J. T. ROBERTO
(Manuscript received October 5, 1972)

The Off-The-Shelf System (OTSS) is a packaged information manage-
ment system for hierarchical data bases. OTSS provides, without com-
puler programming, processes to enter and alter data in such a data base,
do complex refrievals of data from the dala base, and specify various
security mechanisms to limit access to, or alleration of, a data base. OTSS
also provides a mechanism for extending the available processes on a
project-by-project basis. OTSS has been implemented using MASTER
LINKS and the NATURAL DIALOGUE SYSTEM.

I. INTRODUCTION

The Off-The-Shelf System (OTSS) is a packaged information
management system for hierarchical data bases. Earlier work done by
Sinowitz! was aimed at providing information retrieval capabilities
for a specific hierarchical data base. OTSS was designed to operate
on any hierarchical data base regardless of its structure and regardless
of the data fields stored in the data base.

Retrieval processes are available to print, alter, rank, plot, dis-
tribute, compute statistics, and perform regression analysis of data.
These processes are specified to OTSS in a key-word English-like
language in an interactive dialogue environment. OTSS allows for
simple alteration of the retrieval process from request to request by
selective replacement, deletion, or addition of statements to the
dialogue description of the process to be performed.

As part of the package, OTSS provides a data-base-independent
security mechanism. This mechanism allows a data base administrator
to restrict access or alteration of a data base and use of certain process

1743

1744 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

and language facilities in OTSS on a user-by-user basis. A user can be
restricted to a logical hierarchical subsection of the data base and to
only certain data items stored in that subsection. The user can be
further restricted to using only certain processes of OTSS such as
printing, ranking, or altering processes, but not plotting or distributing.

In addition, OTSS provides the ability to extend the processing
capabilities of the system by allowing a programmer to add new
processes to the system on a project-by-project basis. The processes
so installed are available to the project installing them, and do not
become a permanent part of OTSS.

OTSS was implemented using the MASTER LINKS? data base
management system and the NATURAL DIALOGUE SYSTEM,? a
system for designing and implementing interactive computing lan-
guages in a dialogue environment.

11. SYSTEM DESIGN CRITERIA

As a packaged information management system, OTSS was de-
veloped to satisfy certain basic design criteria. The two primary
design criteria are hierarchical independence and field independence,
i.e., the structure and specific content of the data base. In establishing
these as design criteria the retrieval processors, security mechanisms,
and associated language specifications are written to operate on any
hierarchical data base regardless of its logical structure and regardless
of the data types of the fields of the data base. The system provides
these capabilities by making use of the information contained in the
driving tables of the data base system, MASTER LINKS, used to
implement OTSS. These driving tables deseribe the logical structure
and data fields of a given data base.

Another design criterion of OTSS was to provide the user with the
ability to specify a generalized retrieval function in the sense of Ref. 2,
and a comprehensive set of data base processors to operate on such
functions. In general, a retrieval function is defined as a combination
of data base fields, constants, and previously defined retrieval functions
using the standard arithmetic, relational, and logical operators.
Through a keyword-oriented language, a user of OTSS can specify
an arbitrary retrieval function, and, for example, request the system
to print its values, rank its values, or plot its values by the values of
another retrieval function. The user can also specify a series of logical
retrieval functions which are to be used to selectively delimit the search
of the data base during the retrieval process.

OFF-THE-SHELF SYSTEM 1745

Directed output of any retrieval process is a fourth basic design
criterion. Through the retrieval language, a user can direct the output
of any retrieval process to any external device including line printer,
card punch, magnetic tape, disk, or console.

As a final design objective, OTSS offers the programming audience
the ability to extend the processing capabilities of the system on a
project-by-project basis. A programmer can write a project-dependent
processor and “install”” such a processor into the OTSS environment.
Once installed, this processor is available only to the project installing
it, and does not become a permanent part of OTSS.

In the following sections we shall describe in more detail what we
mean by a hierarchical data base, examine typical uses of retrieval
functions, and present the definition of the load and retrieval phases
of OTSS.

III. HIERARCHICAL DATA BASES

As discussed in greater detail in Ref. 2, a hierarchical data base is
a directed tree which is rooted at one entity (node). At each entity in
the tree is stored a set of fields. Two entities belong to the same group
if the set of fields stored at one entity is identical to the set of fields
stored at the other. Two entities belonging to the same group are at
the same depth in the tree (i.e., connected to the root entity of the
tree by paths of the same length). Also the ancestor groups of one
entity belonging to a group must be identical to the ancestor groups
of any other entity belonging to the group.

