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Quantizing Noise of AM /PCM Encoders
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We consider the pulse-code-modulation encoder thal contains a della
modulator for analog-to-digital conversion, and a finite impulse response
digital filter that suppresses high-frequency components of the delta modu-
lation signal. A PCM word generator produces fixed-length binary code
words by rounding and amplitude limiting the filter output samples. The
quantizing noise of the resulting PCM signal has four components: della
modulalion slope overload noise, filtered delta modulation granular noise,
amplitude overload noise, and word generator roundoff noise. We analyze
the total quantizing noise for the case where the encoder tnput is a Gaussian
random process and the digital filler tmpulse response is uniform (all
coefficients equal). Such filters possess important implemeniation ad-
vanlages and appear to be near optimal with respect to signal-to-noise
performance. Our analysis results in curves which show the relationship
of signal-to-noise ratio to filter order, delta modulation sampling rate,
and PCM word length.

I. INTRODUCTION

A new approach to digital encoding of continuous waveforms
employs digital hardware to unite the economy of single-integration
delta modulation (AM) with the efficiency of pulse code modulation
(PCM). A finite impulse response digital filter suppresses the granular
noise component of the AM representation of a continuous signal, and
a word generator truncates the binary coded filter output to produce
PCM code words of desired length. This encoding method controls the
precision of the digital code by means of the AM speed and the filter
order rather than with the resolution of the multibit quantizer that
appears in conventional PCM encoders. This is a desirable substitution
in view of current technology in which the cost of high-speed digital
circuitry is rapidly declining.

This method of AM/PCM encoding, which was originally proposed
by Goodman,! has been applied to speech encoding by Freeny, et al. 2?3

183



184 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1973

and to video by Kaneko and Ishiguro.* Previous theoretical results
focus on the filtering of the AM granular noise, but provide little
insight into the important influence of AM slope overload and PCM
amplitude overload on encoder design. Assuming the encoder input is
a sample function of a Gaussian random process, the present paper
analyzes the effects of the overload components of the quantizing
distortion. It demonstrates that amplitude overload noise can be
reduced if least significant bits of the filter output are truncated.

We focus our attention on “uniform filter encoders,” in which all
filter impulse response coefficients are unity. Such encoders offer
significant practical advantages, and they appear to be near optimal
with respect to signal-to-noise performance. For such encoders, we
show how performance varies with filter order, AM speed, and PCM
word length, and we demonstrate the application of our results to the
design of practical encoders.

1I. SIGNAL PROCESSING OPERATIONS

The block diagram of Fig. 1 shows the operations involved in trans-
forming the continuous signal y(f) to a uniformly quantized M-bit
PCM sequence. Digital logic may be added to convert this sequence
to a nonuniform PCM format.® The single-integration delta modulator
of Fig. 2 converts y(t) to a sequence of pulses with amplitude +1or —1
at the rate f, = 1/ per second. The feedback loop is an ideal inte-
grator with gain factor 8, while the up/down counter obtains a digital
replica of 2(f), the AM approximation signal. The output of the Nth-
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Fig. 1—Encoder block diagram.
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order digital filter is a weighted sum of consecutive AM approximations
to y(t).

Although the filter outputs range over a discrete set, the number of
possible filter outputs is unlimited because there is no fundamental
restriction on the amplitude range represented by a delta modulator.
It follows that, with the PCM word length prespecified, an additional
quantizing operation is required. This quantization is performed by
the word generator which restricts to 2# the number of possible coder
output words. The word generator introduces amplitude overload and
it may also add to the granular quantization error by rounding off
least significant bits of the filter output.

The filter and word generator are controlled by a clock which causes
coder output words to be generated at the rate 2W per second, where
W is the bandwidth of the analog input. Hence, the data rate of the
coder is 2 W bhits/second and the PCM sequence may be decoded as
if it were produced by a conventional encoder consisting of a 1/2W-
second sampler and a uniform quantizer with 2™ output levels.

