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Because of ils theoretical and practical inlerest, the stability problem
in pulse-width-modulated feedback systems has received an enormous
amount of attention. Much of the reported literature deals with highly
approximate methods, and the exact approaches, based on Lyapunov’s
direct method or functional analysis, are quile restrictive and do not
easily lend themselves to systematic compensation or design.

In this paper, a quite general PWM 1is considered, and a frequency
domain stability criterion is presenled, yielding a geomelric interpretalion
in the Popov plane.

I. INTRODUCTION

The stability of pulse-width-modulated control systems has been
an active area of research since the early 1960’s. A variety of graphical
and analytical approaches to the problem have appeared in the
literature.!~* Aside from the approximate methods, the main contri-
bution of the early 1960’s to exact stability criteria was in the applica-
tion of Lyapunov’s direct method.® ¢ As is often the case, this approach
yields conservative results and does not easily lend itself to system
compensation. Input-output stability via functional analytic tech-
niques was reported in Skoog” and Skoog and Blankenship,® where
conditions for the L, boundedness and continuity of the system opera-
tor are derived for PWM systems (considered there to belong to a
larger class of pulse-modulated systems, i.e., that class of modulators
for which the input is sampled). One drawback to the above type of
criteria is the lack of a simple geometrie interpretation; e.g., a Popov-
type condition. In Skoog? a circle eriterion is derived for PW M systems,
operating in the “quasi-linear’” mode ; that is, where the modulator does
not saturate. In its exact form, however, the above condition is rather
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difficult to apply (the radius of the circle is in the form of an infinite
sum, involving an arbitrary parameter).

In all the previous cases, the pulse-width modulator considered is
the periodic sampling type, where the input to the modulator is
sampled and the polarity and width of the output pulse is determined
from that sample. This paper will consider a similar PWM which is a
generalization (GPWM) of the so-called natural sampling type.®''*
In this scheme, the input is compared to a repetitive reference wave-
form, and pulses are emitted in accordance with some specified relation
between the two signals.

It is the purpose of this paper to develop a geometric stability
criterion for the GPWM system. The main result of the paper is a
frequency domain condition for the stability of a feedback system
containing a GPWM (described below) and a linear plant that may
be either lumped or distributed. The condition, similar to a Popov
type, is interesting in that it allows a tradeoff between the slope of the
stability line and its intersection with the real axis of the Popov plane.

II. NOTATION
In this paper we are concerned with measurable functions of a real

variable defined on [0, = ). We consider the function spaces L,(p = 1),
where

Ly(p € [1,2)) = {:c(c): [ 120 <w]
and
L, = [.’E(t):&SS)S;lpI:L‘(ﬁ)l < m] .

The corresponding norms are defined by

|lz(t)|| Ls(p € [1, =)) = ( Lmlx(t) I"dt)”p

and
[z(®)||Ls = esmlp[x(t)l-

Also, we shall use the extensions® of these spaces, defined as:

Lo € 11, =) = [a0: [(lar@ldt <o, vT € [0, =)}
and
Lwe = {I(t);esszzs}]lple'(t)ll VT e [01 OO)],

*In a very recent paper, V. M. Kuntsevich! has treated this type of modulator
by the discrete version of Lyapunov’s direct method.
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where
X, t£T

Xr®) =19 t>T"

And finally stability will be interpreted to mean that, for all inputs
belonging to the spaces of interest, the composite system operator is a
bounded mapping of those spaces into themselves.

III. SYSTEM DESCRIPTION AND ASSUMPTIONS

Consider the feedback system of Fig. 1, where the output of the
GPWM is:

m(t) = % Meg[p(t — KTa) — p(t — KTa — 7x)]. (1)

The constant M is the pulse height, x(¢) is the unit step function,
and T, is the period of the modulator. Also ex 2 sgn [o(KTa)].
Furthermore, if we define:

wi(t) & [o(t) — exA(t — KT)[u(t — KTJ)
—ut—(K+1)Ty)], vKeIt, (2)

where A (the slope) is a positive constant, then

_ [min ((t = KTa): wx(t) = 0, C [KTqs (K+ 1)Ta)]) 3)
TK T, if we(t) # 0, vtE [KTs (K4 1)Ta)] "

The above relations are illustrated in Fig. 2.

