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We calculate the probability of error in detecting digital signals trans-
ferred through a charge transfer device in the presence of incomplete charge
transfer, random noise in the device, and detection uncertainty in the
detector. The coefficient of incomplete charge transfer is assumed to be
tndependent of charge-packet size, and both the device noise and detector
noise are assumed to be Gaussian. Error probabilities for two-level and
four-level codes are computed for the cases of both simple static and
oplimum dynamic detection. For rms detection voltage level fluctuations
Va of the order of tenths of volts (much larger than the random noise
Auctuations in the device), a very rapid increase in error probability
(from =~10-0 to ~210-5) 4s found to oceur for a very small (20 percent)
change in V4. This indicates that detection level fluctuations will have
to be held down to a few hundred mallivolts at most. T'o achieve equal error
rates with an error probability of about 10—, Vg for the detection of
four-level codes will have to be about 3.5 times smaller than for two-level
codes. Comparison of error probabilities under static and dynamic
detection shows that in CTD’s improved detection has a greater polential
for reducing error rates than improved coding.

I. INTRODUCTION

As a packet of charge is transferred through a charge transfer
device (CTD), the size of the packet is altered owing to effects of
incomplete transfer'? and noise.*® At the output the size of each
packet is measured and, depending on its size, a decision is made as
to the initial size of the packet. Usually the decision will be correct.
However, occasionally the cumulative effects of incomplete transfer
and noise will result in a sufficiently distorted charge packet that an
error will be made. It is the purpose of this paper to calculate the
probability of making such a detection error. When this probability is
multiplied by the rate of detection (the clock frequency), we obtain
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the error rate for a single device. Multiplying by the number of devices
of interest in the storage unit or in the processing unit, we obtain the
total error rate, a very useful quantity for evaluating digital systems.
(By “detection,” we include regeneration; by a ‘“‘single device,” we
mean a single unregenerated line of transfer elements.)

To caleulate the probability of detection error we assume that the
effect of incomplete transfer on the signal can be treated in terms of
the usual small signal analysis.’®"" (The coefficient of incomplete
charge transfer, @, is assumed to be constant, independent of the size
of the signal.) Charge gain or loss because of leakage current is assumed
to be sufficiently small that it can be ignored. The random noise which
introduces fluctuations into the size of the charge packets is assumed
to be Gaussian.® This is reasonable by the law of large numbers, since
the size of a charge packet is typically 10° elementary charges. In the
numerical calculations, only shot noise at the input and thermal noise
induced during charge transfer are considered, as these are the most
important sources of noise in good devices.® In addition, the detection
levels are assumed to fluctuate with Gaussian statistics. This simulates
(¢) the fluctuation in detection levels from device to device, (¢%) the
uncertainty in the location of the boundary between two decision
regions, (442) the uncertainty introduced from nonideal regeneration,
and (iv) the fluctuations induced by the coupling of the clock lines to
the output. In a future paper, we plan to treat several of these effects
more carefully.

For our numerical work we take the position that probabilities of
error of about 10~ are of greatest interest. Values much higher would
necessitate more-often-than-daily correction of a multimegabit store.
Attention is focused on how large a fluctuation can be tolerated in the
detection levels, so that the probability of error is in this region for the
cases of two-level and four-level digital codes. In addition, the error
probability is also examined as a funetion of the number of charge
transfers. Similar calculations are made for the theoretically minimum
possible error rate, which can be obtained using a dynamic detection
scheme.!? Comparison of this absolutely minimum error probability
with the error probability obtained using conventional (static) detec-
tion suggests that a substantial improvement in error rate is possible
using dynamic rather than static detection levels.”

II. PROBABILITY OF ERROR

In previous work,'%:? it has been shown that in the absence of noise,
after (n + 1) transfers, each characterized by a coefficient of in-
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complete transfer o, a charge packet of some initial size Q; has at the
output a size Q(7) given by

QW) = (1 — ™1Q; + Qs M
where
1 (N +n
@5 = (1 —arn & (Y E gy, @)

and where @y is the initial size of the Nth packet preceding Q;. In the
presence of noise, the probability P(Q — @Q(z))dQ that the observed
size  of the packet is Q(z) to within d@ is given by

PLQ — Q(1)1dQ = exp{ — [Q — Q(1)]*/(24Q")}/(2rAQ*)¥Q, (3)

where AQ? is the mean-square fluctuation in the size of the charge
packet at the output resulting from noise (see Appendix A). If the
range of Q over which the packet will be detected as @, is given by
Qi < Q < @i, then P, the probability of error in detecting a specific
Q(7) packet, is

o= [* Plo-eole+ [, o -ewle. @

To determine error probability, P; must be averaged over all possible
Q(z) for each z.