III. THE PCM QUANTIZATION LEVELS

With the filter coefficients, g,, integers as in a practical realization,
the filter output at { = kr is the integer
N—1
ur = 2 giWr s (1)
t=0
where {w,] is the sequence of counter outputs. Because w; = w;_; =+ 1,
the parity of the filter input alternates between even and odd at each
AM sampling instant. It follows that if f,/2W, the ratio of AM sam-
pling rate to PCM sampling rate, is an even integer, the parities of
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Wk, Wk_1, -+, Winy1 are invariant at the PCM sampling instants.
Hence, the parity of u; is the same at all PCM sampling instants.
Because odd-parity filter outputs lead to an easily implemented word
generator, we restrict our attention to encoders in which w; and s
are both odd integers at the PCM sampling instants. The filter coeffi-
cients of these encoders satisfy conditions, derived in the Appendix,
which do not severely restrict the set of available filter transfer func-
tions. The conditions do, however, preclude uniform filter encoders of
orders 4, 8, 12, ete.

If ¢, is the encoder delay, the odd integer . is a scaled approximation
to y(kr — to). To determine the scaling factor, we observe that a(k7),
the AM approximation to y(kr), is related to wi by x(kr) = dws.
Further, since the filter provides relatively distortionless gain over the
signal bandwidth, it expands the amplitude scale of w: by approxi-
mately the amount of the de gain,

I = Z gi. (2)

Thus, (§/I)ux is an approximation to y(kr — t,) and, with u, ranging
over odd integers, the signal levels represented by the input to the
word generator are in the set

5 & & ] 3 8 3)

) ’ I H I ) I ) )
with quantizing step size 26/I. Because the scaling by 8/ is approxi-
mate, we admit an additional scale factor, v, which brings the PCM
representation optimally close to y(f) in the mean square sense. The
actual step size of the filter output is therefore
28
dy = T‘Y . (4)

In Section 7.5, we show that y, which depends on g, is close to unity
for encoders of practical interest.

Figure 3 shows the mapping of the filter output into M-bit code
words. To eliminate « information bits from the binary representa-
tion of ui, the word generator truncates the a 4+ 1 least significant
bits. (With u odd at PCM sampling instants, the least significant bit
always has value one and hence conveys no information.) In the
absence of amplitude overload,

|’Mkl é QMta _ ]
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Fig. 3—Word generator roundoff procedure.

and the PCM code word consists of the M — 1 least significant bits
of the truncated binary representation® of u, and the sign bit. When

|uk| > IMta 1,

the transmitted code word is either the most positive or most negative
M-bit word. A decoder recovers the integer code words of Fig. 3 by
appending a one and « zeros to the least significant end of the PCM
word.

With the truncation of each information bit, the step size increases
by a factor 2 so that, with « information bits truncated, the PCM code

T In Section V, we point out an advantage of the twos complement binary format.
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words represent signal levels in the set

da do du do
4202 4390 452" ... 4 (2¥ —1).20—  (5)
2 2 2 2

with step size
25
d = 2+, = 2“T’Y (6)

and maximum amplitude (2¥ — 1)225y/I.

IV. UNIFORM DIGITAL FILTERS

The value of I, the de gain of the digital filter, is crucial in determin-
ing the character of the overall PCM quantizing noise. With the filter
coefficients all integers, I may be regarded as a measure of coefficient
quantization. A large value of I corresponds to fine quantization be-
cause it allows considerable freedom in choosing g:. To obtain a filter
transfer function that approximates with arbitrary accuracy the opti-
mum transfer function with respect to granular noise,' an arbitrarily
high value of I is required. On the other hand, amplitude overload
noise increases rapidly with I because the dynamic range of the
encoder is nearly proportional to I

The rapid increase in amplitude overload noise as a function of 7
leads us to focus our attention on the uniform filter,

g,=1, ?-=0,1,,N—1, (7)

for which 7 = N, resulting in the greatest dynamic range attainable
with an Nth order filter with all coefficients of the same polarity. (We
exclude from consideration filters with ¢g; = 0 for one or more ¢.)
Reference 1 suggests that, for high sampling rates, the coefficients of
the optimum filter with respect to granular noise are nearly equal and
that the difference in granular noise rejection between this optimum
filter and the uniform filter is marginal. This observation suggests that
encoders with uniform filters, because they minimize amplitude over-
load noise and produce near minimal granular noise, are nearly optimal
with respeet to total quantizing noise. Further support for this specu-
lation is given later.

