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The potentials and fields in a two-dimensional model of a charge-
coupled device (CCD) are studied. We assume no mobile minority car-
riers have been injected into the CCD and that the electrode voltages do
not vary with time. The nonlinear equations describing the devices are
first linearized using the depletion layer approximation. The linearized
equations are then solved approximately by a fitting technique. Both
surface and buried channel CCD’s are considered. The accuracy and cost
of obtaining the solution 1s discussed. This work is a continuaiion of a
study tniliated in an earlier paper.

I. INTRODUCTION AND SUMMARY

In this paper we study the electrostatic potential distribution and
fields in a two-dimensional model of a charge-coupled device?:? (CCD).
This work is a continuation of a study initiated in an earlier paper!
hereafter referred to as I. In I we considered a static, two-dimensional
model with no mobile charge, and with electrodes so close together
that they could be assumed to touch. We showed there that the deple-
tion layer approximation* could be used to linearize the potential
equations, and the linearized equations were then solved analytically.
The numerical evaluation of these solutions was shown to be very
accurate and cheap.

We extend the model of I to allow for gaps between the plates.
Our purpose here is twofold. We want to examine the dependence
of the potentials and fields in a CCD on various design parameters.
As we show, our model allows considerable flexibility in deseribing
various electrode configurations. In addition, however, we want to
demonstrate a method of numerically solving the potential equations
which we believe is of considerable interest in itself.

Both surface? and buried channel®:¢ CCD’s are considered. However,
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asin I, only the analysis for buried channel CCD’s is given. The results
for a surface CCD can be obtained as special cases of the results for
buried channel CCD’s. We refer the reader to I for a more detailed
derivation of the equations and for a discussion of their linearization
by the depletion layer approximation.

As we show by examples, fairly complicated models of CCD’s can
be analyzed at moderate cost by the methods of this paper. Neverthe-
less, the cost of using the methods of I to analyze a CCD with zero
separation between the electrodes is typically an order of magnitude
less than the cost of using the methods of this paper to analyze a CCD
with nonzero electrode separation. This suggests that, in any com-
plicated design problem, the methods of I should be used to rough out
a solution, and then the solution should be “fine tuned’”’ by using the
methods of this paper. In addition, it is shown that, when the gaps
between the electrodes are of the order of 1 um, the potentials of
interest are approximated well by the potentials in the same CCD
with the electrode separation set to zero.

The nonlinear equations and boundary conditions defining the
boundary value problem are introduced in Section II. The linearized
equations are also introduced there. In Section IIT we discuss in some
detail how we obtain approximate solutions to the linearized problem.
The reader uninterested in the mathematical details should skip Section
I11 and proceed directly to Section IV, which is devoted to examining
some of the solutions with emphasis on how they are affected by
changes in the design parameters. We examine a number of different
design parameters, particularly for buried channel devices. The accu-
racy of the solutions and the cost of obtaining them is considered in
Section V. Finally, some mathematical details are contained in two
appendixes.

II. THE POTENTIAL EQUATIONS

We consider CCD’s in which the minority carriers are holes and the
underlying substrate is n-type silicon. The analysis can be modified in
an obvious way to describe the case where the minority carriers are
electrons and the substrate is p-type silicon.

A buried channel CCD consists of a substrate of n-type silicon on
top of which there is a layer of p-type silicon. The p-type layer is
covered with a layer of SiO., and closely spaced electrodes are placed
on top of the oxide layer. A schematic diagram of such a device is
shown in Fig. 1 with some typical dimensions indicated. A surface CCD
is the same, except that the p-type layer is missing.
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Fig. 1—A schematic diagram of a buried channel CCD.

We study here the static potential and fields in either a surface or
buried channel CCD in the absence of mobile charge. Since the length
in the z-direction of each plate is much greater than its width in the
z-direction, near the center of the plates (2=0) the field is essentially
two-dimensional; therefore, we treat the problem as two-dimensional.

We assume the bottom (n-type) substrate is infinitely thick. The
field can penetrate into the substrate little beyond a depletion depth
and, since for typical voltages the depletion depth ranges from 7 to
20 um and the thickness of a typical device is 100 um, this is a very
good approximation.

It is assumed that there are gaps between the electrodes. We also
make the approximation that the electrodes have zero thickness.
Although this is a rather drastic simplification, we feel the essential
effects of the gaps between the electrodes are still properly described.
It will be seen later that electrodes of rectangular cross section could
be studied, although at much greater cost. We further assume that the
medium surrounding the electrodes has the same dielectric constant as
the Si0,. This is very reasonable, since in practice a CCD is covered
with a dielectric coating. Two basic types of metalization are studied,
single level and double level. In double-level metalization, two layers
of electrodes are separated by an oxide layer. This is illustrated
schematically in Fig. 2. We simulate this situation by assuming that
the potential distribution in the gaps between the electrodes in the
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Fig. 2—A schematic diagram of one cell of a buried channel CCD with double-
level metalization.

upper layer of electrodes is a known function. (Typically, the potential
is assumed to vary piecewise linearly.) In single-level metalization, the
upper level of electrodes is missing. Here we assume the dielectric
coating over the electrodes is infinitely thick. Again, thisis a reasonable
assumption, since typically the field will have died out before reaching
the surface of the dielectric coating.

Finally, we assume the structure to be periodic in the z-direction,
which in the usual mode of operation is an excellent approximation.