The quantities Q; and @;t can be readily determined by rewriting
(1) and (2) in the form

QO = @+ @ — QU — 0™ + Qi 0
where
%= - & (V") - 0. (©)

In (5) and (6), @ is the (time) average size of a charge packet. (For
example, if two packet sizes, @, and Q,, are used equally frequently
in a two-level digital code, then § = (Q; + Q,)/2.) If now we average
eq. (8) over all possible preceding sequences of packets, then we obtain
for {(Q(z)), the average size of Q(7),

QG) =@+ (Qi— Q1 — o), @)

since the average Qp of Qp is zero. (Note that Qy = Q by definition.)
The deviation of Q(z) from (Q(z)) is simply @, independent of <.
[Q(?) — (Q(?)) = Qp.] By extending the results of a previous treat-
ment!? of two-level coding to the multilevel coding considered here, it
follows at once (see Appendix B) that the theoretically minimum
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possible error rates will be achieved for @;” and @;* given by

and ) .

(Note: Q3, = Q. For an M level system, 1 =0, 1, ---, M — 1.
For completeness we define Q(—1) = — @ and Q(M) = + «.) These
results apply even if the coding levels are not equally spaced. However,
it should be obvious that if each size packet is used equally frequently,
then equally spaced levels will result in the least probability of error.

In previous work!?> we have referred to the detection scheme which
utilizes detection levels determined by @z (that is, by the preceding
signal) as a dynamic detection scheme. In other words, by subtracting
out the incompletely transferred portion from the preceding signal
prior to each detection (achievable under noiseless conditions), we
can select detection regions which null out the seatter in the signal-
charge size induced by incomplete transfer. Since random noise cannot
be nulled out, a lower limit is placed on the error probability.

Using (8) and (9), we now compute the minimum error probability
Pin of a single detection and average this over all possible preceding
signals to obtain the minimum error probability (Pmin). Let p; be the
relative average frequency with which charge packets of initial size Q;
are used in the code. Then using (4) we may write

M-1
Pow = 2 piPs
=0

3 =l

M-1

Q7 —QG) w
- Sw([0 M r@at [ P@d) a0
If we note that [Q; — Q)] = — [{Q(2)) — (@(¢ — 1)})]/2 and that
[QF — Q)] = + [(Q( + 1)) — (Q(2))]/2, then Py, becomes

M-1 -[QG)) —(@GE-1))1/2
Paw= 3 0:( [ P@dQ

+o0
o P@dQ) (D)
+LQG+1)) —(Q())1/2
As mentioned in the preceding paragraph, P, is independent of the
foregoing charge packets. Thus (Pmin) = Pmin. AS (Pmin) 18 the
minimal, or optimal, error probability, we will use it as a touchstone
to compare other detection schemes.
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Complete dynamic detection as discussed above is one extreme in
detection. [Boonstra and Sangster* have operated a CTD utilizing
a partial lowest order (in na) correction.] The other extreme in detec-
tion is to ignore completely the sequence of charge packets preceding
the packet of interest and to attempt to detect without compensating
for the accumulated background charge. Since the average of Qj is
0, one would then choose for @; and @;" the following

Qr = QM) + Q@ —1))1/2 (12)
Qi = [(Q + 1)) + (Q())1/2 (13)

In this case, the error probability P associated with a specific detection
event becomes

M-1 —L@UN) — QG —1))1/2—Qp
P=x o/ P@Q

) + P(Q)dQ)- (14)

+HQGHD Y —(Q6))/2 - Qg

and

To calculate (P), the average error probability, we must average (14)
over all possible preceding signal sequences. Unlike Puni,, P is a fune-
tion of the preceding sequence through @z. In the remainder of this
paper we shall focus attention on calculating (P).

III. NUMERICAL METHOD

Let us assume (7) that we are using a multilevel (M-level) code in
which each size of charge packet is used equally frequently (so that
pi = 1/M), and (47) that the levels of charge are equally spaced.
Let St = [Q(@ + 1) — @(4)]/2. Then from (14), it follows that

OM — 2 [-I8h- (- +Qp]
M fim

(P) = P(Q)dQ. (13)
[Note: If » and « are such that |Q5| > S* for some sequences of
charge packets, then errors are made with this deteetion scheme even
in the absence of noise. Thus using the detection scheme characterized
by the @ and @;" given by eqgs. (12) and (13), it is essential that n
and o be such that |Qp| < S* for all possible sequences of packets.
Thus, (S* + @z) > 0, and (P) < 1.]

