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Decision feedback equalization is presently of interest as a technique
Jor reducing intersymbol interference in high-rate PAM data communica-
tions systems. The basic principle is to cancel out intersymbol interference
arising from previously decided dala symbols at the receiver, leaving re-
maining inlersymbol interference components to be handled by linear
equalization. In this work we consider the application of decision feedback
equalization to quadrature-amplitude modulation (QA M) transmission, in
which two independent information sireams modulate quadrature carriers.
Extending Salz’s treatment in a companion paper of decision feedback for
a baseband channel, we derive the form of the optimum receiver filters via a
malriz Wiener-Hopf analysis. We obtain explicit analytical expressions
Sfor minimum mean-square error and optimum transmitting filters. The
oplimization is subject to a constraint on the transmitted signal power and
assumes no prior decision errors. The class of QAM transmilter and re-
ceiver structures treated here is actually much larger than the class usually
considered for QAM systems. However, our results for decision feedback
equalization show that, for nonexcess bandwidth systems, oplimum per-
Jormance is achievable without laking advantage of the most general struc-
ture. If the transmatter is required to have the conventional QA M structure,
study of the time continuous system that gives rise to the sampled data sys-
tem considered here demonstrates that under quite general assumptions a
nonexcess bandwidth system is optimum. Finally, the explicit description
of the optimum lransmitting matriz filter follows from an information-
theoretic ‘‘water-pouring” algorithm in conjunction with the determination
of the form of the points of maxima of a determinant extremal problem.

I. INTRODUCTION

Interest has recently intensified in receiver structures which hope-
fully will permit higher data symbol rates than are possible with con-
1821



1822 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

ventional demodulator/linear equalizer structures having the same
error probability. The decision feedback equalizer is an example of a
receiver component that can have important performance advantages
over a linear equalizer operating over dispersive channels with additive
noise.!~7 The basic structure of a decision feedback equalizer (DFE)
is shown in Fig. 1. The function of the filter in the feedback path is to
cancel “postcursors’’ of the channel’s impulse response; that is, inter-
symbol interference components arising from previously decided sym-
bols. Thus, the job of the linear filter in the forward path is to minimize
(according to some criterion) “precursors’”’ of the channel’s impulse
response which cause intersymbol interference from future data sym-
bols. Of course, there is a possibility of error propagation with this
nonlinear feedback structure. We avoid this intractable problem by
assuming that no erroneous decisions pass into the feedback filter.
Thus, our results provide a performance lower bound. Earlier experi-
mental studies indicated that error propagation is not a serious problem
on some channels.?*

Price® (whose bibliography on the subject is extensive) has derived
asymptotic formulas (allowing for an infinite number of equalizer taps)
for error probability, optimum transmitter pulse spectrum, and com-
munication efficiency for the “zero-forcing”’ DFE, which minimizes the
noise variance at the DFE output subject to the constraint that the
intersymbol interference is zéro at the receiver’s sampling instants. As
is the case for linear equalization, the mean-square-error (MSE) cri-
terion is more general than the zero-forcing criterion. The MSE eri-
terion minimizes the mean square of the total error (noise plus residual
intersymbol interference) at the DFE output.>:® Asymptotic results
and illuminating calculations of performance for MSE-minimizing
DFE’s are contained in a companion paper by Salz.”

All previous theoretical studies of decision feedback equalization
have assumed a “baseband” linear PAM channel model depicted in

TRANSVERSAL
FILTER
DECISION
RECEIVED FILTER + DEVICE QUTPUT
WAVEFORM DECISIONS

Fig. 1—Basic decision feedback equalizer structure.
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Fig. 2—Baseband channel model.

Fig. 2. The transmitted waveform s() is

s®(E) = 3 ang®(t — nT),

where the data symbols {a.} are statistically independent discrete-
valued random variables from a finite set and g(®(f) is some suitable
transmitted pulse waveform. The channel output waveform is then

r®() = 3 ah®E — nT) + a® (1),
where the overall impulse response is

o) = [ e (g — ndr

and n‘®(t) is additive noise. This model is certainly valid for a real
linear channel accepting every 7' second a pulse of the form a.g® (t).
It is also valid for the important case where the linear channel ¢¢®)(¢) is
actually the baseband equivalent of a passband channel when the
modulation is either double-, vestigial-, or single-sideband. (See Ref.
8, Chapter 7.) Of course, ¢® (f) then depends on the carrier frequency
and on any phase offset between the reference carriers at the modulator
and demodulator.

In this paper we extend the asymptotic DFE theory to the case of
QAM (quadrature amplitude modulation) signaling, for which the
baseband model of Fig. 2 is not sufficient. We summarize our results
at the end of Section II. The most general QAM transmitter structure
is illustrated in Fig. 3. Two independent data sequences enter a lattice
network comprising filters with impulse responses g11(), ga1(t), gi2(t),
and gs2(t). Modulation is done with two quadrature carriers with fre-
quency fo Hz. In practice, most QAM transmitters are specialized to
the case g11(t) = goo(t); go1(f) = —g12(t).* We call the class of trans-

* Indeed, it is often assumed that g,2(t) and ga.(t) are zero.
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Fig. 3—General QAM transmitter structure.
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mitters with this special structure the class of “passband” transmitters
(®). We show in later sections that optimum performance is in general
achievable by restricting the transmitter to this class or a simple
variant thereof. It is worth noting that QAM systems with passband
transmitters are mathematically equivalent to baseband PAM sys-
tems, but with complex impulse responses and information symbols.®:1°