The boundary value problem corresponding to our model of a buried
channel CCD can be described by a system of partial differential
equations which we wish to write in terms of dimensionless quantities.
All dimensional quantities (measured in rationalized MKS units) will
be starred, with the exception of a few obvious physical parameters.
Corresponding unstarred quantities will be dimensionless. The physical
parameters of the problem are ¢ and e;, the permittivity of the oxide
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and silicon, respectively; —e, the charge of an electron; Boltzman’s
constant k; the absolute temperature T'; the length of a unit cell in the
device L*; the separation of the two layers of metalization hZ,; and
ki and h3, the thickness of the oxide layer and the p-layer, respectively.
The donor number density of the n-type substrate is N5, which in the
usual method of fabricating a CCD is a constant. However, we assume
the acceptor number density in the p-layer is given by the expression’
X __ pry\2 *

Ni(y¥) = Ciexp {—(“)m—%] — N, W
where €} is the number density of acceptor ions at the upper surface
of the Si.

Now define the (dimensional) Debye length Ap,

A = (ekT/e*Np)h (2)
Then the dimensionless lengths are defined as
z =2x*MNp, ¥ =vy*Ap, L=L*MNp, ha=h/Ap, (@==%1,2). (3)

The dimensionless potential is related to the dimensional potential by

e(x, y) = ep*(x*, y*)/kT. (4)
If we set
C, = Cy/Np, (9)
then the dimensionless p-layer acceptor density, a(y), is
— 2
o) = Coexp | — (L= Ve, -1 ©)
hz _— hl

In the strip 0 < 2 < L, let ¢o denote the electrostatic potential
above the oxide layer, — = < y =< 0 in the case of single-level metaliza-
tion and —h_; < y =0 in the case of double-layer metalization.
Further, let ¢; denote the potential in the oxide layer, 0 = y < hi; ¢,
the potential in the p-type layer, ks < y =< hs; and ¢s the potential in
the n-type substrate (see Fig. 2). Then in the dimensionless form, the
potential equations are

Vigy = 0, y =0, (7)
Vig = 0, 0=y = h, (8)
V20, = a(y), hi £y = hy, (9)
Vigs =exp (¢3) =1, ha=y<w, (10)

where V? is the two-dimensional Laplace operator. The standard
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electromagnetic boundary conditions are as follows:
| @o(w, — =) | < o (single-level metalization), and (11)
eo(x, —h_;) = U(z) (double-level metalization), (12)

where U(z) is a given periodic function of period L, assuming on each
electrode of the second level of metalization the constant voltage of
the electrode and a specified potential between the electrodes. In
reality, of course, the true potential in the gaps of the second level of
metalization is unknown a priori. However, as indicated in Fig. 2,
typically the semiconductor cannot “‘see’ these gaps since they are
shielded by the electrodes of the first level of metalization. Thus we
simulate the exact boundary conditions in the gaps, most often by
assuming the potential varies linearly from one electrode to another.
We feel this is a good approximation, since we have performed calcu-
lations of the potential in the semiconductor with several different
assumptions about the variation of the potential in the gaps, and the
results were essentially identical. Further,

qoa(:lt, 0) = Vj = 501(3: O)r (J =12, p)r (13)
oo@0) = 00,0, 52 @0 = @0 + @, (4

where V, is the constant voltage of the jth electrode in the first level
of metalization, eq. (13) holds on each of the p electrodes, and (14)
holds in the gaps between the electrodes. Typically, p,(z) = 0, but in
some cases it may describe a deliberately implanted surface charge in
the gaps. In any event, p,(z) is a known function of = in the gaps, and
p,(z) = 0 on the electrodes. Finally,

01(@, 1) = ex(z, b), “%hoa?mm+mm(m
p2(, hs) = ealz, o), M(M~Mum (16)
ea(x, ©) =0, 17)
and for all ¥
o019 = oLy, S0, =5 L. 18)

In (15), Q(z) is a known, periodic surface charge density, which may
include deliberately implanted charges,® and

7 = e/ e (19)
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All the boundary conditions (11) to (12) and (14) to (17) hold for
0=sz=L.

The equations for the potential in a surface CCD are essentially the
same, except the p-type layer is eliminated. We only give the analysis
for the buried channel CCD. The results for the surface CCD can be
obtained from those for the buried channel CCD by setting «(y) = 0,
hi1 = hy, and @2 = ¢@a. In either case, the fields are obtained from the
potential by

E=— Vo (20)

The results of I show that the system of eqgs. (7) to (18) can be
accurately solved by the method of finite differences only at great
expense for even the simplest of devices. However, it was shown in I
that, for the simpler problem studied there, the nonlinear boundary
value problem could be replaced by a linear boundary value problem.
This linear problem was solved analytically. It was then shown that
under appropriate conditions the solution of the linear problem was an
excellent approximation to the solution of the nonlinear problem in
the p-type layer for a buried channel CCD and near the oxide-semi-
conduector interface for a surface CCD. The condition for the approxi-
mation to be a good one is, basically, that the potential along the line
3 = hy be large and negative. That condition holds in this problem, as
we show later by example. Although the linear problem is much more
complicated in this case because of the gaps between the electrodes and
we have been unable to solve it analytically, we have been able to
obtain good approximate solutions of it. For these reasons we now
formulate the linear problem.

The linear equations are based on the depletion layer approximation,
and we refer the reader to I and Ref. 4 for a detailed discussion. The
linearization consists of replacing the single region h; < y < « by two
regions, hs < y < hs = hy + R (the depletion layer) and hy £ y < e,
and replacing the single nonlinear equation (10) by a different linear
equation in each of these subregions (see Fig. 3).

