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Analyses in the literature of digital communications often presuppose
that the digital source is ‘“whaite,” that is, that it produces stochastically
independent equiprobable symbols. In this paper we show that it is possible
to “whiten’’ to any degree all the first- and second-order statistics of any
binary source at the cost of an arbitrarily small conirollable error rate.
Specifically, we prove that the self-synchronizing digital data scrambler,
already shown effective al scrambling strictly periodic data sources, will
scramble any binary source to an arbitrarily small firsi- and second-order
probability density imbalance & if (i) the source is first passed through the
equivalent of a symmetric memoryless channel with an arbitrarily small
but nonzero error probabilily e, and (it) the scrambler conlains M stages
where

M = 1+ log:[(In 28)/In (1 — 2¢)].

Some interpretations and applications of this result are included.

I. INTRODUCTION AND SUMMARY

Digital transmission systems often have impairments which vary
with the statistics of the digital source. Timing, crosstalk, and equaliza-
tion problems usually involve source statistics in some way. While
redundant transmission codes may be used to help isolate system
performance from source statistics, the isolation is not always complete,
and such codes generate additional problems by increasing the required
symbol rate or the number of levels per symbol which must be trans-
mitted. In addition, with or without transmission codes, it is always
easiest to analyze or predict system impairments if we assume that the
source symbols are stochastically independent and equiprobable. We
shall refer to such a source as ‘“white’’ because of the obvious analogy
to white Gaussian noise. Methods for “whitening”’ the statistics of
digital sources without using redundant coding generally come under
the heading of scrambling.

1851



1852 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1973

We describe here a nonredundant scrambling/deserambling method
which in principle will satisfactorily whiten the statistics of any binary
source. The technique is based upon the self-synchronizing digital data
scrambler. Savage has shown! that this device is very effective at
serambling strictly periodic digital sources. In this paper it is proven
that the same device will seramble any binary digital source to an
arbitrarily small first- and second-order probability density imbalance
5 if (¢) the source is first passed through the equivalent of a binary
symmetric memoryless channel with an arbitrarily small but nonzero
error probability ¢, and (i7) the scrambler contains M stages where
M = 1+ logs [(In 28)/In (1 — 2¢)]. In other words, at the cost of an
arbitrarily small controllable error rale, one can ‘“‘whilen” to any degree
all the first- and second-order statistics of any binary source. This relaxes
the restriction frequently found in the literature in which the source is
assumed a priori to produce only independent equiprobable symbols.
An auxiliary result is that the above relation for M is useful when
designing a standard self-synchronizing scrambler for a given applica-
tion. Heuristically speaking, the relation expresses the ‘“‘power” of the
scrambler by linking the “randomness” of the input and output to the
scrambler length, M.

In Sections IT and III of this paper we examine some properties of
seramblers, maximal length sequences, and mod-2 sums of binary
random variables. With these discussions as background, we prove the
main theorem in Section IV. In Section V we derive bounds for the
autocorrelation of the scrambled sequence. Section VI contains some
practical considerations involved in applying the theorem of Section
IV. Beacuse they add insight, we give simple direct proofs for the
lemmas and theorem of Sections IIT and IV.

II. SCRAMBLERS AND MAXIMAL LENGTH SEQUENCES

Figure 1 shows a five-stage self-synchronizing scrambler and de-
scrambler.! As seen, both are linear sequential filters, the scrambler
utilizing feedback paths and the descrambler feedforward paths. Each
cell represents a unit delay. We restrict our attention to the binary
case and use the symbols @ and B to denote mod-2 addition. Repre-
senting the data as shown, we have

bk = Qg @ bk—s @ bk—ﬁ
and
Cr = by ® by @ bis = ax,

which shows that the descrambled sequence is identically equal to the
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Fig. 1—(a) Five-stage scrambler. (b) Five-stage descrambler.

original data sequence. The deserambler is self-synchronizing because
the effect of a channel error, insertion, or deletion lasts only as long as
the total delay of the register, five bit-intervals in this example.

Let us consider the general scrambler of Fig. 2a with the input
stream disconnected. Under such a condition, the scrambler becomes
a sequence generator whose output must ultimately become periodic
because (i) future states of the register are completely determined by
the present state (the state of the register is the contents of its stages)
and (77) only the finite number 2 states are possible, where M equals
the number of stages. One of these, the all-zeros state, simply leads to
an all-zeros output. Discounting this state, we see that the longest
possible period from the generator must be 2™ — 1 bits. It is proven in
the literature®-* that with the proper choice of feedback taps we can
generate such a maximal length sequence for any M.