For the most general QAM structure, the waveform s(t) is expressed
in terms of two-dimensional vectors and matrices. Define the vector
a, to be the nth pair of information symbols,

w=(3) 2

The most general QAM transmitter is characterized by the matrix
filter
gu(f) 912(5))
t) = . 2
¢) (gzl(i) g22(t) @
Then the structure of Fig. 3 yields
s(t) = (cos 2 fif, sin 27 fot) 3 g(t — nT)a,. (3)

We assume that the data symbols are uncorrelated discrete-valued
random variables with variance ¢2. Thus

(anal) = oadnml, (4)

where ( ) denotes expectation, { denotes transpose,*® 8= is the Kro-
necker delta, and 7 is the identity matrix. The transmitted power is

* The symbol 1 will denote conjugate transpose for complex vectors and matrices.
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then given by

.1 2 = ,
P = lim oo " ()it = g5 [ o) + 0h(®) + g8 O+ gha()Jat

T—0

oa

47|'T./:u [IGII(W)IE + iG12(w)]2 + |G21(w)|2 + |G22(w)J2]dw, (5)

where (;j(w) is the Fourier transform of g;;(f). FFor future reference
note that we can also write P as
2
Gu(m + “‘;—n) Glz(m + -2—TrT—?-1)

2 xf

p=" )
—m 71',1"1';[

2

+

2

2

2
n Gm(w + 2"7”) n G22(w n 2—;?") ]dw
_ g [=IT 2rn\! 2mn
=7 T G(w + T) G(w + T)azw, ©6)
where

6@ = (6o Gaio)

is the matrix frequency response of the transmitter. We use tr to denote
the trace of a matrix.

Later sections will show that without an initial assumption of the
special passhand transmitter structure the treatment of decision feed-
back equalization for two- (and hence higher) dimensional signals is a
nontrivial generalization of the baseband signal case.

II. THE CHANNEL MODEL AND SUMMARY OF RESULTS

The impulse response ¢(¢) of any linear channel can be resolved about
a center frequency fo:

q(t) = c1(t) cos 2r fat — c2(t) sin 27 fol. (7)

It is easy to show that the channel model of Fig. 4 yields exactly the
above impulse response, and thus any linear channel can be conve-
niently represented in terms of an arbitrary center frequency f, by the
structure of Fig. 4. We note in passing that the so-called “in-phase”
and “quadrature” impulse responses ¢i(f) and c.(f) are often inter-
preted as the real and imaginary parts, respectively, of the ‘“‘complex
envelope” of the impulse response ¢(t) with respect to the frequency
Jfo.

We assume that the low-pass transmitter impulse responses {g;;(t)}
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Fig. 4—A passband channel model.

are all strictly bandlimited to lie within the frequency interval (— fo, fo) ;
otherwise, the system would suffer distortion from aliasing effects.
There is then no loss of generality in assuming that the channel’s in-
phase and quadrature impulse responses ¢;(t) and c2(t) are also strictly
bandlimited to this interval.

With these assumptions, double-frequency terms disappear,!! and it
is easily shown that the noise-free channel output

" g(R)slt — 7y, (8)

-

where ¢(t) is given by (7) and s(¢) by (3), can be written

1(cos 2x ft, sin 2 fof) Z c(t — ng(r — nT)dra,, (9)

where ¢(t) is the matrix

el el
“”‘(_mw aw) (10)

the matrix g(z) is given by (2), and integration of matrices and vectors
means integration of each entry.

Consider receiver structures whose “front end” is the type shown in
Fig. 5—sine and cosine demodulators followed by identical ideal low-
pass filters that are strictly bandlimited to (— fy, fo) and whose outputs
are labelled #(¢) and 7(¢), respectively. This structure causes no loss of
information, since any bandlimited input signal can be reproduced
exactly if the outputs r(f) and #(f) are multiplied by cos 2 fit and
sin 27 fit, respectively, and then added together. The function of the
low-pass filters is to remove double frequency terms; it will turn out
that the “front end” will be followed by a band-limiting matched filter,
so that the low-pass filters are not necessary.
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Fig. >—Receiver ‘“front end.”

The low-pass outputs r({) and 7({) can be written in vector form as

r(t) =(;Eg)= %; h(t — nT)an + v(0), (11)

where the matrix impulse response h(t) is
ht) = fw e(r)g(r — rdr, (12)

and the components of the vector

70 =(5io)

represent additive noise. Assuming that the additive noise in the
channel is white with double-sided power spectral density No/2, it can
be shown that n.(¢) and n,(f) are statistically independent stationary
zero mean processes; each is the result of passing a stationary white
noise with double-sided power spectral density N, through an ideal
low-pass filter. Noise outside the signal bandwidth will be eliminated
by a matched filter. Accordingly, we take the covariance matrix of the
noise to be

vVt 4+ 7)) = Nold(r), (13)

where [ is the identity matrix and §(¢) is a “‘unit-area delta function.”
The mathematical model for the transmitter and channel is now com-
plete and is summarized in Fig. 6a.

We remark in passing that linear modulation of a single stream of
data symbols (e.g., single-sideband or vestigial-sideband modulation)
constitutes a special case of this model. In that case, g12(f) = g22(t) = 0,
and the receiver front end consists of a cosine demodulator with some
phase shift ¢, followed by an ideal low-pass filter. Then the overall
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Fig. 6—(a) Canonical mathematical model of transmitter and channel. (b) QAM
decision feedback equalizer structure. (¢) Structure of the matrix filter w (¢).
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impulse response is a scalar function of time (which depends on the
receiver phase shift 6), and hence all two-dimensional matrices and
vectors in the present treatment would be replaced by scalar quantities
(see Ref. 7).