From egs. (1) and (3) we see that the GPWM is a causal operator
mapping L. into itself. Furthermore, it is interesting to note that the
periodic PWM is derivable from the GPWM by inserting a sampler
(operating every Ty seconds) and a zero order hold before the modu-
lator, as shown in Fig. 3. Here the analog of eq. (3) would be

1o(KT 1
e 127 E kT, Jo(KTD] < AT
T, |e(KTa)| > ATq
ult) + o |7 "1 mi | LiNEAR PLANT cit)
R B

Fig. 1—GPWM feedback system.
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Fig. 2—Modulator definitions.

which is, indeed, the functional relation between the pulse width and
the sampled input of a periodic PWDM.

It is worth pointing out that various forms of the GPWM process
could exist. The modulator may be one-sided (ex = + 1, vK) as,
for example, in de power conditioning; it may emit multiple pulses
period; or the reference ramp may be replaced by a symmetrical
triangle or other similar waveforms. The results of this paper may be
extended to any of these variations.

With the foregoing, the following assumptions are also made (see

PRWM
- :
I T —=
d r m
ult) + ot | o)(o——- oM J LIL] . cft)
| |y | B
b —

Fig. 3—Derivation of PPWM.
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Fig. 1):

Al. U(t) is absolutely continuous* on [0, =), and U(t), U(t)
& L1 L2, where U(#) includes an external input and the
zero input response of the linear plant.

A2, g(t), g(f) &€ L1 N L2; g(t) = 0, t < 0, where g(t) is the impulse
response of the linear subsystem.

Normally, in input-output stability analysis the solution of the

system is assumed to exist in the extended space under consideration.
However, the constraints of the modulator make this unnecessary.

Lemma 1: Under assumplions A1 and A2, ¢(t) € L. (p = 1, 2).

Proof: From eq. (1), for any finite time 7' &€ [0, «) the modulator
will produce a finite number of pulses. Thus m(t) € L,.(p > 1),
which implies by virtue of A2 that so does c¢(f). Hence «(f) € L,,
(p = 1, 2) by Al and the linearity of the L, spaces.

IV. STABILITY

The objective of this section is to develop a geometric stability
criterion for GPWM systems. Conditions for the system response to
belong to Ly(p = 1) will be derived, yielding a geometric criterion in
the Popov plane. The result will require that the linear subsystem
have a measurable impulse response, satisfying A2, and thus may
represent either a lumped or distributed plant. The following extension
of a result due to Euler*® will be useful in establishing the criterion.

Lemma 2: If z(t) is absolutely continuous on [0, T] for any T & [0, =),
then:

Zle@ro| s 7 [Me)]a
T
+5 [[1a01d + 301z + 2VT) (], @)

where N = [T/T,]; i.e., the largest integer <T /T4, and the derivative
£ () exists almost everywhere.

Proof: For K =0,1,2, ---, N — 1,
(E+1)Ta t K 1 d p X KT
fm,d (T—.g_ _5)'d“t|ﬂf(t)i t = 3[|=(KTd)|
1 [(E+DTd
+lz(K + DT 1= 7 [ 2| d
d JKT4

since both x(f) and (t/Ts — K — %) are absolutely continuous on the
interval.!® In the integrand on the left, we can replace K by [{/Ta]
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since, on the interval, ¢/Ta — [t/Ta] — % differs from ¢/Ts — K — 3
only on a set of measure zero. Now addition of the above for K = 0, 1,
2, ---, N — 1 and then the expression 3[ [2(0)| + |x(NT4)|] to both
sides yields:

NTd

L el = g [Tlawla+ [ @/T- w1 - b

d
212 |d + 32O + [2(NTa)| ]
Noting that:

NTd / ¢ t 1\ d 1 (N7
[ (T;_ [’E] —E)-Et|x{t)|dt§2ﬁ] |2(e) | dt

and that NT; =T, we see:

Ki()'x(KTd)l = Tid /;Tjrc(t)ldt + % /:}T|x'(¢)|dt
+3[12(0)] + |2(NTD)| ]
Q.E.D.

Along with the above result, the following observation concerning
the modulator will be of interest in what follows.

Lemma 3: Consider Fig. 1. If m(t) € L, for any p € [1, =), then it
belongs to Ly for all p € [1, = ].