Vi(z, y) =0, y =0, (21)
Vi(z, y) =0, 0=y =h, (22)
Vi (z, y) = a(y), hi Sy =S b (23)
Vih(z, y) =—1, hs <y < hs=h+ R, (24)
Vi(z,y) = Ya(z, ), hs=y <w. (25)

In addition to Yo, ¥1, ¥s, and ; satisfying boundary conditions (11) to
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Fig. 3—A schematic diagram of the depletion layer approximation for one cell of a
buried channel CCD with double-level metalization.

(16), we have the boundary conditions for 0 < 2 = L

Wi(z, hs) = ¥a(a, ha), %( ha) =Z—‘?(x, h),  (26)
Yalz, =) =0, @7

and the ¥, (@ =0, 1, 2, 3, 4) all satisfy (18). The pseudodepletion
depth R is best given by

R=—(1+h2—h,+}:)+[(hz—h1+%l)2—1—-2V

- .2{‘_‘ "+ 2f: (s — b+ %)a(s)dé]l- (28)
In (28), )
@ -7 [ Q@
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and V is the average electrode voltage. As shown in T and Ref. 4, y,,
¢1, and ¢, are quite insensitive to the choice of R, and an optimal
choice of R tends to minimize ,Sup [s(z, ha) + 1].

<zx

III. SOLUTION OF THE LINEARIZED POTENTIAL EQUATIONS

The method we shall use to solve the linear system of elliptic eqs.
(21) to (27) has much in common with previous work® on the classical
problem of a single linear elliptic boundary value problem on a simply
connected domain in the plane. The technique used in Ref. 9 is quite
simple: Construct a family of particular solutions of the partial
differential equation and, using a finite linear combination of these
particular solutions, obtain a Chebyshev fit to the boundary conditions
at a finite number of points on the boundary of the domain. It was
shown that, as more and more particular solutions are taken in the
linear combination and more and more points are chosen in the fit on
the boundary, the linear combination converges to the true solution.

In this paper we construct a family of particular solutions of (21)
to (27). These solutions depend linearly on a finite number N of param-
eters and satisfy all the boundary and interface conditions except that
they do not assume the correct voltages on the electrodes at y = 0.
We then complete the analogy with Ref. 9 by picking M points on the
plates, z;, 1 < ¢ < M, where M = N, and force the potential to take
on the correct value at the points z; in the least-squares sense.

We obtain the family of particular solutions in the form of Fourier
series. We assume as given the Fourier series expansions of U(z) and

Q(x):

U@ = fao + 3 Ga(a), (29)
Q@) = § + 5 @aa), (30)
where
Ga(x) = an €08 A% + (. 8in A2, (31)
®,.(x) = {,co8 A, x + £, 8In AT, (32)
and
An = (2nm)/L. (33)

Further, from I, we can write down formal expressions for ¥, 3, ¥s,
and 4 which satisfy (22) to (25) and boundary conditions (15), (16),
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(18), (26), and (27). Let

Fo(x) = an cos Mz + b, s8in Az, (34)
E,=1=x1/y, (35)
AF =1 (14 N9 (36)

M.(y) = {E+Ar-|l- + E_A;eDnlha=hn ) g hay

+ {EJ\,TE_H“M -+ E+A;e‘2"""=]e"”, (37)
La(y) = 2(AFe + Agecn], (38)

where 7 is given by (19), A\, by (33), and aqy, @5, b, (n =1, 2, ---) are
unknown constants. Then these expressions are

vi(z, ¥) = (Ao + B) + (Cao + D)y

(%)
+ £ ro iy

0, ) = 3 @l + s = h) — (= ?
(a0 + 2hs — 2 (y — ha) + 2 j - e)a(s)ds]

L,(h1) sinh A,y

o G Tt o

llba(m’ y) = %[a’_t)(l + hy — y) — (y — h3)2]
+ 5 { W(2) + () S0 l fg""((yo)), (41)
Yalz, ) = 3dee y*ixa)+4z{F (m)_l_@()smh)\ hl}
ot e, @
where
A= (1+hs—hl+h‘) 3)

Y e hy,
B—j;l (E hl+")(z)ds
1 hy
-1 [(ha — ha)(hs - by — 20 + 2 €+ 2hs - 2h2)] . (44)

C =—1/(27), (45)
D= [+ 2m—t) -2 [ o(s)dz] / @),  (@6)
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and
ay = (%au —_ B)/A. (47)
It should be noted that
(@ 0) = ta+ ¥ Fu@). (48)

In the case of single-level metalization we can write down an expres-
sion for a solution of (21) in ¥ < 0 which satisfies boundary conditions

(11):
Wl@) = fao + = Fa(@)em, (49)

In the case of double-level metalization, a solution of (21) in
—h_1 = y = 0 satisfying boundary condition (12) is

sinh A (y + h_y)

co) = L A 3
Yoz, y) = 3 (1 + hy ) a + n‘gl Fa(x) sinh A h_;

_afy ) & sinh A,y )
) (h_l) 260 grnas 60

Note that these solutions have been constructed so that from (48)
and either (49) or (50), for0 =z < L,

Y@, 0) = ¢a(z, 0). (61)

[Note also that, term by term, (49) is the limit as h_, — of (50).]