The following list summarizes our main results:

(z) The optimum linear forward filter at the receiver for a given trans-
mitter channel casecade, H (w) = C(w)G(w), is found to have the form

iy No, *
Const X H(w)/4[®(e®T) 4+ =T ,

B(em) = 7 T H’F(m + 2%”)}1(“, + ?%’-‘)

where

and /"¢ denotes minimum-phase square root. This filter can be viewed
as a matrix matched filter followed by an anticausal matrix tap delay
line. (See Sections IIT and VI.)

(#7) For a given transmitter power spectral density: if a nonexcess
bandwidth system (Section V) is required, an optimum transmitter is
found and it is passband; conversely if the transmitter is taken to be
passband, the optimum system is a nonexcess bandwidth one (Seec-
tion III).

(#72) Given a passband transmitter, the MSE (the sum of the mean-
square errors of the two unquantized receiver outputs) is

, T [T o2
202 exp[— ?;/_”T log[mXeq(w) + 1]@},

where

Xeolw) = 2

n

2

Gl(w + %Tn) + J'Gz(w + 2%7%)
Cl(w 4 2%”) + ng(w + %T”)

and Gl(w) = Gu(w) = Ggg(w) and Gz(w) = Gu(w) = —Ggl(w) (Sec-
tion VI).

(iv) The optimum transmitter power spectral density is found for the
class of passband transmitters meeting an output power constraint
(Section VII). This optimal density has a water-pouring deseription.
(Since the processing capability considered here represents an advance-
ment over conventional linear equalization, this emergence of an in-
formation theoretic type density is perhaps not surprising.)

2

X
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(v) Although we do not constrain the in-phase and quadrature mean-
square errors to be equal, we show that for the above-mentioned opti-
mal systems the errors on the two data streams have equal variances
and are uncorrelated (Section VI).

In a nutshell, the system optimization proceeds as follows:

() Find the optimal receiver for each transmitter.
(47) Find an optimal transmitter for each transmitter power spec-
tral density.
(#77) Find the optimal transmitter power spectral density.

Then we reverse, using the solution of (7iZ) to specify an optimal trans-
mitter and then using this optimal transmitter to specify the optimal
receiver.

I1II. THE RECEIVER OPTIMIZATION PROBLEM

The DFE structure consists of a linear matrix filter w(f), quantizer,
and a transversal feedback filter with matrix tap coefficients {b,} which
processes previously made decisions as shown in Fig. 6b. The kth
sampled vector input to the quantizers is written

Vi :f wOEKT — 7)dr = T bublicw, (14)
where 4, is the receiver’s decision on the nth data symbol-pair. Note
that we allow the feedforward and feedback matrix filters to have
infinite-duration impulse responses. We also replace 4;_, in (14) by
the true data symbol vector a,_, for mathematical tractibility; thus,
we in effect postulate a “magic genie” preceding the feedback filter
who corrects any decision errors. The genie’s existence is immaterial
up to the time of the first decision error, and hence our expression for
MSE is certainly valid up to that time.

The error vector e, is defined to be the difference between y; and the
correct symbol ay,

e = Yr — 4, (15)
and the MSE is defined to be the trace of the error matriz e, where
eo = {eatl), (16)

the average being with respect to the noise and the data symbol se-
quence. Note that e, is positive semidefinite and symmetric.
Substituting (14) and (15) into (16) and using the noise correlation
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matrix (13) and the data symbol correlation matrix (4), we can write
ey = o2 Ek f f w(rDh[(k — n)T — 70 [(k — )T — 74]
n2k J—w J—w»

X w'(rz)dridry + Nof fw w(r)wt (r2)8(ry — 72)dr1d7s

+od 402y [bn - f‘” w(r)h(nT — T)dr]

n=1

x[bn -fw w(Dh(nT — T)dT]T — af,f:: w(r)h(—1)dr

—o0

—a; W {(—7wt(r)dr. (17)
We immediately observe that tr e, is minimized with respect to the
matrices {b,} if and only if for all n = 1, b, = s,, where

Sp = fm w(n)h(nT — 7)dr alln (18)

represents the matrix samples for n = 1 of the impulse response of the
transmitter/channel-receiver filter combination. Then, once the {b,}
are optimized in this way, the remaining terms comprising the matrix eg

can be written

n=0

ew=dl ¥ [anor ~ [" wenr - r)de

w(r)w(r)dr. (19)

x[a,.of — [ wiohr ~ T)df]Jr + N f
We wish to minimize tr e; with respect to the entries in the matrix
w(t). Notice from eq. (16) that tr e, is a positive quadratic form. Thus
from Ref. 12 we set the gradient equal to zero to determine the sta-
tionary points which are necessarily points of global minima. We shall
find that there is only one solution.
Proceeding with the calculus of variations method, we replace