Registers which generate maximal length sequences make very
effective scramblers because of their ability to dissociate one scrambler
output bit from another. This property will enable us to show that two
arbitrarily chosen output bits tend to be very weakly correlated. We
state this essential property here in the form of a lemma.

Lemma 1: From Fig. 2a it is evident that each “b” bit is equal to a lengihy
mod-2 summation of selected “a” bits. Choose two bits, b,, and b,, m > n,
and define J ., to be the number of “a’’ bits which enter the summation for
bm but not the summation for b,. That is, b,, is dissociated from b, by the
mod-2 sum of Jn,, “a’’ bits.

Then, of n > 2M+1 (that is, the scrambler has processed at least 2M+!
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Fig. 2—(a) M-stage scrambler. (b) M-stage descrambler.
“a” bits),
Ju = min [Jmn:l = 2M-1, (1)

In other words, after a settling time of 2™+ bils, any chosen pair of
output bits will differ by the mod-2 sum of at least 2~ input bits.
Proof: See appendix.

III. MOD-2 SUMS OF BINARY RANDOM VARIABLES

Throughout this paper we assume that a data sequence may be
modeled as a sequence of binary random variables defined on a suitable
probability space. In this section we state as lemmas two essential
properties of mod-2 sums of binary random variables. Since the
scrambler output is formed from mod-2 sums of input bits, these
properties play a key role in determining the scrambler output charac-
teristics. We include the proofs in the text because the equations
involved will be useful later on.

Lemma 2: Consider two independent binary random variables r1 and r».
A third binary random variable rs = rqy @ 12. Lel

p;=P(T¢‘=1)=1—P(T1’=0), 1:=1,2,3.
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Then
|ps — 3| = min[[p. — 3/, [p1 — }|]

with equality if and only if py or po = %, 0, or 1. In other words, r; is
as close or closer to being equiprobable than either rs or ry.

Proof: Since r, and r; are independent,

ps = pa(l — p1) + ;a1 — pa). (2)
Let

d,‘=’pg—% 1:=1,2,3.
Then by substitution

fdai = 2|d1”d2|-
But since
|d1| § %:

we have

|ds| = min [[di, |d2]]
with equality if and only if |d;| or |ds| = 0 or 3.
Corollary to Lemma 2: If py = %, then ps = % and ry is independent of r..

Proof: Since 73 = 11 @ ra, P(rs = 1|72 = 1) =1 — p; = . But by eq.
(2), ps = 3. Thus, P(rs = 1|ry = 1) = P(ry = 1) = }, which implies

r3 and 7. are independent.

Lemma 38: Consider now a sequence of independent binary random
variables {ry, k = 1,2, -+ -} with

Piry, =1) =1~ P(r, =0) = ¢ forall k.

We form the mod-2 sum
R,=8n (3)

and let P, = P(R, = 1). Then
P, =41—-(1—-2¢n7; nz 1. (4)

Note that, as n —«, P, converges to § for all 0 < ¢ < 1. However,
we shall be concerned only with finite values for =.

Proof: By applying eq. (2) repeatedly, it is easily shown that the
sequence P, satisfies

P,=(0— 2P,y + ¢ n=2

— 2

and
Pl = &,
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The solution to this first-order linear difference equation is given by
eq. (4).

IV. A UNIVERSAL DIGITAL DATA SCRAMBLER

With the help of the lemmas, we may now derive the main result.
We model the source as a device which generates a sequence of binary
random variables {s;} with completely unknown statistics. Our goal is
to find a scrambling/descrambling method such that the scrambled
sequence {b;} will have statistics which approach those of the inde-
pendent equiprobable (“white”’) sequence {w:}. If we attempt to
seramble {s;) directly as in Fig. 2, we are faced with a dilemma. The
scrambler simply provides a one-to-one mapping between its input and
output. As long as we have no knowledge or control of the statistics of
{s:}, the statistics of {b:} must likewise remain unknown and uncon-
trolled. Hence, the self-synchronizing scrambler alome cannot be
universal.