In the frequency domain, the uniform filter transfer function is
sin (#N f/f.)/sin (= f/f.) and the filter rejects increasing amounts of
AM granular noise as N increases. So long as f./N is large relative to
2W, the signal component of z(¢) is undistorted by the filter; but, as
f+/N approaches 2W, distortion of in-band signal components becomes
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significant, and overall performance deteriorates with increasing N.
Thus, if the advantages of very high-order filtering are sought, designs
more sophisticated than eq. (7) are required.

V. IMPLEMENTATION

Besides possessing noise-rejection properties, uniform filters admit
considerable hardware economies relative to other designs. With all
coefficients unity, no multiplication is required, and each filter output
is merely the sum of N successive counter levels. Therefore, one may
implement the uniform filter as a resettable accumulator, thereby
eliminating the delay line of Fig. 1, as well as the multipliers. To obtain
a PCM sample, the coder sets the accumulator to the current level of
the up/down counter and adds to the accumulator the next N — 1
counter levels.

Because the addition of N numbers is required only once for each
PCM sample, and because f,/2W, the number of AM samples per PCM
sample, is generally much greater than N, it is possible to time-share
a single accumulator among many signal channels. With inputs pre-
sented to the accumulator at the AM rate, the number of channels
sharing a single accumulator may be as high as f./2WN. Hence, in
terms of hardware requirements, the filter order, N, determines time-
sharing capacity rather than the number of circuits necessary to
realize a single encoder.

In addition to adding counter levels into an accumulator and
truncating least significant bits of the sum, the encoder must detect
amplitude overload and generate the most positive or most negative
code word when the word generator is overloaded.

It must also restore the proportionality of the counter level, wy,
to the AM approximation, x(kr), after each instance of counter over-
load. The wrap-around property of twos complement arithmetic
ensures this proportionality whenever |z(k7)| < (2¥+= — 1)8. On the
other hand, a saturating counter would require special measures to
restore tracking after each instance of counter overload.

VI. ENCODER PERFORMANCE

6.1 Figure of Merit and Design Specifications

An 1deal decoder of the encoder output sequence obtains §(¢) ( defined
in Section 7.1), a delayed, noisy approximation to the analog input
y(t). We define the quantizing noise power of §({) to be

Nr = E{[y3(t) — y(t — t) P} (8)
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Fig. 4+—Relationship of design objectives (Z5,Zr) to figure of merit (Z).

where E denotes expectation, {o is the encoder delay, and v is the
mean-square optimum scaling factor. For each digital filter, PCM word
length, and AM sampling rate there is a unique combination of values
of 8, the AM step size, and «, the word generator parameter, that
results in minimal N r. We choose as a figure of encoder merit the ratio
of signal power to this minimum noise power,’

, _ Bilvt — )

min N

(9)

In the design of a practical encoder, typical specifications include a
signal-to-noise ratio design goal, Zp, and a range, Zg, of input powers
over which the actual signal-to-noise ratio must equal or exceed Zp.
The practical significance of our figure of merit is found in the
approximation

t N7 is a convex function of & and e. In our numerical work we have used simple
search techniques to find mina.; Nr.
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where each quantity is measured in decibels. For example, an encoder
for which Z = 55 dB will actually attain this signal-to-noise ratio for
a single level of input power, and will maintain a signal-to-noise ratio
of 35 dB or better over a range of 20 dB in signal power.

Equation (10) is derived from Fig. 4, an approximation to the
dependence of signal-to-noise ratio on input level. If (¢/8) exceeds
(a/8)opt, the optimum ratio of rms input to AM step size, overload
noise predominates in the distortion and the signal-to-noise ratio falls
rapidly as o? increases. On the other hand, with (¢/8) < (¢/8)opt,
granular noise predominates and, with & fixed, is essentially indepen-
dent of o. Hence, the signal-to-noise ratio is proportional to ¢* in the
granular region.

If the ensemble of input power levels is log-normally distributed, as
in models used for speech signals,® 10 log (¢/8)? is a normal random
variable, the mean value of which we denote by 10 log (¢/8). Hence,
the probability that the signal-to-noise ratio exceeds Zp is maximum
when ép, the design value of the step size, is chosen such that

10 log (&/8p)? = 10 log (¢/8)%, — 1 Z&. (11)

That is, 10 log (#/8p)* is the midpoint of the design range of length Z 5.