_ 'wu(t) w g(t)
wit) = (‘wzl(ﬂ) ’w:?(f))

by
w(l) +( e () e (t))’

eana1(l)  €2amon (t)
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where the 75;;(t) are arbitrary. Setting

otr ey dtrep

den derz | (0 O At e = e e = 0
Atre, dtres] \O0 O 11 = €12 = €21 €22 \

6621 6622

we get
ot (—r) ot T f_: w(r)h T — r)drht (0T — 7)
+ Now(7) = [0]
W) = £ wt(nT = 7, (20)

or

where
2

Wn = 1%“ (Bnol — 8a) n=0. (21)
This means that the matrix filter w(t) can be interpreted as a matrix
matehed filter with impulse response At(—t) followed by a sampler and
matrix transversal filter with matrix tap coefficients {w,.}. Note that
the transversal filter is “anticausal”’—that is, w, = [0] for n > 0. The
structure of w(¢) is illustrated in Fig. 6e.
Furthermore, substitution of the optimum filter (10) back into ex-
pression (19) for the error matrix eo results in

eq = aa(l — sg)t (22a)
eo = Nowl. (22b)

An explieit solution for the optimum tap coefficient matrices {wn}
can be obtained by postmultiplying (20) by A(mT — ) and integrat-
ing, using (21) and (18) and the definition

and from (21)

b= f KH(—n)h(nT — 7)dr

to yield

]—V—; ﬁm_n,ul] = §,0f forn = 0. (23)
a

a

Z wm|:¢n—m +

m =0

We recognize eq. (23) as a classical Wiener-Hopf equation for which
we are assured the existence of a unique solution.!

We attach a plus (minus) subseript to any matrix sequence whose
value is the zero matrix on the strictly negative (positive) integers.*

* A matrix sequence w4, zero on the strictly negative integers, is referred to as
causal. A sequence u_, zero on the strictly positive integers, is referred to as anticausal.
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By 1 we mean the matrix sequence vanishing everywhere but .zero,
where the value is I. Then (23) is written

w*er=1 (n=0), (24)

where we have used » to denote the sequence sum which we observe is
the Fourier coefficient sequence for a positive definite Hermitian matrix
funetion whose determinant is uniformly above (No/¢Z). Hence .2 ad-
mits a causal, anticausal deconvolution of the kind provided by Wiener
and Akutowicz! (generalizing a result of Szegt). Based on Ref. 14, we
can say

2 =uXuy, {(u)n = [(ug)-n]las0, (25)

where we have used (u_), to denote the nth entry in the u_ sequence
(similarly for u,). Corresponding to u_, we have its convolution in-
verse, [u—_ ]!, which is also anticausal.

From what we have just said,

Clup)od"[u-J ™ u*uy = 1, (26)
and so w_ = [(uy)o]'(u_)""! and, in particular,
wo = (uoul)™, (27)

where in the last equation the negative subscripts have been sup-
pressed. Thus the anticausal transversal filter is found from eqs. (23)
through (26) to have a frequency response inversely proportional to

@
\/ti’(e‘f”) - %}“ I,

where the notation ¥ ¢ means minimum-phase square root and
®(e=7«T) is the diserete Fourier transform of the matrix sequence {¢n.}.
Recalling eq. (22b), we have the following expression for the error
matrix:

€y = Nowg = Nu[uougjfl. (28)

We remark that the development so far is analogous to that of the
baseband decision feedback equalizer.® Further progress toward achiev-
ing a closed-form expression for tre, thus depends on obtaining a
closed-form expression for the matrix [uou§]~! or for its trace, corre-
sponding to the result recently developed for the baseband case.” It
has not been possible to do this directly for the QAM case when the
most general transmitter matrix is allowed. We shall prove under quite
general conditions that the minimum of tr wy is achieved with a trans-
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mitter of passband structure, and that, given this transmitter strue-

ture,
tr wo = 3Vdet wy

and
T
det wy = exp [— T f log det [@(eﬂ'ﬂ) + Ai;’r]dw},
2r J_pr Ga
where ““det” denotes the determinant.

IV. CLOSED-FORM EXPRESSION FOR DET €

For the most general matrix filter, attainment of a closed-form MSE
expression for tr e in terms of the matrix ®(e~77) has so far proved
intractable. However, we shall see that such a general expression is
unnecessary to deseribe the behavior of optimum systems. Our ap-
proach is to employ the following easily proven lower bound for 2 X 2
positive semi-definite symmetric matrices

tr we = 2| detiw,], (29a)

which holds with equality if and only if w, is a scalar matrix (ie.,
multiple of the identity). In this section we develop a closed-form
expression for det wy. In the following sections where we deal with
optimum systems, we can always perform the analysis in a context
where eq. (29) holds the equality.

We begin the analysis of Vdet wo by recalling (25a), from which
follows

det [@(e‘f” ™+ %} I] = det U_(e7T) det U_(e?T).
Then from the one-dimensional theory we have's
=T
det (uoul) = exp {r)ﬂ f log det [*I’(e""“") + }—vg"I:ldw} ,
T J =T s
and from (28) and (29a)

Air treo = trwe = 2Vdet wo, (29b)
0

where
/T
det wo = exp {— %[ " log det [tb(e—f”’*") + Aﬁ'r]dw} . (29¢)

ou
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V. FOR A NONEXCESS BANDWIDTH SYSTEM, PASSBAND TRANSMITTERS
CANNOT BE OUTPERFORMED
In this section we begin by expressing @ explicitly in terms of the
transmitter and channel matrices. Then we define the notion of a
nonexcess bandwidth system. The primary result of this section is that,
for a nonexcess bandwidth system, if the transmitter power density
function

fw) = tr G'G (f( > o, 7[ Sw)de = H:‘P)

is specified, then there exists a passband transmitter in the class of all
matrix transmitters optimal under the constraint that f(w) is the power
density function.