Instead of scrambling directly, we proceed as shown in Fig. 3. The
source output is first passed through the equivalent of a binary sym-
metric memoryless channel (BSC) with crossover probability e > 0.
Remarkably, no matter how small ¢ may be, this modification of the
source sequence is sufficient to guarantee that the first- and second-
order probability densities for {b;} will approach those of {wi} to
within an arbitrarily small difference 8. The only requirement is that
M, the length of the scrambler, be dependent upon the choice of ¢ and
5. This is the essence of the theorem which we derive below. (We note
in passing that the descrambled sequence will now differ from the
original source sequence by the error rate ¢, but since e may be chosen
arbitrarily small, we assume for now that this is of no consequence.)

To begin, we observe that because of the BSC the scrambler input
sequence may be written

ak=sk®7"k, k=0,1,2,...’ (5)
where
P(r, =1) =1 — P(n = 0)=e.

From Lemma 1 we have seen that the action of the M-stage scrambler
is to dissociate any chosen pair of bits (b, b,) by the mod-2 sum of at
least 2¥-1 “g”" bits. Let us assume that b,, and b, are dissociated by
exactly 27— “a” bits and that they are related by

21{—!

bm = bn @ [E: ap. (6)
=1
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Fig. 3—(a) Universal scrambler. (b) Descrambler.

(Here the subseript ! is unrelated to the original position of a; in the
scrambler input stream.) In what follows we show that P(b, = 1) &2
and that b,, and b, are nearly independent. For these purposes the use
of eq. (6) represents a worst-case analysis. By substitution from eq.
(5) we may write

bm

[t B o]0 [ 8] @
= A ® R

where A and R equal the first and second bracketed terms, respectively.
Since the bits comprising R are independent from those comprising A4,
R is independent of A. Furthermore, by Lemma 3,

PR =1) =3[1 — (1 — 2¢>™]. (8)
Therefore, by Lemma 2, no matter what the value of P(4 = 1),
§ = |Pm =1) — 3| =3[1 — 29 ] =05 (9)

It follows that so long as e > 0 we may force § and § to be arbitrarily
small by choosing a large enough M. Specifically, for a given 3,

In 25

]; 0<e<t (10)
Since § may be made arbitrarily small, the density function p(b,) may
be made nearly white, and it follows that all first-order statistics of the
scrambled sequence may be made nearly white.

Our having shown P(b, = 1) & } does not by itself show that the
source has been effectively scrambled. For example, consider a sequence
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{x,] which consists of consecutive blocks of 100 symbols each. All the

symbols in each block are alike; with probability 3 they are all ones,

and with probability 4 they are all zeros. Here P(z, = 1) = 3 foralln,

yet the sequence has a very “nonrandom’’ nature. The implication is

that to determine the effectiveness of the scrambler, we must also

evaluate the statistical dependence between scrambler output bits.
By definition, the variables b, and b, are independent if

p(bmj bn) - p(bm)P(bn) = 0.

Accordingly, we define the function

A(bm, ba) = p(bm, ba) — p(bu)p(b)
= Db |ba)p(bn) — P(bm)p(ba) (11)

and show that the universal scrambler (Fig. 3) bounds the maximum
value of |[d(bm, ba)|.

We do a worst-case analysis by assuming that b, and b, are related
by eq. (7). Further, we ignore the ““s’’ bits appearing in eq. (7) because,
being independent of R, they can only weaken the dependence between
b, and b,. Hence, we may compute the maximum value of |d(bm, ba) |
by assuming

b = b, ® R. (12)

From eqs. (8) and (9) we note P(R =1) =% — ¢ and for con-
venience we temporarily let P(b, = 1) = b. Substituting these rela-
tions and eq. (12) into eq. (11), we find that

for
bo ba = 0,1;  m>n > 24+,

Hence, for b = 1 we obtain the general result
Id(bm bn) I max — 5/2-

Since § may be forced arbitrarily small if M is given by eq. (10), it
follows that any pair of output bits may be made nearly independent,
and we may whiten to any degree all the second-order statistics of the
source sequence.

We may also show that the joint (second-order) density P(bm, bn)
approaches that for the white sequence. The derivation of egs. (6) to
(9) shows that both the density p(b;) and the conditional density
p(b:|b;) must have values on the interval [(3 — 8), (3 + 8)] for all
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possible values of b; and b;. Hence,

(3 — 8)? = p(bm, b.) = p(ban|b.)p(b,) < (3 + 8)2
or
[ p(bm, b)) — 5| S 6+ 2R 6,
where
bm, b, =0, 1; m > n > 2M+1

For the white sequence {wy], we know p(wnm, w,) = % for wy,, w, =0, 1.
Thus the joint density p(bw, b,) may be whitened to any degree by
choice of 4, ¢, and M.