6.2 Performance Characteristics

Figure 5 shows a typical set of performance curves, computed
according to the theory presented in Section VII. The curves pertain
to 11-bit encoding of Gaussian signals having a truncated first-order
Butterworth power spectrum, where the ratio of 3-dB frequency to
cutoff frequency is 0.25. This type of process has been used to model
band-limited speech.” The performance curves show the figure of
merit, Z, of uniform filter encoders of various orders as a function of
f+/2W, the AM sampling rate expressed as a multiple of the PCM rate.

The choice of a specific encoder configuration represents a com-
promise between the advantages of low AM speed and low filter order.
The nature of this compromise is illustrated in Fig. 6, which shows
combinations of AM speed and filter order that satisfy two quality
objectives. The broken curves relate AM speed to the maximum filter
order consistent with sharing the accumulator described in Section V
among 24, 48, and 96 signal channels, respectively. All design points to
the right of a broken line are permissible for the given number of multi-
plexed channels.
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6.3 Dependence of Performance on Design Parameters

Figure 5 demonstrates two types of variation of Z with f,: Z rising
with a slope of 20 dB/decade, and Z flat or decreasing slowly with f,.
The first type of behavior occurs when amplitude overload is negligible
and slope overload controls the optimum AM step size. In this case,
the optimum step size varies approximately as 1/f., and the decrease
continues until amplitude overload becomes significant. When ampli-
tude overload is the predominant overload noise, the optimum step
size is essentially constant and the slightly negative slope of Z indicates
that an increase in f, results in an increase in the granular noise corre-
lation from sample to sample, leading to a greater proportion of the
AM granular noise power in the passband of the filter.

The flat portions of the curves represent transition regions to higher
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Fig. 6—Design alternatives derived from Fig. 5, M = 11 bits, Butterworth
spectrum.

values of @, at which the increased roundoff noise of the word generator
is offset by improved immunity to amplitude overload. As f, increases
indefinitely, Z approaches the maximum signal-to-noise ratio associated
with uniform PCM encoding of Gaussian signals.

In Figs. 7 and 8, we see that the shapes of the characteristic curves
are essentially invariant with the number of bits in the PCM code.
In Fig. 7, which pertains to 11-bit encoding of signals with a flat
spectrum, amplitude overload effects occur at points that are approxi-
mately 10 log (2"/2%) = 18 dB higher in signal-to-noise ratio and
further to the right by the factor 2/28 in sampling rate, relative to the
corresponding points in Fig. 8, which pertains to 8-bit encoding of the
same input process.

Figures 5, 7, and 8 also demonstrate the effect of filter order. When
fais quite low and amplitude overload is negligible, Z increases mono-
tonically with N. However, the value of f, at which amplitude overload
becomes significant decreases as N increases, and the earlier transitions
froma=0toa=1 a=1t a=2 etc., lead to the crossovers.

Figures 5 and 7 relate to the same PCM word length but different
signal spectra. The principal difference between the two sets of curves
is a scale change of the horizontal axis. In Fig. 5, the axis is shifted to
the left relative to Fig. 7 by the factor 1.6, which is the ratio by which
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the rms slope of signals having the uniform spectrum exceeds the rms
slope of signals having the Butterworth spectrum.

VII. QUANTIZING NOISE ANALYSIS
7.1 Noise Componenis

To reconstruct an analog signal from the sequence of word generator
outputs, we first recover one of the integers shown in the ath column
of Fig. 3 by appending a one and « zeros to the least significant end of
each code word. We next multiply the sequence of integers by the
nominal scale factor 8/1 and denote the resulting sequence by {#;}.
Finally, we perform ideal interpolation of {;} to obtain the continuous

waveform
= sin 2eW(t — j7/2W)
i) = i : 12
o ,.E,a W aw — j2w) 12)
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Our purpose, in this section, is to investigate the difference between
#(t) and the encoder input, y(t), when this input is a sample function
of a zero-mean stationary Gaussian random process. Qur measure of
distortion is the total quantizing noise power, N, defined in eq. (8).
Because y(t) is stationary, N7 is independent of time, and in the sequel
we omit time arguments and subscripts from the notation of signals
when there is no risk of ambiguity. Although v in eq. (8) is a compli-
cated function of signal statistics and encoder design parameters, the
introduction of the preliminary scaling factor, §/I, leads to ¥ = 1 in
situations of greatest interest. (See Section 7.5.) The other constant
in eq. (8) is ¢y, and we observe that if the filter coefficients have even
symmetry (g; = gy—1-.), the filter delay is