Equations (34) to (50) contain expressions for ., 0 < « < 4, which
satisfy the differential equations (21)—(25) and all the required bound-
ary and interface conditions except condition (13) on the plates and
the normal derivative condition of (14) in the gaps. These particular
solutions contain the unknown parameters as, @., b, (n =1, 2, --+),
which remain to be determined. At this point it might be assumed that
the series should be truncated at some n = N and the 2N + 1 coeffi-
cients aq, @n, by, n = 1,2, ---, N, be determined directly by making a
least-squares fit to the remaining boundary conditions. However, it
can be shown that if 2; ; < z; are the end points of an electrode on
y = 0 then for z;_; < z < z;, and x near z;, say, dyo/dy(z, 0) will
behave like (r; — x)~! plus a power series in (z; — z)!. This implies
that the Fourier series for yo(z, 0) converges very slowly. In fact, we
have found that it is often necessary to take up to 2000 terms in the
series to represent yo(z, 0) adequately. This makes it impractical to
use the Fourier coefficients themselves as the parameters to be deter-
mined directly by a least-squares process.
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Instead, we used the following technique. We approximated the
charge density on y = 0 by a finite sum of known functions

o(@) = po(a) + f ) (52)

The functions p;(x) are zero except on the electrodes and are of several
types, as shown in Fig. 4. The function po(2) is a periodie, triangular
spline for the ends of the device, as shown in Fig. 4a. Corresponding to
the edge of each plate, there is a discontinuous triangular spline, Figs.
4b and 4¢, and singular splines of the form |z — x:|~}, Figs. 4d and 4e.
The remaining p;(x), whose supports lie wholly interior to the elec-
trodes, are triangular splines as shown in Fig. 4f.

Now each unknown parameter ao, @, b, (n =1, 2, ---) is deter-
mined as a linear sum of the N parameters p;, 1 £ j £ N, by equating
p(z), given in (52) with dy./dy(z, 0) — ¢¥1/dy(x, 0). In the case of
single-level metalization, from (39) and (49),

alpn a'l’l
—a_y' (x:l 0) - ag (CE, O)

_ _ o _ a0 L (hl)
— (Cay + D) nglF,,(x))\nEﬂ ng @, (z) ML) (53)
where
_ M0
B =5, 6y
It should be noted from (33), (35), (37), and (38) that, as n — =,
Bo— 2, o) 2 (55)

aM.(0) "1+ 9

In the case of double-level metalization, from (39) and (50),

w0 -3 @0 = — (Cav+ D) = % Fal@haHa

Zh_
2 An La(ha)
PR W ,E (@) .00 ©Y
where
_ M) _
Hn = m ctnh (knhﬁl). (57)
It again follows from (33) and (37) that, as n —x,
H,~—2. (58)

For a periodic function f(z), of period L, we denote by ¢.[f] and
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Fig. 4—The splines used to represent the charge density on the electrodes.

s f] the cosine and sine Fourier coefficients of f:

elf] = fo * (@) cos (), s.L/] = = L Y i) sin Oe)dz.  (59)

Then, from (52), the Fourier series for p(x) is

(o) = ool + X pedn

=1

n=1

+ f: |Cn[pa] + 'gl chn[p,-]} COS ApT

+ {sﬂ[Pv] + f::l p,-sn[p,-]} sin A,z.  (60)
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In Appendix A we give c.[p;] and s.[p;] for the various functions
pi(z). If we now equate (53) with (60), we can obtain the a, and b,
as linear functions of the p; in the case of single-level metalization:

a = 2—(&5—1@ - % {COEPa] + J_gNl P:‘COI:P;']I ) (61)
an == [6La(h) VI BRI (0]
N
— b1+ B netn] /0um), @
b,., = EEnLn(hl)]/[ﬂ)\nEnMn(O)]
N
~ oo+ % onlp] / Gubo. 63

Similarly, if (56) is equated with (60), we obtain the a. and b, in the
case of double-level metalization:

o _2ha(BC — AD) —ad _ Ahs
0= (h)C — A (h)C — 4

- lco[p,] +T pjco[p,-]} , (64)

a, =— Qn _ g‘uLn(hﬂl)
" H,sinh (h_1\,)  nA.Hn.M.(0)

~ el + £ petnd] /0l @

_— Bn _ EnLn(hl)
Hn sinh (h;lhn) ﬂAanMn(O)

- {s,.[p,] +x p,-s,.[p,-J} /Ont). (66)

Equations (39) to (42) and either (49) or (50), with the a, and b,
defined by egs. (61) to (63) or (64) to (66), respectively, define solutions
to eqs. (21) to (25) which satisfy boundary conditions (11) or (12),
(14) to (16), (26), and (27). They do not, however, assume the correct
values on the electrodes at y = 0; i.e., (13) is not satisfied. These
solutions depend linearly on the N unknown constants p;, 1 = i =N,
and of course on the choice of functions p;(z) used to describe the
charge density on the plates. Having picked the p;(x) described
earlier, M, points are chosen on the jth electrode, z{”, 1 = i £ M;, with

ba

M =3 M;=N.

=1
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Then the expression

M;
= 3 (@, 0) = V.3 (67)
is minimized with respect to the p..

It has been observed that near the edge of an electrode, where the
potential has square-root behavior, the fitting points z{? should be
spaced quadratically closer together as the edge of the electrode is
approached. If = e is an edge of the jth plate, then we distributed
the points near this edge by picking b # e and an integer m < M,/2
and setting

s=bt-bosToU asj=m. ©9)
The points z; were then used as the fitting points x; near the edge of
the plate. Away from the edges of the plate, the fitting points were
uniformly distributed.

We have assumed the existence of a bounded solution y(z, y) to the
linearized problem. In Appendix B we show that if (z, y) is the true
solution of the linearized problem and y(z, y) is one of our approximate
solutions, then the error y(z, ) — ¥*(z, y) is bounded at every point
by the maximum error on the eclectrodes. Since the true solution is
known on the electrodes, this provides us with a posteriori error bounds.
We will make use of this important point later in evaluating the
quality of our approximate solutions.