For numerical calculations, it is expedient to use (3) to rewrite
(15) as

—(8/N (1 ta)r*1(142)
# =2(1-5) [ e, )

T
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where S/N, the signal-power-to-noise-power ratio, is given by

. s .

S/N — {I:Q("" + 1) , Q(%)]/Z} , (17)

AQ
and where Z is given by
Ny=1\ N

In (18) each Jy[ = (Qv — @)/S*] is a random variable, which for M
even can take on the values 41, 43, 45, ---, &= (M — 1) with equal
probability, and for M odd is 0, &2, - - -, 4+ (M — 1) again with equal

probability. To evaluate (16) in this form it is now necessary to average
the integral in (16) over all possible sequences J1, J3, J3, - - -.

In this paper, we focus attention on that range of n and « which
will probably be of greatest device interest—na << 1. In this case,
only the first few terms in 2 will contribute significantly to its total
value. By ‘significantly,”” we mean, of course, that whether
Jy=+M—1) or Jy = — (M — 1) for fixed Jy, -+, Jy—1 and
0 =Jy41 = Jyp2 = -+, makes an acceptably small (say, 0.1%)
difference in the values of the integral in (16). Thus, we can proceed
as follows. Evaluate the integral in (16) for J, equal to each of its
possible values and 0 =J, = J; = ---, sum, divide by M, and
multiply by 2(1 — 1/M). This gives a first estimate of (P) which we
call (P);. Now again evaluate the integral in (16) for all possible pairs
of Jy, Jy with 0 = J3 = J4 = -+, sum, divide by M* and multiply
by 2(1 — 1/M). This gives a second estimate of (P) which we call
(P)s. In general, (P)s > (P);. If ((P)s — {P)1)/(P1) is within the
desired accuracy, then we may stop here. If {P), differs significantly
from (P}, we calculate (P); in the obvious way and compare to
(P),, ete. For the numerical results presented in the next section,
{P); is as far as it is necessary to calculate to obtain 0.1 percent
accuracy. For na < 1, convergence is guaranteed.

Often knowledge of the error probability to within a factor of 2 is
adequate for design purposes. Thus, computing can be greatly facili-
tated if use is made of the following result. If A > 1, then

D/2 < I{(A) < D, (19)
where
—A4
1(4) = f o2z (20)

and
D = exp(— A%2/2)/A. (21)



ERROR RATES OF DIGITAL SIGNALS IN CTD’S 1801

In the following section, our results for error probability are somewhat
high, as D has been used in place of I(A) in evaluating (16).

IV. NUMERICAL RESULTS

We have calculated both the minimum error probability (Ppnin)
[eq. (11)] using a dynamic detection scheme [egs. (8) and (9)] and
the error probability (P) [eq. (15)] using a static detection scheme
[egs. (12) and (13)], both for two-level and four-level coding. In all
cases, we have taken a = 1073, storage capacitance C = 0.1 pF,
detection capacitance Cpz = 0.1 pF (see Appendix A), Q, = C- (4
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Fig. 1—Error probability as a function of the root-mean-square fluctuation in the
detection level voltage for static and dynamic detection schemes of two-level and four-
level coding in a 64-bit device.
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volts), and Q- = C-(10 volts). All calculations were carried to
0.1 percent.

In Tig. 1 we have plotted error probability (P) (static detection)
and minimum error probability (Pmix) (dynamic detection) for two-
level and four-level coding as a function of the root-mean-square
detection-voltage fluctuation Vi For the two-level results n = 128,
and for the four-level results n = 64. Both these cases correspond to a
64-bit device. It is quite clear from Fig. 1 that to achieve an error
probability of about 10—, for two-level coding V4 < 0.345 V, whereas
for four-level coding ¥V < 0.105 V. This means that, to be able to use
four-level coding, we must have significantly better control of detection
voltage fluctuation than is necessary with two-level coding.

We might imagine that a trade-off could exist which would favor
four-level coding. For example, only one-half the number of transfer
stages are needed with four levels as compared with two levels. Taking
« inversely proportional'? to C, for four levels we can double C and
thereby cut « in half relative to C and a for two levels. As « is reduced,
the role of incomplete transfer is reduced as well. However, for V,
= 0.35 V, detection noise dominates the random noise. Thus S/N is
practically unchanged as C is varied [see eq. (24) in Appendix AJ.
In addition, S/N for four levels is so small (= 8) that (P) goes only
from 6.8-10-% for o = 10~ to 4.3-107% for @ = 0.5-1072%. Of course, for
smaller ¥V, the change would be more drastic, as S/N would be larger.
However, for smaller ¥4, two-level operation is enhanced as well.