The discussion above constitutes a proof of the following theorem.

Universal Scrambler Theorem: A binary source with unknown output
statistics is connected fo a binary symmetric memoryless channel and an
M -stage self-synchronizing scrambler as shown in Fig. 3. The channel has
error probability e where 0 < ¢ < 4. The scrambler output is represented
by a sequence of random variables {b,, n =0, 1, ---} and we define
p(ba) to be the first-order and p(bn, b,) the second-order density functions
for {ba}. Then for all 6 > 0; m > n > 24+ gnd b, b, =0, 1,

[p(ba) — | =5, (13)
and

[p(bm, ba) — 3| S 6 + 8% (14)
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provided that

(15)

Mz l+log2[ In 23 ]

In (1 — 2¢)

Figure 4 shows the relation between M, ¢, and 6. As seen, M is
primarily dependent upon e. This may be clarified by rewriting eq.
(15) for small values of e. We then obtain

M = logs (1/€) + logs [In (1/28)]; e < &

The primary importance of this theorem is conceptual. To avoid
inordinate difficulties, many analyses in the literature of digital trans-
mission must assume a priort that the digital source is white. The
theorem relaxes this restriction by showing that in concept the first-
and second-order statistics of any source may be made asymptotically
white. The practical application of this theorem is discussed in
Section VI.

V. AUTOCORRELATION OF THE SCRAMBLED SEQUENCE

An important second-order statistic of the scrambled sequence is its
autocorrelation. We define the autocorrelation as the expectation

R(k) = E[babass],

and for convenience we let the value of b, be 41 or —1. Clearly,
R(0) = 1. For k # 0, we compute a bound on | E[bsbar]|. Following
the argument which led to eq. (12), we have

|E[bubai]] < |E[ba(bn @ R)]|; n,n+ k= 28+ | 0,
By definition,
E[babn] = X X ijP(bm = i|ba = )P(ba = J).
1 7

We let by = b, @ R and for convenience
Pb,=1)=b=1— Pb, =-1).
Substituting, the dependency on b vanishes, leaving us with
Elb.(b, @ RB)] = 2.

R(k) =1 for k =0,
|R(k)| =25  for k0.

Hence,
(16)

Note that, by forcing & to a small value with proper choice of M and
e, this autocorrelation approaches that for a ‘“‘white’” digital source
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which has R(k) = 0, k # 0. This is shown graphically in Fig. 5 which
shows the autocorrelation of “white” and scrambled sources for unit
rectangular pulses.

VI. PRACTICAL CONSIDERATIONS

In practice, the binary symmetric channel required by the theorem
might be implemented as shown in Fig. 6. The bit r; is a logic “one”
only when the level from the noise generator exceeds some threshold.
The threshold is set such that P(r; = 1) = ¢. The noise source need
not be white, but values of n(f) separated by the baud interval should

NOISE nit) THRESHOLD /T D
GENERATOR DETECTOR +

DIGITAL
SOURCE

Fig. 6—One possible implementation of the BSC.
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be independent. In principle, the combination of this simulated BSC
and an M-stage self-synchronizing scrambler will form a universal
scrambler capable of satisfactorily whitening the statistics of any
binary source. Such a serambling structure could be used wherever
randomized bit statistics are essential and a small error rate can be
tolerated (or perhaps corrected by an error-correcting code).

There are, of course, good reasons to avoid actual implementation of
the BSC. First, it may be difficult to generate the r; sequence accu-
rately if e is very small. Second, the deliberate generation of errors, if
not impractical, is at least unpalatable. Third, and most important,
many commonly encountered sources do not need it. Self-synchronizing
scramblers have been used successfully without any prior randomiza-
tion of the source.* In this section we consider the operation of the
scrambler without the BSC and show how a designer may use eq. (15)
to estimate the required scrambler length for a given application.

From eqs. (2) and (5) we deduce that the net effect of the binary
symmetric channel in Fig. 3 is

e < plar|an, a1+, @em1) <1 — € a. =0, 1, (17)

for all k. In other words, because of the BSC there remains a small
uncertainty as to the value of any “a’’ bit, even though all the other
“g” bits might be known. As shown in the theorem, this and the
dissociation property are sufficient to guarantee effective scrambling.
Hence, if the designer knew to begin with that the source itself had the
characteristic

e < psk|so, 81, -, 81) <1—¢ =01, (18)

then no BSC would be necessary, and eq. (15) could be applied directly.
For example, bit streams encoded from analog waveforms (such as
frequency-division multiplexed speech) often have such a property, and
a value for € could be obtained from the coding rule and the amplitude
distribution of the analog signal.