The technique described in this section can be formulated in a
rather general setting and, we believe, can be applied to many problems
of interest in physics and engineering. It has been used by Morrison
et al. in a study of microwave scattering by deformed raindrops.!!
Assume that a problem can be separated into two parts: Input data
and a governing system of partial differential equations (PDE's), with
possible interface conditions, which determine the solution when given
the input data. Further, assume that linear families of particular solu-
tions to the PDE’s can be found. For example, these may be con-
structed by separation of variables, Fourier series, Green’s Theorems,
etc. Finally, assume that by linearly parameterizing some unknowns
of the solution (for our problem, the charge distribution on the plates)
we can obtain particular solutions to both the PDE’s and the interface
conditions. Then one could use some fitting procedure, a discrete
least-squares fit, for example, to force the linear family of particular
solutions to the governing system to have approximately the same
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input data as the desired solution. This generates a solution of exactly
the same governing system, but with input data which differs by a
known, and hopefully small, amount from the desired input data. For
all practical purposes, this gives an effective bound on the error in the
computed approximate solution. For example, if the desired input is
only known to 1 percent, because of experimental error in measuring
it, then any solution generated by the above procedure which corre-
sponds to the desired input data perturbed by at most 1 percent
cannot, on the basis of comparing inputs, be distinguished from the
true solution of the problem.

Also, in many cases, one can use the Maximum Principle, conserva-
tion of energy, or some other basic principle to give sharp, rigorous
bounds on the error in such an approximate solution in terms of how
well it satisfies the given input data. We do this for our problem in
Appendix B. This is a very great improvement over the standard
discretization methods for solving such problems. Those methods
generally give an approximate solution to an approximate system of
equations, but with exactly the given input data, with the result that
it is very difficult to estimate reliably what the true error is for a given
approximate solution.

1V. THE POTENTIALS AND FIELDS IN S8OME SPECIFIC cco’s

Using the method described in Section ITI, we have evaluated approx-
imately the solutions of egs. (21) to (25) for a number of different plate
configurations and design parameters, and we present some of these
results graphiecally in this section.

We have assumed in each case that the n-type substrate doping is
N% = 10 cm~3, that es/eo = 12, where ¢ is the permittivity of free
space, that e;/e» = 3, and that @(z) = 0, i.e., there is no trapped or
implanted charge at the oxide-semiconductor interface. Then at
T = 300°K, the Debye length is A, = 0.415 pm. In addition, we have
used the factor (k7/e) = 0.025 V to convert dimensionless potentials
to volts, and the factor (k7'/exp) = 600 V/cm to convert dimensionless
fields to volts per centimeter. In each example involving a buried
channel CCD, we assume that the acceptor number density in the
p-layer is given by (1), [(6) ] with €} = 4.6 X 10'* em~ [C, = 46]. In
each such case, this corresponds to an average number density of
acceptor atoms of 2 X 105 em—3 [see eq. (2.5) of I].

In I we investigated the effects of changing the p-layer doping and
thickness, and so here we concentrate mainly on the effects of gap
width, plate potential, and the separation of the levels of metalization.
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Fig. 5—The channel potential ¢* plotted as a function of z* for a three-phase
buried channel CCD. The 45-um-wide electrodes are at 0, —5, and —10 V; the gaps
are 5 um wide; h¥f = 0.1 ym; h¥f — h} =5 um; and C* = 4.6 X 10" cm=3. The
dashed curve is for no surface charge implanted in the gaps; the solid curve is for
pg/e = 0.8 X 10 cm™? implanted in the gaps.

In Figs. 5 and 6 we show some properties of a three-phase buried
channel CCD with single-level metalization. The electrodes are 45 um
wide, and the gaps between them are 5 ym wide. The p-layer is
5 wm thick (h; — k] = 5 um), and the oxide layer is 0.1 um thick
(hi = 0.1 um). The region y < 0 is assumed to be filled with SiO 5. The
potentials on the electrodes are 0, —5, and —10 V, as shown. The
dashed curve in Fig. 5 shows the channel potential ¢* (that is, the
value of the potential at the potential minimum in the p-layer) as a
function of 2* when there is no implanted surface charge in the gaps
between electrodes [p;(x*) = 0]. This curve illustrates one early
difficulty encountered in the design of buried channel CCD’s, namely
the large potential well under the gap between the plates. A CCD
with almost these same parameters was constructed® and did not work
because of the variable amounts of charge trapped in these wells. In
the remainder of this section we discuss a number of possible methods
of eliminating this potential well in the gaps between the plates.
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Fig. 6—The channel field —d ¢*/3z* plotted as a function of z* for the CCD of
Fig. 5 with p¥/e = 0.8 X 10" cm? implanted in the gaps.

An operating buried channel CCD has been reported'? in which the
gaps between the electrodes have been filled with a resistive material
so that the potential drop between the electrodes is essentially linear.
This CCD was also discussed in I, and it was shown there that the
potential wells are eliminated. Another technique for eliminating the
potential wells is to implant a layer of positive surface charge in the
gap between the electrodes. (Other schemes for eliminating this
problem are discussed in the literature.’®) The solid curve in Fig. 5
shows the channel potential in the same three-phase CCD after a uni-
form surface charge density, p;(x*)/e = 0.8 X 10'? ecm™2 [p,(2) = 578],
has been implanted in the gaps between the electrodes. Note that

fl‘
[ Ma@dy* = 107 em
hl
This technique should also eliminate the potential wells under the

gaps. In Fig. 6 we plot the channel field E; = — 9¢*/d2* (that is, the
field at the potential minimum in the p-layer) as a function of z*.
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Fig. 7—The channel potential in a buried channel CCD with double-level metaliza-
tion. The lower level electrodes are 10 um wide with 5-pm gaps and are at potentials
of —5 and —7 V. The upper level is a single electrode at —5V; h¥ = 0.1 um;
h¥ — h* = 5um; C¥ = 4.6 X 10" cm™; and the separation of the metalization levels
is h*, = 0.1, 0.5, and 1.0 pm.