Proof: Suppose m(t) € Ly, for some p & [1, »). Then
fm[m(t)F’dt = MF Zm: TR < ©
0 K=0
and, since M is a finite number, we see that, for any p,
[m@®lz, = M?» X 72 <=
K=0

and thus m(f) € L, for all p € [1, =] [of course, m(t) € L. by
virtue of (1)].

With the foregoing we are now in a position to state the main
result of this paper.

Theorem: Consider the GPW M feedback system of Fig. 1. Suppose there
exist two numbers, ¢ € R, g2 # 0, such that:

@ > glo®lln + 00Ol +19)]7T = 31 a0

(i) Re [(1 + jug)G(jw)] = gl vo € R+,
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where

G(jw) = fo “ gt)e=ietdt.
Then
C(t) € Ly(p = 1).

Remark: If U(t) € L, as well, then the system will be termed
LN L: N L, stable (bounded).

Proof: Consider Fig. 1. We note that condition (4) implies (see, for
example, Ref. 17) that:

fo ! [a(t) + qlzm (:)] m)dt + q fn (et

< -/;T:i(t)-m(t)dt, vT E [0, =), (5)

where 4(t) = u(f) + guu(f). Now from the defining relations of the
modulator (see also Fig. 2), the GPWM is an e-positive operator;®i.e.,

fr o) m(t)dt = 0%, wT C [0, =)
0
Thus:

17 T
- fu mA()dt + 1 ./; m () (t)dt

1A

Tﬁz(t)dt : Tnﬁ(t)dt l, (6)
| o [ [ woa

where Schwarz’s inequality has been used on the rhs of (5). Using

m@t) = 3 Melu(t — KTa) — u(t — KTy — 7x)] fort € [0, T)
K=0

2

N
— 2 e+ aM ¥ [|o(KTa+ rx)| — |e(KTa)|]
q2 K=0 K=0

N 1
< Mla)ln| 5, x| @
in which we have used

‘U(KT,1+TK) | |e(KTs + 7&)|
1 o(KT) - lo(KTa)| '

* Note on L» this is not true for the periodic PWM.
tIf the truncation time 7 should oceur during the Nth pulse, then, of course,
w=T— NT.:.
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Inequality (7) follows from the fact that o(t) is absolutely continuous,
which will be shown below.
Now in view of (2) and (3), 7x < |¢(KTa + 7x)|/A, and thus:

M\ X N )
w(ad +2) 5 v Mlaln [ 2 o]
q: ] K=o K=0
N
= oM ) |o(KTa)|. (8)
K=0
We observe that C(f) [and hence o(f) by Al, Section IIT] is ab-

solutely continuous, since it is the indefinite integral of a summable
(Lebesque) function. Therefore, Lemma 2 is applicable to ¢ (¢) and:

S |o(KTa)| éif\a(z)ut
K=0 0
" 6)1dt + 3L1o)] + (VT[]

f"'(f ] + 3la )] )at
[ (F]cl + 310! it + suplo)]. )

[ ST

+

T

Furthermore,
[T1cwlat s Mgz E, 7
0 K =0
and (10)
T, N
[T1ewld < MTIgO12 + 1901 X, 7

Using (9) and (10) in (8) then implies:
= b e z.]?
wzl (£, =) - g2

K =0

UCHNERCILES [[1aw)a) o
+ @M suplo(t)] + LALIOIE

lIA

A

(- w31 + 5] )
+ M sup|a(t)|* + M|a®lz _
120 iz ,

*It is a simple matter to show that, under the hypotheses of the theorem, the
system is L, stable and, since u () € Lm, supla(t)! <o,
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where

ﬂir(h Mql

= qd — 890 2 — L [Ng®)] 1z, + {g(mm%-

N
For Z > 0 [condition () of the theorem], we have 3} 7rx =< Q(in-
K=o

dependent of T') < =, and thus m () € L,, which implies by A2, Sec-
tion III, that C(¢) does also, and the theorem is proved.

Comments: (a) Condition (#7) of the theorem is similar to a Popov
condition for feedback systems with static, sector nonlinearities,
although the GPW M does not strictly belong to that class.

(b) The condition allows a tradeoff between the slope of the sta-
bility line and its interaction with the real axis of the Popov
plane.

(¢) Because of the constraints of the modulator, the modified linear
plant does not have to be a strictly positive operator, as is
commonly the case.'®

(d) Since the assumptions are sufficient to ensure that U(t) [and
g(t)]— 0 as t —» =, the theorem also guarantees that o(t) — 0.
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