Using the concept of groups, it is possible to represent the structure
of a hierarchical data base as a rooted tree whose entities are the groups
of the hierarchical data base placed in the tree analogously to the
entities in the data base with respect to depth and connectivity. At
each entity in the group tree are listed the fields stored at that group.
In reference to the group tree, we say that a set of groups forms a
chain if and only if for any G, and G, belonging to the set of groups, G:
is an ancestor or descendant of G;. A group chain is complete if all the
ancestors of every group on the chain are on the chain. Entity chains
and complete entity chains are defined in an analogous way.

3.1 Structure of a Sample Hierarchical Data Base

As an example of the structure of a hierarchical data base, consider
the group tree presented in Fig. 1. This hierarchical data base is
rooted at the COMPANY group as there is only one company. We

1746 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

shall return to this sample data base in Section IX when we discuss
examples of using the OTSS retrieval language.

IV. SPECIFYING THE STRUCTURE OF A DATA BASE

OTSS is independent of the hierarchical structure of the data base
and the particular fields stored in the data base. OTSS obtains all
its required information about the data base from a series of driving
tables. These driving tables are produced using the BUILD facility
of MASTER LINKS.?

BUILD allows the data base designer to completely specify the
logical structure of the data base. The driving tables produced by
BUILD are used by OTSS to determine the correctness of data loading
and retrieval requests and by MASTER LINKS to be able to enter

and access data in the data base.

V. LOADING DATA INTO A DATA BASE

Once BUILD has been used by the data base designer to specify the
logical structure of a hierarchical data base, it is ready to have data
loaded into it. OTSS provides a facility, called LOAD, for bulk loading
of data into the data base.

LOAD allows files of data to be sequentially loaded into a data
base, i.e., LOAD does not provide for multiple concurrent updates of
a data base. LOAD does provide a simple mechanism to restart
a data load which was terminated abnormally due to machine failure
or human error.

The file of data to be loaded using LOAD is logically divided into
sections. Each section is identified by an integer number, called the
card type, which must appear in columns 1 through 3 of each record
of the section. More than one section in the data file may have the
same card type. The data within a given card type section must be
organized according to a specific card type definition, and it must be
organized in the same manner for every section having the same card
type.

The definitions of the various card types are defined once by the
data base designer using the definition phase of LOAD. In a card-type
definition, the designer indicates where, on the records of the specified
section, the data values for particular fields can be found and the
name of the entity where the data is to be loaded. Along with the
field name, the user indicates which record of the section and which
field (set of contiguous columns) of that record contains the value of

OFF-THE-SHELF SYSTEM

1747

GROUP NAME FIELD NAME FIELD TYPE
COMPANY COMPANY NAME STRING
STATE NAME STRING
CITY NAME STRING
POPULATION INTEGER
STORE NAME STRING
ADDRESS STRING
EARNINGS REAL
DEPRECIATION REAL
STORES COUNTER
DEPARTMENT DEPARTMENT NUMBER INTEGER
SALES FORCE INTEGER
DOLLAR SALES REAL
DEPARTMENTS COUNTER
ITEM ITEM NUMBER INTEGER
IN STOCK LOGICAL
ON ORDER LOGICAL
BACK ORDER LOGICAL
PURCHASE COST REAL
SELLING PRICE REAL
REORDER DATE DATE
YEAR
MONTH TOTAL SALES REAL
ADVERTISING REAL
WAREHOUSE WAREHOUSE ADDRESS STRING
WAREHOUSE ITEM NUMBER INTEGER
AVAILABLE UNITS INTEGER

Fig. 1.—Structure of a sample hierarchical data base.

the field. Every section having the same card type must have the
value for a specified field in the same field of the same record of the
section as described in the corresponding card-type definition.

Thus the eard-type definition specifies what data are contained in
a section of a file of input data and where the data are to be loaded into
the data base. When LOAD processes a file of data, it looks at columns
I through 3 of the records to determine what card-type definition
should be used for the section and applies the appropriate card-type
definition to direct its data loading process.

VI. RETRIEVALS FROM THE SAMPLE DATA BASE

A simple form of a retrieval process on the sample data base is to
extract the value of a single field at all its occurrences in the data base.
For instance, one might wish to extract all the values of DOLLAR
SALES in the data base. A more interesting case is to extract, along

1748 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

with the values of DOLLAR SALES, the corresponding values of
DEPARTMENT NUMBER. If the department numbers were only
unique within a store, one might wish to also extract the corresponding
values of STORE NAME. Notice that due to the structure of our
sample hierarchical data base, there is only one value of STORE
NAME for each value of DEPARTMENT NUMBER and DOLLAR
SALES, but there are several values of DOLLAR SALES and DE-
PARTMENT NUMBER for each value of STORE NAME.