This shows that there are substantial fields in the gap between the —5
and —7 V electrodes, but the field penetration under the electrodes is
not too good.

In Figs. 7 to 9 we investigate the possibility of eliminating the poten-
tial wells by the use of double-level metalization, in which the upper
level of metal is a single continuous piece covering the entire channel
and has a de potential applied to it. The presence or absence of the
potential wells is mainly a local phenomenon and can be studied by
considering just two adjacent electrodes in the lower level of metaliza-
tion. Thus, in the interests of economy we consider a model CCD in
which alternate electrodes of the lower level are at the same voltage.
These plates are 10 ym wide and the gaps between them are 5 um
wide. The oxide layer between the first level of electrodes and the
p-layer is 0.1 ym thick (A} = 0.1 um) and the p-layer is 5 um thick
(hs — h; = 5 um). For the CCD of Fig. 7, the electrodes on the lower
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Fig. 8—The channel potential in the CCD of Fig. 7 with the separation of the
metalization levels held fixed at k*, = 0.5 um and the potential of the center, lower-
level electrode taking the values —7, —10, —15, and —20 V.

level are at a potential of —5 and —7 V, and the upper level consists
of a single electrode, covering the whole device, which is at a potential
of —5V. In Fig. 7 we plot the channel potential for three different
separations of the levels of metalization, A~ = 0.1, 0.5, and 1 gm. Even
with A, = 0.1 um, there is still a very slight well in the gaps.

We next see what happens if we hold the separation of the levels of
metalization at k", = 0.5 ¢ and change the voltage, vo, on the middle
electrode in the lower level. In Fig. 8 we plot the resulting channel
potential, ¢*, as a function of z* for v, =—7, —10, —15, and —20 V.
From these graphs we see that a potential difference of 15 V between
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Fig. 9—The channel potential in the CCD of Fig. 7 with the separation of the
metalization levels held fixed at k*, = 0.1 pm and the potential of the center, lower-
level electrode taking the values —7 and —10 V.

neighboring electrodes on the lower level will insure the absence of
potential wells in the gaps.

In Fig. 9 we plot the channel potential for the same device but
with 2~ = 0.1 gm and for vy = —7 and —10 V. For this small separa-
tion of the levels of metalization, a 5-V potential difference between
neighboring electrodes eliminates potential wells in the gaps.

In Figs. 10 and 11 we show some effects of gap width. We consider
first a buried channel CCD with double-level metalization. The p-layer
is 5 um thick (A4 — k] = 5 um), the oxide layer between the first level
of electrodes and the p-layer is 0.1 um thick (A} = 0.1 uym), and the
layer between the two levels of electrodes is 0.5 um (hL; = 0.5 pm).
The upper level of electrodes consists of a single electrode at a potential
of —5 V. The lower level consists of electrodes 10 um wide and, as
shown in Fig. 10, they are alternatively at potentials of —5 and —7 V.
Curves of the channel potentials are plotted for three different gap
widths between plates: 5, 1, and 0 gm. (The 0-gap curve was calculated
by the methods of I.) The z* scale for the three curves are different, but
are chosen so the centers of the gaps coincide. With 5-um-wide gaps,
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Fig. 10—The channel potential in the CCD of Fig. 7 with the separation of the
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there are large potential wells, as we saw in Figs. 7 and 8. However, by
reducing the gap width to 1 pm, the potential wells are essentially
eliminated. The curve for zero electrode separation is included to show
that it is a good approximation to the channel potential in cases of
small electrode separation.

Finally, in Fig. 11, we plot the potential along the oxide-semicon-
ductor interface (y* = h}) for two surface CCD’s. In each case, the
oxide layer is 0.1 um thick (hi = 0.1 ym) and the region y* <0 is
assumed to be filled with SiO,. Also, in both cases, the electrodes are
10 um wide and are held at alternate potentials of —5 and =7 V. In
one case the gap between electrodes is 1 um, while in the other case
there are no gaps between electrodes. (The zero gap curve was calcu-
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Fig. 11—The potential ¢*(z* h¥) plotted as a function of z* for a surface CCD
with single-level metalization; k¥ = 0.1 um; 10-um-wide electrodes held at —5 and
—7V; and with gaps between electrodes of 1 and 0 uym.

lated by the method of I.) Again the x* scales differ, but the centers of
the gaps coincide. Except in the region between the plates, the two
curves coincide closely.

V. COMMENTS ON ACCURACY AND COST

We considered in some detail in I how well the solutions of the
linearized equations (21) to (25) approximate the solutions of the
nonlinear equations (7) to (10). It was shown there and in Ref. 4 that
as long as Onziusc[\h(x, hi) =—160, and |¢u(z, ha) + 1| < 10,0 =2 = L,

[|¢¥s(x, hs) + 1| < 10 for surface devices] then the solution of the
linearized problem approximates the solution of the nonlinear problem
to within several percent in the p-layer for buried channel devices
(near the oxide-semiconductor interface for surface devices). In addi-
tion, we are interested in examining the accuracy of the approximate
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solutions of the linearized equations. As we stated in Section IIT (and
prove in Appendix B), the difference between the exact solution and
the approximate solution, &*(z*, y*) = ¢*(x* y*) — ¢**(@*, v*), is
bounded everywhere by its maximum value on the electrodes.