For those cases in which a value for ¢ cannot be computed, let us
assume that the designer has at least some knowledge of the source
pulse density. He could then proceed by estimating a nominal value for
¢ and then decreasing the value to allow some margin. For example, a
source which produces bit streams known to vary from 10 to 90 percent
“ones” over short periods (say, several hundred bits) would have a
nominal e = 0.1. It seems reasonable to allow at least one order of
magnitude “margin” in the estimate, resulting in e = 0.01. Then from
Fig. 4 we see that an eight-stage scrambler should be sufficient.
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Of course, estimating e from the source pulse density does not
guarantee that eq. (18) really holds, but if the source sequence is not
strictly periodic (the case covered comprehensively by Savage), it is a
reasonable procedure. The point here is that even when we are un-
willing to commit deliberate errors to guarantee fixed source statistics,
we may still use eq. (15) to estimate how large a scrambler is required.
Heuristically speaking, eq. (15) is an expression for the “power” of
the scrambler, relating the “randomness” of the input and output to
the number of scrambler stages.

VII. CONCLUSIONS

We have shown that at the cost of an arbitrarily small error rate it is
possible to “whiten’” to any degree all the first- and second-order
statistics of any binary digital source. This relaxes the restriction
frequently found in the literature in which the digital source is assumed
a priort to produce only independent equiprobable symbols. The key
equation in our result [eq. (15)] is useful when designing a standard
self-synchronizing scrambler for a given application.

We leave unsolved the problem of whether universal scramblers exist
for the M-ary source.
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APPENDIX
Proof of Lemma 1*

For convenience, we assume that in Fig. 2a the scrambler initially
contains all zeros. Since each secrambler output bit is ultimately a
mod-2 summation of selected input bits, we may write

by = B hetn s, (19)
E=0

where the binary sequence h, performs the selection. We note that if
ay =1 and a; = 0 for all ¢ > 0, then {b,} = {h,}. But under these

* Independently of the author, U. Henriksson has developed® a proof of a similar
lemma.
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conditions, as described in Section II, {b.} will be a maximal length
sequence. Henee, {h,} must itself be a maximal length sequence.

Now we consider the two output bits b, and b,.. We wish to count
the number of “a’’ bits which entered the summation for b,, but not
b,. We have

bn = E hka,,_k bm = E hkam-k- (20)
k=0 k=0
(a) (b)
Since m > n,
m—n—1 m
bm = g‘, hiGmr ® B hplmi
=0 =m—n
m—n—1 n
= B hitni @ B hnnprlnoi (21)
k=0 E=0

Examination of the subscript range shows that all the “a’ bits
selected by the first summation in eq. (21) are unique to b.. By com-
paring the second summation with eq. (20a) we see that the additional
“q” bits which enter b, but not b, are those for which

hm—nit — Pm—ugihe = 1.

Hence,
m—n—1 n
Jmn = Z hk + z [hm—n+k - hm—n-l-khk:l)
k=0 k=0
or
m—n—1 n n
Jmn = Z hk + z hm—n-bk - Z hm—n+khk, (22)
k=0 k=0 k=0

where addition is now in the usual sense.
We examine this expression in detail, recalling that the sequence
{hi} has period p = (2" — 1) and the given condition n > 2¥+1,

Case (1):If m —n=Kp, K =1,2, ---, then
hic = hm—n+k = hm7n+khk

for all values of k. Hence the second and third summations cancel. But
then the first summation contains K periods of a maximal length
sequence. Since each period contains exactly 2¢—1 ones,® the first
summation totals at least 2(4—1),

Case (2): If m — n # Kp, then it is easily shown® that the sequence
formed by the term-by-term product h,_,:h: has period p and con-
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tains 22 gnes per period. The sequence {hm-_n.x} contains 2(=1
ones per period. Hence the net contribution of the second and third
summations is 2=2 opnes per period. Since n > 2M+! > 2p, the

summations cover at least two periods. Thus their net total is at least
2(M—1),

Thus for either case,

Jo= min [Jma] = 2%-1.

m,n >2M+
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