Suppose now that one were interested only in extracting the value
of DOLLAR SALES for a given department within a given store. This
is similar to the first example of a retrieval process, except that the
retrieval process would first delimit the search of the data base to a
subtree of the data base consisting of the particular STORE entity
and DEPARTMENT entity. To do this there is a directory into the
data base which is based on the name of an entity or a chain of entity
names. Having delimited the search of the data base to the particular
store and department, the retrieval process can extract the one value
of DOLLAR SALES contained in the delimited data base.

Some retrieval processes combine extraction based on known entity
names and the values of fields stored in the data base. One might wish
to extract the value of ITEM NUMBER for those items in one particu-
lar store which have SELLING PRICE greater than $9.00. In this
case, the retrieval process would first delimit the search of the data
base to the entity in the STORE group with the appropriate name
and to all entities which are descendants of it. The retrieval process
would then search through all entities in the ITEM group in the
delimited part of the data base and extract the ITEM NUMBER for
those items having SELLING PRICE greater than $9.00.

So far only examples of extracting the values of simple fields stored
in the data base have been discussed. It is also possible to evaluate
more complex retrieval functions as part of the retrieval process. A
simple example would be to extract the value of SELLING PRICE/
PURCHASE COST. This retrieval process creates a new pseudo-field
at the ITEM group which is then extracted. A more complex example
is the summing of all the values of DOLLAR SALES within a store.
To evaluate this function, the retrieval process would have to extract
the value of DOLLAR SALES for every DEPARTMENT entity
under each STORE entity and then add them together. This process
produces a new pseudo-field at the STORE group which is then
extracted. An operation which raises the level, in the hierarchy, of
definition of a field or expression is called a level-raising operation.

OFF-THE-SHELF SYSTEM 1749

Summing is not the only level-raising operation which can be per-
formed. Others are minimum, maximum, and average on numerical
data and any, all, and none for logical data. For instance, one might
wish to extract the DEPARTMENT NAME of all departments that
have their minimum ratio of SELLING PRICE to PURCHASE COST
less than 1. One might also wish to extract the DEPARTMENT
NAMES as above, but only including in the level-raising operation
items which have a selling price greater than $9.00.

We have now seen several examples of retrieval processes. All these
retrieval processes are examples of a complete retrieval process which
delimits the search of a data base by entity names, accepts or rejects
entities by logical conditions, and evaluates complex retrieval functions
including level-raising. We have only referred to extracting data from
a data base and have not said anything about what should be done
with the data once extracted. This was done intentionally to divorce
the retrieval process from the displaying of the extracted data.

The retrieval language provides processes to print, alter, rank, plot,
distribute, compute statistics, and perform regression analysis of
extracted retrieval functions by using the appropriate keyword.

VII. SPECIFICATION OF RETRIEVAL FUNCTIONS

Retrieval functions are specified by combining data base fields,
constants, and previously defined retrieval functions using the standard
arithmetic, relational, and logical operators. The arithmetic operators
defined on numeric data and their symbols are: addition (4), sub-
traction (—), multiplication (*), division (/), and exponentiation (7).
The relational binary operators defined for numeric data and date
data and their symbols are: equal to (=), not equal to (— =), greater
than (>), greater than or equal to (> =), less than (<), and less
than or equal to (< =). Relational binary operators defined for string
data and their symbols are: equal to (=) and not equal to (—=).
Logical binary operators defined for logical data and their symbols
are: logical and (AND) and logical or (OR).

The unary operators available in the OTSS retrieval language are
of two types: those which operate on a single value and those which
operate on a set of values. Unary operators operating on a single value
are: unary plus (+), unary minus (—), logarithm to the base 10
(LOG10), logarithm to the base e (LOGE), e raised to a power
(EXPT), absolute value (ABST), sine (SINF), and cosine (COSF)
for numeric data and not (NOT) for logical data.

Unary operators which work on a set of values are the level-raising

1750 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

operators. Level-raising operators are of the following two forms:

Ir field PER gn

or

GLOBAL Ir field PER gn,

where Ir is any level-raising operator and gn is any group name. The
field must be defined at a group which is a descendant of the group
following the PER. The set of values that the level-raising operator
operates on are the values of the field in entities which are descendants
of an entity in the group following PER. The level-raising operator
takes the set of values and computes a single value which depends
on the level-raising operator. The level-raising operators for numeric
values are: sum (SUM), minimum (MIN), maximum (MAX), and
average (AVG). The level-raising operators for logical values are:
logical any (ANY), logical all (ALL), and logical none (NO).