As typical examples, consider the curves in Figs. 10 and 11. For
all three curves in Fig. 10, we found that y¥.(z, k1) <—345 and
IWa(x, ha) + 1| < 2.75 for 0 < = £ L. For the two curves of Fig. 11,
we found that ¢1(x, h1) < —186and |y¢s(z, he) + 1| = 1for0 =2z = L.
Furthermore, for the curves of Fig. 10, a search of the electrodes showed
that, for 5-um gaps between electrodes, max |8*(z*, y*)| < 0.29 V
and, for 1-um gaps, max |6*(a*, y*)| = 0.18 V. (The no-gaps curve was
calculated by the methods of I.) These correspond to maximum errors
of the channel potential of 1.3 and 0.83 percent respectively. For the
curve for the surface CCD with 1-um gaps between the electrodes a
search of the electrodes showed that max |6*(z*, y*)| < 0.4 V. (The
no-gaps curve was again calculated by the methods of I.) This corre-
sponds to a maximum percentage error of 0.86 percent.

For the curves of the buried channel CCD of Fig. 10, we have
undoubtedly overestimated the error in the channel for the following
reasons. It can be shown that the error in each coeflicient a, and b,
appearing in (34) can be expressed as an integral over the electrodes of
the error 8(z, i) times a weight function. The sign of 5(x, y) oscillates
on the electrodes, and so one would expect the error in the lower-order
coefficients to be quite small. Furthermore, an examination of (34) to
(38) and (40) shows that, for the parameters involved, only the first
ten terms in (40) contribute significantly to the channel potential.

To present some idea of the cost of running these programs, the
calculation of the solution for the case of 5-um gaps in the curves of
Fig. 10 took 253 seconds and used 40 K of core, the case of 1-um gaps
took 258 seconds and 40 K of core. Calculation of the solution for the
1-um gap case of Fig. 11 took 263 seconds and used 40 K of core. By
comparison, the two corresponding no-gap solutions, obtained by the
methods of I, took 16 seconds and 32 seconds, respectively, and both
solutions required 40 K of core.
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APPENDIX A

This appendix lists the coefficients of the Fourler series of the
various splines used in approximating the charge density on the elec-
trodes. We begin by defining the function

A

u(x, h) = (1 - %)' pErsh (69)

L.

1A

0, h=z

IIA

Outside the interval 0 = z = L, this function is defined by periodicity,
u(z, h) = u(z + L, h). The Fourier coefficients of u(x, h) are

a,(h) = c,[u] = mz)\—z (1 — cos \uh),
9 " (70)
b.(h) = s.[u] = TIE (Axh — sin A,h),

where the notation c¢,[%] and s,[u] is defined in (58), A, = 2nx/L,
andn =0,1, 2, ---, Note that

h

ag(h) = i bo(h) = 0. (71)
The triangular splines can all be expressed in terms of u(z, k), and
their Fourier coefficients are simple linear functions of the coefficients

a,(h) and b,(h) defined in eq. (70). Thus (see Fig. 4a):

pn(:l'-, h’) = u(ﬂ"r h) + 'H(L - h): (72)
and forn =0,1,2, ---,
ealpo] = 2au(h),  su[pa] = 0. (73)

Similarly (see Figs. 4b and 4c¢), we have the end splines
pe(x; 20, h) = ulx — o, ), pe(; 20, h) = u(xe — x, h), (74)
and forn =0, 1, 2, ---

ex[pe] = (cos huxo)an(h) — (sin A,x0)b.(h),

s2[pe] = (sin Aazo)an(h) + (cos h.zo)ba(R), (75)

and
ca[Pr] = (cos Mazo)an(h) + (sin Anzo)ba(h),

$.[D,] = (sin Anzo)an(h) — (cos A,xe)ba(h). (76)
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Finally (see Fig. 4f),
t(z; 2o, hay he) = u(zo — x, ha) + w(x — o, he), = 7 xo(mod L)

=1, z = ze(mod L) (77)
and
ealt] = 08 MaZol@n(hs) + an(ho)} + sin MuZo{ba(h) — ba(ha)},
8.[1] = sin MuZo{@n(hy) + @n(ha)} — €08 MaZo{bn(h1) — ba(he)}.

The coefficients of the Fourier series of the singular edge splines were
calculated as follows. We define (see Figs. 4d and 4e)

=(I—ﬂ:u)_é—hﬁ&, mu<x§$u+h,
s(x; x0, h) = (79)

=0, 0=z=m, wt+h<z=L

(78)

and
s,(x; xo, ) = 84(2x0 — ;5 o, R). (80)
Then after an integration by parts
c'n[st:l =
4 sin An(zo + h) — sin A.xo
= — 1 —
7 [h cos Ax(zo + h) TWY
zo-+h
e f (@ — zo)} sin )\,,zdx] 1)
S,.,[S;] =

cos An(xo + h) — cos Ao
2\ hi

w1l

[h* sin An(zo + h) +
zo+h
— An f (z — o)t cos ?\nwdz].
Ty

The integrals on the right of (81) were evaluated by quadratures using
Filon’s method.! Similarly,

enlsr] =
4 sin ApZo — sin An(zo — h)
= — é — —
7 [h €08 Aq(To — h) YW
— f (2o — )} sin )\nxd:n] . (82)
zog—h
Sp[8,] = ’

C0S Ao — €OS An(To — h)
2Anh?

[h* sin An(zo — 1) +

IS

+ An fzo (xo — x)* cos )\,.:t:dx:l.

0—h
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APPENDIX B

We assume that a solution of equations (21) to (25) satisfying
boundary and interface conditions (11) or (12) and (13) to (16), (18),
(26), and (27) exists and is bounded. As before, we denote this solution
by ¥(z, y), we denote our approximate solution by ¢4(z, y), and we
define

£, y) = ¥(z,y) — ¥°(z, v). (83)

By Yo, ¥, and £,, (0 < « < 4), we mean ¢, ¥, and £ restricted to the
various subdomains.