to = (N — 1r/2, (13)

one-half the filter memory span.
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To derive N as a function of the encoder design parameters, we
recognize # as the sum of a signal term and four noise terms. We begin

by writing
., 0
¥ = }(u + nw) (14)

where u is the filter output and n. represents the difference between
the input and output of the word generator. In studying (6/1)u, the
filtered AM signal, it is customary to identify granular and slope over-
load components of the AM quantizing noise, in the manner indicated
in Fig. 2. If we rewrite eq. (1) as u = g * (2/8), with denoting con-
volution and x denoting the approximation signal in the delta modu-
lator feedback loop, we obtain

E1.5=g=|=:r:=g=|=(y-|—na—|—ns) (15)

I I I
where ng and ns are AM granular and slope overload noise, respectively.

The distortion introduced by the word generator, (8/I)n., may

itself be resolved into two components, namely, n4, which accounts for
amplitude overload, and ng, which represents the roundoff effect.
These observations lead us to a representation of the quantizing noise
signal as the sum of four noise components:

(v§ — v =[77g*(y+na) —y]+1f*ns+7n4+vnn. (16)

The term in square brackets is the filtered granular noise, and the
remaining terms are slope overload noise, amplitude overload noise, and
word generator roundoff noise, respectively. In this paper we evaluate
the expected square of eq. (16) by assuming that the expected product
of each pair of terms is negligible relative to the sum of the two mean
square values. Thus we express the total quantizing noise as the sum
of four noise powers

NT=NG+T2NS+'YZNA+'Y!NR (17)

in which each term is the expected square of a term in eq. (16).

When the total quantizing noise is low, we are justified in approxi-
mating the average cross products of eq. (16) by zero because: ()
granular noise and roundoff noise are zero during overload bursts; (i7)
each type of overload occurs with low probability and the probability
of their joint occurrence is negligible; and (:77) we have found that
| E(ngng)| is many orders of magnitude lower than N¢ + Nz when
Mz 4.
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7.2 AM Granular Noise and Slope Overload N oise

Expanding the square of the term in brackets in eq. (16), we obtain
N—1

Y .
Ne = E(y*) — 2- X giltay (i — o)

1=0

¥ 2 N—1N—1
+(3) T L sakutir— i 09

in which the AM correlation functions,
Rey(r) = E[y)a(t + 7)),  Ra:(r) = E[z(Dz(t + 7)]

are derived in Ref. 8, under the assumption that overload never occurs.
To use the results of Ref. 8 and also account for overload, we should
multiply Ng in eq. (18) by the probability that overload is absent. For
the applications that interest us, the probability is greater than 0.99,
and we adopt eq. (18) as an approximation to Ng that overestimates
the granular noise component of Nr by no more than one percent. In
Section 7.4, we similarly overestimate Np.

To compute N5, we adopt the assumption of previous authors?? that
essentially all of the AM slope overload noise power is in the signal
band of y(¢) so that Ns = E{[(¢/I) *ns]?} = E(n2). In our numerical
analysis, we have followed Protonotarios,® who derives E(n2) as a

function of
b) dy1?)
S:—{E[—:H , (19)
T dt

the ratio of the maximum slope of z(f) to the rms slope of y(f). For
high values of S, N is proportional to S~ exp [ —18?].