If the level-raising operator is not preceded by the literal GLOBAL,
any entity restrictions that have been applied to all groups between
the group following PER down to and including the group of the
field are evaluated and entities and their descendants are rejected for
which the entity restriction is not satisfied. An entity restriction is a
retrieval function whose type is logical. An entity in the group of the
retrieval function is accepted or rejected if the logical function evalu-
ates to TRUE or FALSE respectively. The remaining set of entities
at the group of the field are then combined using the level-raising
operator. If the literal GLOBAL is present, all entity restrictions
below the group following PER are ignored.

Unary operators can be nested without parentheses and are evalu-
ated from right to left. Parentheses can be used to cause evaluation
of a retrieval function to occur in other than the normal order of
evaluation.

The groups of all fields in a retrieval function must form a group
chain. A retrieval function has a definition group associated with it.
The definition group of a retrieval function is the group of maximum
depth of the groups of fields not operated upon by a level-raising
operator and the groups given in level-raising operators. In this manner,
retrieval functions are made to be single-valued for each entity in the
definition group.

VIII. THE RETRIEVAL PROCESS

The retrieval process used by OTSS can be deseribed by considering
the steps involved to evaluate any one retrieval function for all

OFF-THE-SHELF SYSTEM 1751

entities at which it is defined in a subset of the data base. To describe
the retrieval process, let us assume we wish to evaluate a retrieval
function, f, defined at some group, G, at every entity of G in a subset
of the data base. The steps of the retrieval process are as follows:

Step 1: Entity Selection Based on Entity Chains

(a) Delimit the search of the data base by constructing an
access tree based on any specified entity chains.

Step 2: Entity Selection Based on Entity Restrictions

(a) Start at the root of the access tree constructed in Step 1.

(b) Select the next entity in a depth-first, left-to-right manner.
If all entities have been selected, the retrieval process is
finished.

(¢) If an entity restriction has been placed on entities in the
group of the entity obtained by Step 2b, apply it. If the
result is “‘reject,” reject the entity and all its descendants
and go back to Step 2b. If f is defined at the group of the
entity, evaluate it using Step 3. Upon completion of the
evaluation or if f is not defined at the entity, go to Step 2b.

Step 3: Function Evaluation

(a) If f is a field, retrieve its value; or if f is a constant, use its
value.

(b) If f is a level-raised field without the GLOBAL prefix,
apply all entity restrictions to entities in all groups from G
down to and including the group of the level-raised field
and ignore all entities and their descendants for which the
entity restriction is not satisfied. Perform Step 3 on each
remaining entity of the group of the field and combine the
results according to the appropriate level-raising operator.

(c) If fis a level-raised field with the GLOBAL prefix, perform
Step 3 on all descendant entities at the group of the field
and combine the results according to the appropriate level-
raising operator.

(d) Combine values obtained in Steps 3a, 3b, and 3¢ using
appropriate operators.

The above described retrieval process can be expanded to evaluate
several different retrieval functions during one pass through the data
base. It can be seen that all the retrieval processes in Section VI can
be formulated in terms of the general retrieval process given above.

1752 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

Hence the user of OTSS need only learn how to specify the retrieval
process and the form of output desired. Detailed algorithms for
implementing the retrieval process are described in Appendix A.

IX. LANGUAGE EXAMPLES

Having presented the descriptions of retrieval functions and the
retrieval process, let us proceed to examine several examples of the
OTSS retrieval language. The OTSS retrieval language is a keyword-
oriented, English-like language which provides the necessary input
to the retrieval process and means of specifying the output format. The
language contains FOR and IN statements which are used to specify
subtree delimiting of the search of the data base; WHEN statements
for specifying logical entity restrictions; LET statements for specifying
retrieval functions; and various output specification statements such
as PRINT, RANK, PLOT, etc. A complete description of these and
other auxiliary statements are described in Appendix B.