From their construction, the approximate solutions satisfy the same
equations and boundary and interface conditions as the exact solution,
except they do not assume the correct values on the electrodes.
Consequently

Via(z,y) =0, (0 =a=3), V%r,y) — &z,y) =0. (84)

Also Eq(z, y) satisfies either boundary condition (11) in the case of
single-level metalization or

fo(z, —h_1) =0 (85)

in the case of double-level metalization. In addition, £(z, 0) = &i(x, 0),
0 < z < L, and ¢.(x, y) satisfies (14) with p, = 0, (15) with Q(z) = 0,
(16), (18), (26), and (27).

We now outline a proof that if M = sup | £o(z, 0) |, where E denotes

the electrodes, then | £(z, ¥)| = M for all (z, y). The plan of the proof
is to show that £ (z, ¥) is bounded both above and below by its maxi-
mum and minimum on (0 < z £ L, y = 0); that £.(z, y) is bounded
above and below by its maximum and minimum on either (0 £ 2z £ L,
Yy =hey) or (0=z=L, y=h), (@=1, 2, 3), where we define
ho = 0; and that £4(z, y) is bounded above and below by its maximum
and minimum on (0 £ » £ L, ¥y = hs). Then we show that the global
maximum and minimum must occur on the electrodes.

First consider &(z, ¥) in the case of single-level metalization. Then
£o(x, y) is harmonic in the strip 8o = (0 £ 2 £ L, —» < y £ 0), and,
by the Phragmen-Lindeldf theorem [Ref. 15, corollary to theorem 19,
Chapter 2, with w(z, y, = 1 — y], £o(z, y) is bounded in S,, both above
and below, by its values on thelines (z =0, —2 <y =0),y =z = L,
y=20), and (2 =L, —oc<y =<0). Let mo =usi?£r. £o(z, 0) and

M, = sup &z, 0). [Note that since £(z, 0) is continuous, there exist
0<z<L

points 0 < &m, Ty < L such that my = f(xm, 0), Mo = &(za, 0).]
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Further, we must have

Eo(z, y) = 360 + )f:l (B €OS An + vn 8iD Ap2) ey, (86)

and hence
li 0,y) = i Ly =280=2 (M e, 0de (87
yiTnEu(;y—yiTmen(;y ) O_L_/;,Eoz’) . (87)

From (87) we can conclude that
me £ lim £(0, y) = lim &(L, y) < M. (88)
y—=>—ux0

oot
Now if M, is not the maximum value of £(z, y), from what we have
just shown, and from the periodicity of £(z, y) in z, this maximum
value must be assumed at two points (0, yo) and (L, ye), with
— w <yy < 0. Further, the outward directed normal derivative at
these points must be positive (Ref. 15, theorem 8, Chapter 2); that is,
— (8k0/32)(0, 10) > 0, (8&0/ ) (L, yo) > 0. However, from periodicity,
(3%0/02)(0, yo) = (3%0/8x)(L, yo), which is a contradiction. Hence M,
is the maximum value of £(z, ¥) in S,. The same reasoning applied to
— £o(z, y) shows that mg is the minimum value in So.

In the case of double-level metalization, the maximum principle for
harmonic functions (Ref. 15, theorem 2, Chapter 2), plus the boundary
condition £o(z, —h_;) = 0, implies that £(x, ) is bounded everywhere
in 0<z=<L) X (—ha=y=0), both above and below, by its
values on the sides (z =0, —h.1 <y =0), 0=z =1L, 0), and
(z = L, —h_y <y = 0). Then the same reasoning as in single-level
metalization shows that £e(z, %) achieves its maximum and minimum
on(0sz=L,y=0).

Essentially the same arguments used in the double-level metalization
case can be used to show that £.(z, ¥) (@ = 1, 2, 3) must achieve both
its maximum and minimum either on the line (0 < 2 < L, ¥ = ha-1)
or (0 £ 2 = L, y = ha), where we define hy = 0.

The Phragmen-Lindelof theorem can be applied to £(z, y) in
Si=(0 =<2 =L) X (hs <y <=) to show that £(z, y) is bounded
everywhere in S; both above and below by its values on (z =0,
hy <y <w), (0<x <L,y =hs),and(x =L, hs Sy <). Making
use of the boundary condition £(z, =) = 0, the same arguments used
in the case of single-level metalization for fo(z, y) show that £(z, y)
achieves its maximum and minimum values on (0 £ z £ L, y = hy).

We have shown that £(z, 4) must assume its maximum and minimum
values at points on the lines (0 < z < L,y = ha), 0 < a« = 3. Suppose
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that £(z, y) is a global maximum at the point P = (z, ha). Then clearly
Yo(z, ¥) and a2, y) take on their maximum values at P. Conse-
quently, their exterior normal derivatives at P must be positive (Ref.
15, theorem 8, Chapter 2), i.e., (¢a/3y) (P) > 0, — (8¥asr/3y)(P) > 0.
However, if P is not a point on an electrode, it follows from inter-
face conditions (14), (15) with Q(z) = 0, (16), or (26) that either
1(0Wa/3Y)(P) = (Was/0y(P) or  (8¥a/y)(P) = (8Yar1/IY)(P),
which is a contradiction. Consequently £(z, y) achieves its maximum
M, on an electrode. The same argument applied to —£(z, y) shows
that £(z, y) also achieves its minimum m, on an electrode. If we set
M = max(|m,|, |M,|), then we have shown that [&(z, y)| < M.
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