To display the dependence of our results so far on the transmitter
frequency response G (w), we first rewrite the matrix ®(e—7*T) using the
definition of ¢, as

B(eiT) = f KT (—=7)3(w, 7)dr, (30a)

where
Hlw, 7) = Z h(nT — 7)edunTl, (30b)

Expression (30b) is a Fourier series. Thus,

T /T
hinT — 1) = — 3 (w, 7)e?mTdw. (31)
T

2 J 5

But the matrix impulse response h(nT — r) can also be written as
the inverse Fourier transform of a matrix frequency response H (w),

h(nT — 1) = )l f H (w)ei ="y,
2 J_w

which, upon splitting up the range of integration and changing the
variable of integration, can be written
/T

h(inT — 7) = lﬂ_ f gienT

-7 /T

X [z H(m n 2}’”) exp [ ( + @) ]]dw. (32)

Equating the integrands in (31) and (32), we obtain an explicit ex-
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pression for 3C(w, 7) which when substituted into (30a) yields
) 2mn 21n
B(eaT) = 1 % H(w + g)TH( + —) (33)

Furthermore, denoting the Tourier transforms of ¢(t) and g (¢) by the
channel matrix € (w) and the transmitter matrix G(w) respectively, we
can write H (w) = C(w)@(w) and

B(eT) = L Z G( ...wn)T
x oo+ 7Y e+ 2 )e (o + ) 6y

A nonezxcess bandwidth system is defined by the property that for any
radian frequency w there is no more than one nonzero term in the above
sum. It can be taken to be the n = 0 term by making a trivial fre-
quency translation where necessary. Hence for a nonexcess bandwidth
system

BeT) = LOWCWCWEE (lol S7)  (9)
In this section we deal exclusively with nonexeess bandwidth systems.
In Section VIII we refer to a recent theorem of H. Witsenhausen which
enables us to do a complete analysis of excess bandwidth systems by
transforming them to a canonical nonexcess bandwidth “equivalent”
and then transforming back.

To model the class of transmitter frequency responses G (w), we intro-
duce g to denote the (Hilbert) space of all 2 X 2 matrices whose entries
are Hermitian symmetric {G(w) = [G(—w)]*} finite energy functions
on (—x/T, =/T). The Hermitian symmetry of the entries is required
so that each entry represents the Fourier transform of a real-time
function. As in Section I, we use ® to denote the passband subspace of
G consisting of matrices of the form

(Zarw o)

We shall be dealing only with matrix filters G of finite power P, given
by (6). Thus we use Gp and ®p to denote

1 T orp
{G[E‘; f—w,':r' tr G(w)G (w)'dw = = ]

a
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in G and ®, respectively. In the sequel, all transmitter filters will be
assumed to have power P.
We now optimize det (G'CTCG + (No/o3) I) at each radian frequency
w for a fixed amount of power transmitted at w.
Fix Ny >0, f> 0 and ¢ — (O‘C G2
€y Cy
of frequency). Explicitly, we shall show that

) (Cy’s complex functions

max det :G*C*CG + ]‘:—T; I}

over all complex G such that tr G'G = f(w) is achieved for a G of the
G Gu). (For linear QAM systems, the same de-
_G12 Gll

terminant extremal problem arises in the optimum selection of a trans-
mitter with a specified power spectral density function. To our knowl-
edge, this aspect of linear QAM systems has escaped the literature.)

Notice the unitary transformation ¥ = 2—*(1. '{

passband form (

) diagonalizes

a
'—Jb

a 7b _fa+b 0 )
‘Iﬁ(—jb a)“"( 0 a—b) (36)

Since C7C is of the form (—ajb {lb) (a,b,real,a > b),if welet G = ¥B

matrices of the form ( f) in that

the problem becomes

a+b 0

t
maxdet{B( 0 a—b

)B + N.J}, tr B'B = f(w).
a+b 0
0 a—2>b
max {det(B'DB) + Notr(B'DB) 4+ Ni}, tr B'B = f(w).
At this stage we denote the Hermitian matrix BB' by @ and write
max {det QD + Nytr @D + N3}, tr@Q = f(w).

Let D = ( ) and rewrite the problem as

Of course, an optimum @ exists, since we are maximizing a con-
tinuous function over a compact set. A nonzero off-diagonal entry in @
would only affect the determinant and not the traces. Since
@ is Hermitian, the optimal @ is diagonal. Retracking, @ = BB'
= V@ (TIHGW. Now @ is positive definite and so has a positive
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definite square root @* From the definition of B,

G = vt
which shows that the optimal G has the form
GII GIE)
G = .
(=on cn 37)

Although the proof is now complete, we go further and find G, and
(15, as this will be used in the sequel. To find G4y and G1, we have seen
that we must first find the entries g1 and g.» of @ so as to maximize

{gugea(a + b)(a — b) + No[qu(e + b) + gqu(a — b)] + N}
on the triangle in the (g1, g22) plane deseribed by
qu + g0 = f, qu = 0, g2 = 0.