To begin our examples, let us print the names of all the departments
in the store at 19 Fifth Ave., New York City, New York. The following
statements accomplish this:

PRINT DEPARTMENT NAME: FOR 19 FIFTH AVE, NEW
YORK CITY, NEW YORK: GO:

Now to print only those departments with dollar sales greater than
$5000 we need only enter the following statements:

WHEN DEPARTMENT HAS DOLLAR SALES > 5000: GO:

as OTSS remembers the last occurrence of each keyword statement

entered.
To print the department which has the highest dollar sales in the
store at 19 Fifth Ave., we would enter the statements:

WHEN DEPARTMENT HAS DOLLAR SALES = GLOBAL
MAX DOLLAR SALES PER STORE: GO:

Suppose we now wished to print the ratio of dollar sales of those
departments having dollar sales less than $5000 to the dollar sales of
the entire store. We would enter the statements:

PRINT DOLLAR SALES PER STORE/GLOBAL DOLLAR
SALES PER STORE: WHEN DEPARTMENT HAS DOLLAR
SALES < 5000: GO:

If we wished to do the above request for all stores, not just the one

OFF-THE-SHELF SYSTEM 1753

at 19 Fifth Ave., we would enter:

DELETE FOR: GO:

And suppose finally we wanted to do the same request for only those
stores whose dollar sales are greater than $1,000,000 but less than
$5,000,000. We would enter:

WHEN STORE HAS GLOBAL DOLLAR SALES PER STORE
> 1000000 AND GLOBAL DOLLAR SALES PER STORE
< 5000000: GO:

To save a small amount of typing, we could have entered the following :

LET X = GLOBAL DOLLAR SALES PER STORE: WHEN
X > 1000000 AND X < 5000000: GO:

X. REPORT FACILITY

The REPORT statement is the general interface to extend the
processes available in the OTSS retrieval language on a project-by-
project basis. One can write a process in FORTRAN which can be
installed into OTSS to be referenced by some report name using the
REPORT statement. The syntax of the REPORT statement is the
keyword “REPORT" followed by a report name optionally followed
by a list of retrieval functions separated by commas. If the process
requires retrieval functions to be passed into it as parameters, they
follow the report name in a manner analogous to the retrieval function
list in the PRINT statement. The process so installed is available to
the project installing it, and does not become a permanent part of
OTSS.

XI. SYSTEM SECURITY

The SECURITY statement is a command in the language which
enables a data base administrator to define, interrogate, and remove
security information for his user audience. The types of security which
are available to a data base administrator are environmental, language,
and data base. These security mechanisms may be used by the admini-
strator to restrict access or alteration of his data base and use of
facilities in the retrieval language on a user-by-user basis.

11.1 Environmental Security

The first type of security which may be specified is the environmental
security. Environmental security is used by the administrator to

1754 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

specify legal users of the system. This security mechanism uses two
pieces of information: a sign-on key passed into the system and
password information input by the user. The data base administrator
specifies valid combinations of sign-on keys and optional password
information for each potential user of the system. When a user initially
enters the retrieval environment, the system will interrogate the sign-on
key typed in by the user to see if it is valid. If the sign-on key is not
in the list of valid sign-on keys provided for by the administrator, the
system will terminate the session. A valid sign-on key will cause the
system to prompt the user for the password information (if this
sign-on key requires a password). If the password is incorrect, the
session is terminated.

11.2 Language Security

The data base administrator has the ability to limit use of certain
facilities in the retrieval language. This type of security is called
language security. In order to specify language security the admini-
strator defines one or more statement restriction classes. A statement
restriction class is a set of statements in the retrieval language which
is not available to a set of users of a data base. The administrator would
then indicate, on a user-by-user basis, which statement restriction
class pertains to each user. If a user attempts to use a statement in the
retrieval language which is a member of his statement restriction class,
the system will output a message indicating that the statement in
question is not available for use by him.

11.3 Data Base Security

The final type of security provided for by the system is data base
security. Data base security can be subdivided into two parts: field
security and access tree security. Field security is specified in a manner
similar to the language security specification. The data base admini-
strator defines one or more field restriction classes. A field restriction
class is a set of fields in the data base which is not accessible to one or
more users of the system. A field restriction class may be restricted
on a read/write basis or on a write basis only. After defining the sets
of field restriction classes, the administrator indicates, on a user-by-
user basis, which restriction class pertains to each user. If a user
attempts to retrieve or modify the value of a field which is a member
of his field restriction class, the system will output a message indicating
that the field in question is not available for access or alteration.

OFF-THE-SHELF SYSTEM 1755

Access tree security is used to restrict users to a logical hierarchical
subsection of a data base. For each potential user of his system, the
data base administrator may specify a corresponding USER statement.
The USER statement has the same form as the FOR and IN state-
ments described in Appendix B, and is used to delimit the search of
the data base.

When a user initially enters the retrieval environment, after passing
the environmental security phase, the USER statement corresponding
to that user will be processed to delimit the search of the data base.
If the user tries to access a portion of the data base outside of the
logical hierarchical subsection specified in the USER statement, the
system will output a message indicating this as an illegal action. Note
that the USER statement cannot be modified or deleted by a user.