In Fig. 2 we have plotted the error probability of a two-level code
as a function of the number of transfers for three different detection-
level fluctuations for both static and dynamic detection schemes. In
Fig. 3 we have plotted the same quantities for four-level coding and
lower detection-level fluctuations. The striking superiority of dynamic
detection over static detection is evident. (The dynamic curves are
not actually flat; they increase somewhat in the region shown and
much more rapidly for no > 1.)

V. CONCLUBIONS

In this paper we have derived expressions for the probability of
error in detecting the size of charge packets carrying digital informa-
tion in charge transfer devices. Effects of both random noise in the
transfer device and detection noise at the detector were included.
Error probabilities were computed and compared for common, static
detection and optimum, dynamic detection of two types of coding
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Fig. 2—Error probability as a function of the number of transfers n for static
and dynamic detection of two-level coding for three values of root-mean-square
detection voltage fluctuation (0.30, 0.35, and 0.40 V), For given =, the corresponding
device is an n/2-bit device.
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Fig. 3—Error probability as a function of the number of transfers n for static
and dynamic detection of four-level coding for three values of root-mean-square
detection voltage fluctuation (0.10, 0.15, and 0.20 V). For given n, the corresponding
device is an n-bit device.

schemes. In the region of primary interest here (detection noise much
larger than device noise), it was found that the error probability is a
very sensitive function of detection noise, varying 20 orders of magni-
tude for a =20 percent change in the detection noise level. Also
significant was the finding that, to achieve equivalent operational
performance, the rms detection noise level in a device using a four-level
code must be 3.5 times smaller than that in a device using a two-level
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code. Thus, in designing circuits for digital signal detection, it will be
necessary to focus primary attention on the detection level noise. This
must be held to a few hundred millivolts at most. It was also shown
how our dynamic detection scheme could maintain a very low error
probability as the number of transfers, n, was greatly increased.
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APPENDIX A
Noise

In general, we can write the mean-square noise charge, AQ%, resulting
from random fluctuations in the forms?

AQY = AQRpw(l — a)*" ) + AQEHsp(n + 1)
+ 2AQ%Hrp(n + 1), (22)

where AQf,. is the input noise contribution, AQ% is the storage
process noise acquired by a single packet during a single clock period,
AQ%p is the transfer process noise acquired by a single packet during
a single charge transfer, (1 — «)?("t0 is the (square of the) attenuation
from input to output, Hsp(n) is the compounding factor for storage
process noise, and Hrp(n) is the compounding factor for transfer
process noise. A derivation of eq. (22) and a discussion of the various
terms therein are treated elsewhere.5® For our purposes (na << 1), it
suffices to let Hsp(n + 1) = Hrp(n + 1) = n + 1. (For na < 1, in-
complete transfer of the noise can be ignored relative to the noise
itself. Thus after (n 4 1) transfers, the accumulated noise is just
(n + 1) times the noise resulting from a single transfer.) We shall
assume that AQ%, << AQ%p and set AQ%. = 0. For shot noise at the
input, AQf,w = ¢Q, where @ is the mean total signal charge
(@ir-1 — Qo). For thermal noise, AQ}» = 2kTC. As it turns out, the
exact details of AQ% are not essential because these random effects
turn out to be much smaller than the detection level fluctuations
discussed below. However, if these detection level fluctuations can be
reduced, then eq. (22) is quite important, especially in the region of
na = 1 where devices can operate using dynamie detection.

There are two equivalent ways in which detection level fluctuations
can be included. The more systematic way is to use AQ% in place of
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AQ® in egs. (3) and (4) and then average over Qi and Q;" in (4) with
the appropriate distribution for the detection level fluctuations. In
this paper, we have restricted attention to a Gaussian distribution for
these fluctuations. As the noise is also Gaussian, it follows from a
straightforward integration that we can write eq. (4) in the form
given in the text with

AQ* = AQ + AQG, (23)

where AQ? is the mean-square uncertainty of the detection level.
[The second way is just to write (23) a priort.] Since some detection
error will result from nonideal regeneration, once this can be more
accurately simulated, a more careful analysis of detection uncertainty
will be necessary.

The uncertainty AQZ is generated by an uncertainty Vi in the
detection voltage. Thus,

AQ; = CheVi, (24)

where Cpg is the capacitance of the detector. In our calculations, we
have assumed that Cpz = C, where C is the elemental storage capaci-
tance. If now AQ2> AQ%, then S/N &2 V2C*/ViC* = V¥/V} in-
dependent of the capacitance. (Here V represents the signal voltage.)
Thus, increasing C does not improve the signal-to-noise ratio (8/N)
when detection noise exceeds random noise.