Since @ > 0 and a = b, the optimum (g11,¢22) is achieved with ¢
+ @22 = f. Let A linearly parametrize the segment joining (f, 0) and
(0, f) as shown below

22

solution on
A = 1 this segment

A=20

'y _>‘111
50 (gu1, q22) = [(1 — N)f, Af] where (0 = X\ £ 1).
The eriterion becomes: Maximize
FINI =N)f(a? = b%) + No[(1 —N)(a + b) + Ma — b)]} + NG, (38)

which is a parabola coneave in A. Our problem is to determine
Xopt (0 = Aope < 1). Now the parabola is maximized at

- 1 Nof b
“‘é‘?(ﬁfﬁ'

If N satisfies 0 <X < 1, then Agpe = A If A <0, At = 0 and if
> 1, Aoy = L.
So from G = VW' we obtain

s = LV £ [P 111 (300
Gm:j(I‘l%)\optl—lﬁ:t[”fil signumb. (39b)

|24]



DFE IN QAM SYSTEMS 1839

The determination of the signs attached to G1; and @1» was made by
noticing that at each frequency

det (G*CfCG + J:—r;’ I) (40)

is invariant to the sign of (715, while (40) is maximized if signum b is
used for Gq,.

VI. CLOSED FORM EXPRESSION FOR ALL PASSBAND (7

We have seen that, for nonexcess bandwidth systems, an extremal

@ for

/T

det wq = exp {_ )l;r j’ log det [@(e—fﬂ-) 1+ Z;izf' I}dw]
Z —x/T a

exists in the space @. Next we show that for each GE®, whether or not
it has excess bandwidth, tr wy = 2vdet w. To do this we must show
that wo is a scalar matrix. First observe that the matrices @ and C are
in ®, and their entries, being Fourier transforms of real-time functions,
are Hermitian symmetric. The matrix ® (e 7) 4+ (N,/s2)I, which is
designated by ® and is the Fourier transform of the matrix sequence .2
in (24), can be expressed in terms of the channel matrix ' (w) and a
passband transmitter matrix

) Gulw)
6@ =(_gie Gl(w))
as in (34) to yield

(ot dnel),
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and

Ralw) = _?—pzlm{[eg(m+2’f$)cl(w+2”%)
*

+G1(w+2—”r”)02(w+%ﬁﬁ)]

% [G,(w+2%”)cl(w+2“7”)

& (w +Z”T”) c, (w +2}”)]] (42)

The entries ®; and ®. are real functions of w. ®, is a positive even
function and ®; is an odd function. The matrix & is positive definite;
ie., ®1 > ®3. It is also Hermitian and passband.

We have previously noted in eq. (25) that the matrix ®& can be
factored into the anticausal and causal matrices U_{e~*T) and
[U_(e-#7)], respectively. The matrix wou), which is proportional to
the error matrix inverse, is unique and the factor U_(e=%T) is unique up
to an arbitrary unitary matrix post-multiplicative factor ¥. We now
pick a particular unitary matrix.

The matrix ® is diagonalized by the unitary matrix

_ 11 gy, . + B — (e 0
\Ir_v,g(j 1), 1.e.,\I'(R‘I'—( 0 Gh-l-fRz)' (43)

Now the entries ®; — ®R: and ®; + ®» are nonnegative real functions
on —(7/T) = w = (r/T). Since
T
—®< log (G £ ®s)dw,
—x T

we have from Szegd’s theorem!® that

Ry — R = |£!_|2 (443)
and
(Rl + (Rg = I,B,'z, (44[))
where «_ and B_ are anticausal functions of w, i.e.,
a_ = 3. agpe T (45a)
m =0
and
B_= 2 BmeomT; (45b)
m=0

the {a.} and {f=} being sequences of complex numbers. We can assume
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ao and By are real and positive without loss of generality. Therefore

VRY = VT, (46)

a_ 0
V=6 5)
and since ¥ is a unitary matrix,

(TVET) (P VI
U_u_t, (47a)

where

®

where

-+B8- jle-— ﬁ-))
U_=wywt = ¢ : 4
v (—J(ﬂf—-ﬂ—) a + B (47b)
Thus in this factorization, U_ can be taken to be passband. Further-
more, since ay and @y are real,

o = ( ao + Bo j(ﬂfu - ﬁo))
! — J(ao — Bo) ao + Bo

is both Hermitian and passband, and so therefore is the error matrix
eo = [uou]™; i.e., its off-diagonal terms are purely imaginary.” But
we know that e, defined by (15), must have real equal off-diagonal
terms, and therefore e, must be a scalar matrix. Thus wy = (1/Ng)eg is
also scalar and

(48)

tr wy = 2vdet wo. (49)

Summarizing the development so far, we have shown that, for non-
excess bandwidth systems, if the transmitted power spectrum is speci-
fied, the passband transmitter structure is optimum. We then showed
that if the transmitter has the passband structure, the MSE is given
by eqs. (29b) and (29¢), (29b) holding with equality. Incidentally,
using the results of the last paragraph it can be shown that ay = B
= VNo/2MMSE; hence uo is known. In Section ITI the optimum linear
receiver filter w(t) was found up to the constant (matrix) multiplier
ug '. For nonexcess bandwidth passband systems, we can now make the
more complete statement that the matrix Fourier transform of w(f) is

¢
0 0t /\Ja o wowaew + Y

(where v "¢ means minimum-phase square root).