XII. CONCLUSION

OTSS is an information management system designed to be in-
dependent of the structure or content of any specific hierarchical data
base. OTSS provides a simple keyword-oriented, English-like language
for specifying the retrieval of values of complex retrieval functions
and the alteration of data in a data base. In addition, OTSS provides
a means of loading data into a data base and specifying various forms
of security on the data base and the use of statements in the language.

APPENDIX A

The retrieval process (RP) has as its inputs a set of complete access
lists, a set of retrieval functions, and a set of entity restriction functions.
These inputs completely specify the semantics of the retrieval process.

RP applies the algorithm TB (Tree Building) to construct a subtree
of the data base over which the retrieval process will be performed.
RP applies the algorithm GTP (Group Tree Pruning) to make up a
list, R, whose entry for each group, g, is “referenced” if g is the defini-
tion group of a retrieval function or an ancestor of the definition group
of a retrieval function.

RP uses the algorithm ACTION to create a list, A, of selector
directions for each group in the hierarchy. The entry in A for group, g,
is “down” if it is an ancestor of the definition group of a retrieval
function and is “right” otherwise.

After having applied TB, GTP, and ACTION, RP proceeds to
select the entities of the subtree (using the algorithm GEN) in a left-
to-right, depth-first manner. The algorithm GEN only returns entities

1756 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

to RP for which a retrieval function may have to be evaluated or for
which an entity restriction function may need to be evaluated and
which is the group of a retrieval function or an ancestor of a group of a
retrieval function. Hence, in this manner, no extraneous entities are
selected.

Whenever an entity is returned to RP by GEN, RP determines if
there is an entity restriction function to be evaluated at this entity.
If there is, it is evaluated. If the entity restriction function evaluates
to false, the action input to GEN is set to “‘right”” and GEN is applied
to select the next entity.

Should there be no entity restriction function to be evaluated, or
should it evaluate to true, RP examines the list of retrieval functions
to be evaluated and evaluates those defined at the group of the current
entity. RP then iterates the whole procedure until all the entities on
the subtree have been generated.

More formally the following algorithms define the functions of RP,
TB, GTP, ACTION, and GEN.

Retrieval Process (RP)

Input: Complete entity access lists: ey, €5, =+, en.
Retrieval functions: f§, f§, - - -, fi~.
Entity restriction functions: b§, b§, - - -, b
Output: Values of retrieval functions: ff', g, .., i

Step 1: T « TB(ey, ey, -, en) Which builds a tree, T, the subtree
of the data base that the retrieval process is to be applied to.

Step 2: R« GTP(f¥f, f§, - - -, f&) which builds a list, R, containing
one entry for each group in the hierarchy. The entry for a
group is marked “referenced” if the group is one of the g or
one of its ancestors and is marked “unreferenced’” otherwise.

Step 3: A «— ACTION(f%, f§, - - -, f&) which builds a list, A, con-
taining one entry for each group in the hierarchy. The entry
for a group is marked “down” if the tree traversal action to
be performed is “down” and is “right’” otherwise.

Step 4: CE « root entity of the retrieval tree, T.

Step 5: Examine the list of entity restriction functions to see if any
bf* is defined at the group of the current entity, CE. If none,
go to Step 7.

Step 6: Evaluate bfi. If the value is FALSE, go to Step 11.

Step 7: Any more ff to be evaluated? If none, go to Step 9.

Step 8:
Step 9:
Step 10:

Step 11:
Step 12:

OFF-THE-SHELF SYSTEM 1757

Evaluate ffi, output result and go to Step 7.

If there are no more entities on T to be generated, then exit.
CE « GEN(T, R, A(g:), CE) which generates the next
entity on T, then go to Step 5.

If there are no more entities on T to be generated, then exit.
CE « GEN(T, R, “right,” CE), then go to Step 5.

Tree Building (TB)

Input:

Output :

Step
Step
Step

Step
Step
Step
Step
Step

1:
2:
: Construct tree, T, consisting of the entities on the access

o

Q0 =1 O Qv W=

Complete entity access lists: e, es, - - -, en.
The retrieval tree, T.

T; « null tree.
If there are no more e;, go to Step 5.

list, e;.

: Ty« T1 union T, go to Step 2.

: Make T: a copy of T1.

: If there are no more unexamined entities on T, exit.

: e « next unexamined entity on T..

: Examine each group which is a descendent of the group of e

to see if there exists an entity on T, which is a descendent
of e. For each group in which this is not true, put all entities
in the data base on T; which are descendents of e. Go to
Step 6.