APPENDIX B
Minimum Error Probability

It is a very general result, rederived in a previous work," that if
I(A) is defined by

I(4) = L T ety (25)

o0

and if the probability that A < 0is 0, then
(I(A4)) z I({4)). (26)
Thus any detection scheme for which

-

Q ) Q7 QW ))
[ Pra-ewxe= [* T P@de = P@QaQ (21)

for each 7 (and the corresponding equalities for [g; - - -dQ) will result
in the minima overall error probability. The choice given in eqgs. (8)
and (9) does this, as it makes Q@ — Q(¢) independent of the preceding
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sequence of charge packets over which the average in (26) and (27)
is taken.

APPENDIX C
Realizability of Dynamic Detection Scheme

Before considering the realizability of the scheme of dynamic
detection discussed in the text, a point of clarification is necessary.
One reason for developing dynamic detection here is to see just how
low we can, in principle, make the error rate. This we have done
assuming Gaussian noise, linear incomplete transfer, and complete
knowledge of the preceding signal. If we relax the last assumption,
we must take into account the fact that our detection of the preceding
signal may not be perfect and, therefore, a higher error rate may in
fact be the minimal rate possible physically. This problem is more
difficult and will not be attempted here. What is important to dis-
tinguish, however, is the difference between ‘“‘perfect” dynamic
detection, which provides a minimum error rate below which one
cannot hope to achieve, and the actual error rate when employing
dynamic detection, which as we shall indicate below is not appreciably
larger than the minimum rate under operating conditions of interest.
With this in mind, let us proeceed to a consideration of realizability.

In the absence of noise, the dynamic detection scheme is clearly
realizable in principle. Knowledge of the preceding signal permits
determining the background charge level Qp (resulting from in-
complete transfer) operationally using eq. (2). This permits placing
the detection levels so that the size of the charge packet to be detected
will lie midway between these detection levels. Under noiseless condi-
tions, this permits error-free detection which, in turn, provides the
signal history needed to determine @y for the next packet detection.

In the presence of noise, one may ask whether the dynamic detection
scheme envisioned in Section II is truly realizable. If, for example, an
error is made in detection, then the detection levels may be shifted
far enough away from optimum so that for the next packet the error
probability will be greatly increased. Fortunately, as the argument
below suggests, if the probability of making a second error immedi-
ately following the first is small compared to unity, then the optimum
(minimum) error probabilities presented in the text are only slightly
increased (on the order of percents rather than order of magnitude).

Consider a two-level code and the dynamic detection scheme in
which it is only necessary to adjust the detection levels for the first
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preceding signal [@Qrz = a(n + 1)Qi, Qi = size of first preceding
packet]. We desire the probability P.(¢) that the ith packet is detected
correctly. Clearly,

P.(i + 1) = Peo(i + 1]|0)Pc(3) + Peo(? + 1|9)P.(3), (28)

where P,(i) [= 1 — P.(z)] is the probability that the ith packet is
detected incorrectly, P..(i + 1|%) is the probability that the (¢ + 1)th
packet is correctly detected given that the ith was also, and Pe.(7 + 1 [2)
is the probability that the (i 4+ 1)th packet is correctly detected given
that the ith was detected incorrectly. Noting that P.(7 + 1)
= P.(i) = P., we can solve (28) for P,, obtaining

P = [1 4 Pe(i + 1]2)/Pee(i + 1[9) 17, (29)

where P, = 1 — P... The error probability P.(= 1 — P.) which we
seek is, therefore, given by

Pa= [1 +Pw(z+llz)/Pec(i_l"lh)]_l (30)

~ Pec _ Pcc

~P. 1— P @)
Equation (31) follows if P, < P, as will be the case for P, <1,
which is the region of greatest interest. If now P, < 0.1, then P, will
differ from P,, [calculated in the text, eq. (11), as (Pmin)] by less
than 10 percent, an insignificant change. Although we have not
investigated P., in detail, it is clear that P, will be closer in size to
(P) (eq. 15) corresponding to static detection rather than to (Puin).
However, what is important is that P. can be as large as one-half
without increasing (Pmin) by more than a factor of 2. Thus, the (Pumin)
calculated here are not expected to be overly optimistic so long as the
detection level need only be corrected on the basis of just the first
preceding signal. For the present, this is the situation of primary
interest. It should be kept in mind, however, that it is the random
noise and not the incomplete transfer which complicates dynamic
detection. With sufficiently low noise, we can in principle greatly
reduce incomplete-transfer distortion without appreciable propagation
of detection errors even when the detection level must be corrected
on the basis of many preceding signals.
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