* It is important to notice that, although u, is unique only up to a ostmultiplica-
K : Yy up P
tive unitary factor, the matrix wou, is unique.
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We shall now express (29¢) in a somewhat different form, which
avoids the use of the determinant. As pointed out earlier, ®;(w) and
®2(w) are real even and odd functions, respectively. Thus

Ry (w) — Rao(w) = Ri(—w) + Ra(—w)
and

x| T T
f log [Ga(w) — Ga(a) Jho = f_m log [®(w) + 6ts(w)Jdw, (50)

-

from which it follows that

T /T
9N exp [— e f log det (R(w)dw]
—x /T

tr eo ir

9N, exp ( _ 1“7; [ f_ﬁ; log [G1(w) — s (w)Jdw

/T
-4 log [®1(w) + Ra(w) ]dw})
/T

—

Noexp [ = o [ 1og Lo (o) + o) o - (51

Substituting (41) and (42) into (51) gives the following expression
for MSE:

x/

T r ok
Tey = 200€Xp { — 5= 0g | 57 Xeglw w 2
t 247 o _ﬂTl N“OX (w) + 1|d (52)

2

G1(w+27rTn)+ng(m+2an)

Cl(w-l-ern)—i-jCz(w-*"%Tn)

This expression is valid for any passband transmitter and, as shown
in the previous section, it is valid for optimum general QAM trans-
mitters with no excess bandwidth.* We show in Appendix A that,
under very general assumptions, optimum passband transmitters will
have no excess bandwidth.

2

X

* We remark at this point that if we had restricted attention to passband trans-
mitter structures from the outset, we could have derived the MSE expression (52)
maore directly by using the complex envelope notation referred to in Section 11 instead
of the matrix formulation.
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VII. OPTIMUM TRANSMITTER

Here we continue under the assumption of a nonexcess bandwidth
system. So far, we know that, if f = tr G'G is specified, an optimal
passband  exists yielding a minimum for MSE and possessing power
spectral density f. Our next step is to free tr G'G and to find @, which
minimizes MSE subject only to the constraint that

T m|T _ ?‘ T R B B
27 71'."1'1._ (E; .[-:,‘TtFGG _) =P (53)
Notice
=T . R /T )
[o G+ = [T (G + 16 (54)
—w/T —=/T

since (G, — G4G; is odd. Thus our problem becomes to find
|G1 + jG:|? minimizing

L 1 2
S JECTE R

21[' —x/T

. T (=T :
subject to — f |Gy + jG:|2 =P
2 —xiT

It is shown in Appendix B that the solution to this problem is given
uniquely by
)
+

Gy + jGal? = (e -
(where (£); £ max[(§ 0)]),
where @ is a constant set at a value so that

T
2

T

G+ (Gl = P
This solution also occurs in a related context in information theory,
where it is dubbed “the water-pouring solution.”’!¢

Since (G} (w)@;(w) — G1(w)F3(w)) is odd and f(w) is even, we average
|Gi(w) + jG2(w)|? and |G1(—w) + jG2(—w)|? to get*

1 N,T
@ = 3 {[ e = 2 1000 + deawl ]
N,T
+ [e - —”4 [Ci(—w) + jO2(—w)| 2]+} .

To find G (w) and G»(w), use the above f(w) in Section V.

* Note that for Ny — 0, the optimum f(w) tends to a constant.
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VIII. THE ROLE OF NONEXCESS BANDWIDTH SYSTEMS

In the previous sections we have determined the optimum trans-
mitter under the hypothesis that the system is nonexcess bandwidth.
Here we point out that this hypothesis is not very restrictive.

In systems in which the transmitter is required to be passband, it
follows, under very mild assumptions on the channel characteristics,
that the optimum transmitter (subject to an output power constraint)
is a nonexcess bandwidth system. The mathematical proof of the
optimality of the nonexcess bandwidth system is considered in detail
in Appendix A. For an example, if for each w(|w| < x/T)

[Ci(w) + jCa2(@)| > 01(w+3%k)+jcz(w+$)‘ (k # 0),

then the optimal transmitter has no energy outside

k.

-l

For systems allowing any matrix transmitter, the question arises
whether or not the optimal transmitter is passband. If the answer to
the question is negative, the next question is whether or not the opti-
mal transmitter is nonexcess bandwidth. The answers to these ques-
tions depend on the system parameters, and there are channels for
which the answers to both questions are negative. It is beyond the
scope of this paper to give a detailed mathematical discussion of these
more complex systems. Such systems are still under investigation, and
so we shall limit ourselves to mentioning without proof some important
facts concerning the analysis of such systems.

The analysis begins by returning to Section IV fixing w and posing
the extremal problem of

max det (3 GICICiGx + NoI),

subject to tr ¥ G{Gx = f. If for each w it is optimal to expend all of
f on one of the G4’s, then we are in the line pursued in the previous sec-
tions. However, to achieve optimality one may need to use more than
one G. Indeed, H. Witsenhausen has solved this determinant extremal
problem showing that at most two Gi’s are required to achieve opti-
mality, and there are instances where two ('s are necessary. Even
when two Gi’s are needed, the wo matrix remains a scalar matrix and
once again the trace and the determinant optimization are equivalent.
The fact that two G4’s are required means the transmitter is excess
bandwidth.
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Witsenhausen has shown that when two Gi’s are needed, one can

be taken to be a multiple of (_; {

(; ~i) Although both G’s cannot have the passband form, the

) and the other a multiple of

( i _“17) matrix corresponds to a very simple structural variation of
a passband filter.

We mention in closing that systems whose optimization takes us
outside the realm of passband structures can be analyzed via equivalent
canonical nonexcess bandwidth passband systems. The equivalence is
in the sense that MMSE versus P curves for the two systems are
identical, and optimum design can be carried out in the canonical
system and then transformed to the more complicated system.
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APPENDIX A
Optimality of a Nonexcess Bandwidth System

Fix P> 0 and g¢(w) a positive continuous real function on
(— =, + ). In the text we are confronted with the optimization

/T )
sup mg[ 3 r(w4—%#)q(w4—%¥)-+l]dm
—x/T k=—w
where the sup is over all nonnegative Lebesque integrable r(w) for which
+a
f r(w)do < P > 0.