Group Tree Pruning (GTP)

Input:

Output :

Step

Step
Step
Step
Step
Step
Step

~1 S O W

Retrieval functions: f§, f§, - - -, f&.
A list, R, containing one entry for each group in the hier-
archy. The entry for a group is marked “referenced” if the
group is one of the g; or an ancestor of one of the g; and is
marked ‘“unreferenced’” otherwise.

: Initialize the entries in R for each group in the hierarchy to

“unreferenced.”

: If there are no more f§, exit.
Vg g
: If the entry in R for group g is “referenced,” go to Step 2.

Set the entry in R for group g to “referenced.”

: If g is the root group, go to Step 2.
: g « father of g; go to Step 4.

1758

THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

Generating Action (ACTION)

Input:
Output :

Step

Step
Step
Step
Step
Step
Step
Step

00 ~1 S Ut W D

Retrieval function: f§, f§, ---, fi~

A list, A, containing one entry for each group in the hierarchy.
The entry for a group is marked “down’" if the tree traversal
is down, and ‘“‘right” otherwise.

. Initialize the entries in A for each group in the hierarchy to

“right.”

. If there are no more f§, then exit.

g i

: If the entry in A for group g is “down,” go to Step 2.
: If g is the root group, go to Step 2.

. g « father of g.

. If the entry in A for group g is “down,”” go to Step 2.
: Set entry in A for group g to ‘“down,” go to Step 5.

Tree Generation (GEN)

Input:

Output :

Step 1:
Step 2:

Step
Step
Step
Step

Step

Step

SO W

7:

8:

Retrieval tree, T; the list R of referenced and unreferenced
groups; and the action, A, either “right” or “‘down,” and the
current entity, CE.

CE the next entity to be processed by the retrieval process.

If the action, A, is “right,” go to Step 4.

Find the leftmost entity on T, LME, which is a descendent
of CE and for which the entry for the group of CE in list R
is marked “referenced.” If there are none, go to Step 4.

: CE « LME, then exit.
. If CE has no brother entity to the right, go to Step 6.

CE « next brother of CE to the right, then exit.

Find the leftmost group, g, which is on the same level as the
group of CE for which the entry in the list R is marked
“referenced’” and for which there exists an entity on T which
has not previously been processed. If none exists, go to
Step 8.

CE « leftmost entity of group, g, which has not yet been
generated ; then exit.

CE « father of CE; go to Step 4.

APPENDIX B

OTSS Retrieval Language Statements

To make the description of the OTSS retrieval language statements
more readable, the following notations are used :

OFF-THE-SHELF SYSTEM 1759

(a) Capitals and special symbols are literals in the language.

(b) Lower case include:
f —any retrieval function
str —any non-null string of alphanumeric characters
num—any number
gn —the name of a group
null —a null character string
stmt—the name of a statement in the retrieval language.

(¢) Square brackets imply that the constructs within the brackets
are alternatives starting from the top line down. One item from
the vertical list of alternatives must be selected.

LET str = f:

The LET statement is used to create additional fields which are not
stored in the data base. The field so created may be used in any other
statement or retrieval function.

[FOR

IN] e-listy; e-listy; - - - e-list,:

The notation, e-list, indicates a list of entity names separated by
commas. Each e-list represents an entity chain. The combination of
all entity chains specifies an access tree. This access tree is used to
select the subset of the data base over which the retrieval search will
take place.

WHEN [g“ HAS] f:

null

The WHEN statement specifies an entity restriction function
defined at the group, gn, which delimits the search of the data base
during the retrieval process. If a WHEN condition is defined for a
group, retrieval will take place from a entity within that group only if
the entity restriction funetion evaluates to TRUE. If the entity
restriction evaluates to FALSE, the entity (and all its descendents)
will be ignored during the retrieval process.

PRINT f1, fg, e fn:

The PRINT statement specifies a tabular printout of the values of
the individual retrieval function.

DISTRIBUTE f, BY f,:
The DISTRIBUTE statement specifies a tabular histogram with f,

1760 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

as the ordinate and f, as the abscissa.

IN STEPS OF num;
null

BETWEEN num; [A,Il‘\?D] nums [ISO nums

The BETWEEN statement specifies the range and cell intervals to
be used by the DISTRIBUTE process.

CUMULATIVELY :

The CUMULATIVELY statement may be used with the DIS-
TRIBUTE process to alter the distribution to produce cumulative
values in each of the defined cells.

CHART:

The CHART statement may be used with the DISTRIBUTE
process to specify bar chart output.

RANK f AT gn:

The RANK statement specifies to rank in descending order (largest
to smallest) the individual values of f within each entity of the group
gn, and displays the results in tabular form.

INVERSELY :

The INVERSELY statement specifies to the RANK process to
invert the order of the RANK output.

LARGEST

THE HIGHEST)

KEEPING [null] SMALLEST num:
LOWEST

The KEEPING statement is used to specify to the RANK process
to rank the “num’’ largest or smallest values of the rank function at
each entity in the rank group.

CARRYING ALONG fy, fy, -+ -fa:

The CARRYING statement may be used to specify to the RANK
process to ‘“‘carry along” the values of other retrieval functions and
have them displayed as part of the RANK output.

PLOT fl, fz, ey f,..._l BY fn:
The PLOT statement specifies an X-Y point plot with the values of

OFF-THE-SHELF SYSTEM 1761

f, through f,._, as the ordinate and f, as the abscissa.

X-AXIS BEFTR%]IE\]’? N um AND nums:
Y-AXIS Sl N) 2

The X-AXIS and Y-AXIS statements must be used to specify to
the PLOT process to specify the origins and ranges of the independent
and dependent fields.

STATISTICS fy, fs, - -fa:

The STATISTICS statement requests a set of standard statistics
to be produced for each function and the results printed in tabular
form.

REGRESS f1 BY fz, fa, v -f,,:

The REGRESS statement specifies to perform a multiple linear
regression analysis of the function f, (dependent field) by the functions
f, through f, (independent fields).

ALTER field TO f:

The ALTER statement is used to permanently change the value of
the field to the value of f.

VERIFY

The INTERACTION statement specifies to the ALTER process a
level of verification required by the user when altering a datum value.

BRIEF
INTERACTION (DETAIL|:

REPORT str o fy £, o
null

The REPORT statement specifies to pass control to an application
dependent process identified by the string, str.

TITLE stry! stry !---! str,:

The TITLE statement specifies to any process to print lines of text
centered at the top of the output of the process.

PLACES num:

The PLACES statement is used to control the number of decimal
places displayed for real-valued functions.

OUTPUT TO str:

1762 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

The OUTPUT statement specifies to any process to direct its output
to a specific output device.

WHEN FOR gn,, gns, - --gn,
DELETE |stmt :
ALL

The DELETE statement specifies to remove a statement or set of
statements which are currently active.

DEFINE var,, vary, - - -vary:

where var; through var, are the names of created fields previously
defined through the use of the LET statement. The DEFINE state-
ment will permanently save the name and definition of each of the
created fields mentioned in the DEFINE list.

UNDEFINE field,, fields, - - -fielda:

where field; through field, are the names of fields which were perma-
nently created through the use of the DEFINE command. The UN-
DEFINE statement specifies to remove the names of the permanently
created fields from the list of all possible fields accessible through the

retrieval language.
DETAIL:

The DETAIL statement specifies to automatically recap the current
state of the dialogue when a process is executed.

RECAP:

The RECAP statement specifies to display the current state of the

dialogue.
INPUT FROM str:

The INPUT statement causes OTSS to accept input from a pre-
viously prepared file identified by str.

IN7 . [WITHGO],
null | 5% null '

When the SAVE statement is given by the user, the system writes
the current state of the dialogue on to the file identified by str.

DATABASE str:

where str is the name of another data base. The DATABASE state-
ment allows the user to switch from one data base to another from

SAVE [

OFF-THE-SHELF SYSTEM 1763

within OTSS.
ERASE str:

The ERASE statement causes the disk file identified by str to be
erased.
VOCABULARY :

The VOCABULARY statement specifies to print out the entire list
of keywords and their associated synonyms available in the OTSS

retrieval language.
RETURN:

The RETURN statement is used to return control to the operating
system level.
STOP:

The STOP statement will disconnect the user from the time-sharing
system.

CREATE i
null
ALL
SECURITY | INTERROGATE]
usery, USers, - - - USErs
REMOVE [ALL]
USer;, users, - - -USery

The SECURITY statement is used by a data base administrator to
define, interrogate, and remove security information for his user
audience.

GO:

The GO statement causes the last-mentioned process to be executed.

REFERENCES

1. Sinowitz, N. R., “DATAPLUS—a Language for Real-time Information Retrieval
from a Hierarchical Data Base,” AFIPS Conf. Proc., 32, 1968.

2. Gibson, T. A., and Stockhausen, P. F., “MASTER LINKS—A Hierarchical
Data System,”” B.S.T.J., this issue, pp. 1691-1724,

3. Puerling, B. W., and Roberto, J. T., “The Natural Dialogue System,” B.S.T.J.,
this 1ssue, pp. 1725-1741.