We show here that, under weak conditions on g¢(w), the optimization
problem can be replaced by an equivalent “nonexcess bandwidth
problem,”” namely, find

+x/T
sup f_r”‘ log [F(w)d(w) + 1]dw,

where §(w) is a given continuous function and 7(w) is any nonnegative
integrable function satisfying

/T
[ Flw)dw = P > 0.

—x/T
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Define §(w) on [—=/T, =/T] to be the envelope sup g(w + 27k/T).
To avoid annoying pathologies, assume g(w) is such that for each w

\kl (o +%) - c;:'(c»)]

is not empty. Moreover, assume that (—/T, x/T) can be expressed
as a disjoint union of subsets {V,}1 of total measure 27 /T such that
on each V,, there exists a kn s0

q (w + 2”;3"') = J(w)

holds uniformly in @ on V.. So §(w) is continuous on (—=/T, =/T).
Define
m 27k
V=0 (V,.. + 2 ) .

Given any r(w) = 0 satisfying ||7|l, = P, define p on (— =, =) by

p(m+21rkm)={i r(w—l—g;—k) fore EVp m=1,2,---, M

T ) 0 wGE V.
So
w0 0 w|T
f pdw = X p(m—|—2—;ff)dw
—o —w o —7/T
/T 2rk\ *IT 27k _
= M?T(”T)*?f_,,r”(”T)d”‘R

where the second equality results from the definition of p and the third
equality is from the Lebesque Dominated Convergence Theorem. Now
for |w| < w/T

%r(w+g¥c)q(w+2%k)ézkzr(w+2%k)q'(w)

N )

where the very last equality follows from the fact that p vanishes off
V. Since in L[—=/T, 7/T] p(w) always fares at least as well as r(w),
we have the fact that the supremum can be taken over the class of
nonnegative functions vanishing off V.

In the applications it often occurs that V & (—=/T, «/T), in which
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case ¢(w) = J(w) on V and the optimization problem becomes

sup [_ﬂT log [r(w)g(w) 4+ 1]dw.

lrll =P /T

Even when V C (—=/T, =/T), we need only solve

w/

T

sup log [F(w)§(w) + 1]dw

I =p < -/T
with the optimand “‘rearranged” to produce the desired r(w). The re-
arrangement procedure is simply that, for each w € (—#/T, #/T), we
define r(w + 27kn/T) = #(w). Elsewhere r(w) is defined to be zero.
In dealing with even ¢(w), if V C (—«/T, n/T), the rearrangement
produces an uneven r(w). When this occurs, [r(w) + r(—w)]/2 pro-
vides an even optimand.

APPENDIX B
Mazximization of the Exponent Functional

Let g(w) be a continuous positive function on an interval [a, b],
Fixing a real number P > 0, let T be the convex set of nonnegative
continuous functions with integral less than or equal to P. We seek y
to maximize the nonlinear funetional

1) 2 ["log (1 + 7).

This same problem occurs in classical information theory where, for
reasons we shall see, it is dubbed ‘“the water-pouring problem.”
Although the solution is correctly described in the literature, the sup-
porting arguments are formal (for example, see Ref. 16 or 17). We
give a rigorous proof here, although our argument is not construe-
tive in that the extremal function is “pulled out of the air.” To moti-
vate the extremal funection, the reader can turn to the references or
supply for himself a variational derivation.

Now I(v) is concave on T, as we see by employing the Liebnitz rule
to confirm the strict negativity of I"’[Ay1 + (1 — A)y.Jon 0 S A £ 1
with v, and v, in ' (differentiation is with respect to A). It is clear that
if the extremal function exists it has integral equal to P and so we can
redefine I' to require equality of the integrals.

For each constant @, the function (€ — ¢~'), denotes the function
equal to € — ¢! when € — ¢~! > 0 and equal to zero otherwise. Now
J (€ — ¢™) is a continuous strictly increasing function of @ with range
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| | @

a b

Fig. 7—Optimal power spectral density.

[0, ©]. Fix €so S (€ — ¢ ')y = P and call the resulting function 7.
To show I(§) is the global maximum of I(y) over T, let v, denote
any other funection in T and let us investigate the segment
IN 4 (1 — M)y, 0 £ N 1} Now I[Ay + (1 — A)y1] is coneave in
A and straightforwardly

'+ (1= Mndlha = e {P - [Lem- [, '“]

which is nonnegative as €¢ = 1. By definition, for a concave function
the graph lies above any chord joining two points on the graph. So
» = 1 must be a point of global maxima of the segment.

Also, 7 is the unique point of maxima since, if there were another
point of maxima ¥, we would have I(y) constant on the line segment
joining 7 and ¥ contradicting the strict negativity of I".

To understand the water-pouring terminology, look at Fig. 7 where
we consider the graph of ¢—! with vertical walls based at [a, ¢"*(a)]and
[b, ¢ '(b)] to be a vessel into which water of amount (area) P is poured.
Relocate the « axis to the water level line. Then reflecting the water
accumulation about the level line gives the shape of 7.

We mention in closing that ¥ is optimal in a larger set than I' ob-
tained by requiring integrability rather than continuity in the defini-
tion of the constraint set. The optimality over the larger set follows
from a function space continuity argument.
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