7.3 Amplitude Overload Noise

The maximum output of the word generator is 2(2™ — 1). Assum-
ing there is no granular or slope overload noise during amplitude
overload intervals,

]
ma= Ay - Z20@Y 1) gay > 202 — 1)
g &
=Ty S2@Y S 1) gey < - 20@Y - 1
= 0; lg *y| = 2=(2™ — 1)5. (20)

Because (g/I) * y is a sample function of a zero-mean Gaussian process
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with variance

2 1 N—1 N—-1

or = — L L gigiRy(ir — jr), (21)

I =0

the mean square value of eq. (20) is

Na

(2/w)é[m on(z — A)?exp (—3a?)da

A

or{(1 + A?) erfe (2714) — (2/7)'A exp (—34%)]  (22)
in which 4 is the amplitude overload factor,
22(2M — 1)5

Ior

(23)

7.4 Word Generator Roundoff Noise
With » the filter output and z(-) the mapping shown in Fig. 3,

Ng = %:E[(z — u)?]. (24)

Because u is an odd integer, we have the binary number representation
of u > 0,
u= 2 b2+ 1
i=1
where b; = 0 or 1. The word generator truncates bab.—1 - - - b;1 from

this representation and z is obtained by replacing these digits with
10 - 0 = 2=

Hence
2= 2 b2 4 2= (25)
i—a+l
and
z—u=0; a=10
=2« —1— % b2% a=1. (26)
=1

For u < 0 the odd symmetry of Fig. 3 implies z(u) = — 2(—wu).

Hence z — u is an odd integer in [— (2= — 1), 22 — 1] and the ex-
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pectation in eq. (24) is a weighted average of the integers

12, 3% -+, (2« — 1)%. From this observation, we immediately obtain
the bounds

82 62

_ —_ a __ 2

7 =Nr= 7 (2 1)2. (27)

With @ = 1, the bounds are equal and Nz = 8/

For @ > 1, we evaluate Ny only for coders with uniform digital
filters. All odd integers are possible outputs of such filters. That is,
Pr{u = 2n + 1} > 0 for all n and, for low-noise encoding, this prob-
ability is quite nearly constant over a set of 2=~! consecutive integers.
When scaled to the amplitude range of (), such a set of filter outputs
lies in an interval of length

26
T =dz, (28)

a small fraction of ¢ (typically of the order of 4¢/2M). For M= 5,
the envelope of Pr{w = 2n 4 1} has approximately the Gaussian
shape of the probability density of y(¢) and a piecewise constant ap-
proximation to this density over intervals of length d or less leads to
highly accurate expressions for quantizing noise power.?

Over intervals of length d/2, (z — u)? takes on all the values 12,
3%, -+ (2* — 1)? either in ascending or descending order. Hence, the
piecewise constant approximation to Pr{u = 2n + 1} reduces the ex-
pectation in eq. (24) to an unweighted average of these 22! integers,

N & —(a—1) . 9; . @ —-1
R“FZ El(ﬁ_l)—ﬁ 3 : (29)

Noting that eq. (6) admits the expression

\ (5)2 B d2
Y'\1) T 1ae’

we summarize the results of this section as follows:

¥:Ng = 0; a=10
d‘2

=E, a=1
d2

E (1 —4-=); a = 0, uniform filter encoders. (30)
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The last line indicates that Nz — d2/12 as @ — . This limit is the
granular noise associated with instantaneous PCM encoding of samples
ranging over the continuum.

7.5 The Optimum Scale Factor

To complete our quantizing noise analysis and establish the validity
of prescaling the word generator output by 8/, we show that v, the
additional scaling factor that brings the amplitude of §(¢) optimally
close to that of y(f) in the mean square sense, is nearly unity in designs
of practical interest. Specifically, we derive the inequalities,

(1—b)7n<'¥<"¥u (31)
where b is of the order of magnitude of the noise-to-signal ratio and

N—1 N-1

Z Z gig.fRyu(iT - tﬂ)
i=0 j=0

Yo = . (32)

N—1 N—1

> 2 gigilt,lir — Jr)

=0 j=0

Clearly as f, — =, all of the covariances in eq. (32) approach ¢* and
hence vo — 1. In all of the numerical examples considered in Section
VI, the sampling rates are so high that vy, is quite nearly unity.
For example, all of the points plotted in Fig. 6 correspond to
0.99 < yo < 1.0L

By definition, v is the value of ¢ that minimizes

e 2
Ber - 9 = E[ (et —v+on) | @)
The expression in square brackets on the right side is identical to eq.
(16) with ¢ replacing v and cno replacing the last three terms. Because
we have assumed the correlation of ng and [ (eg/I) * (y + ne) — ¥
to be zero, we may rewrite

2

E[(c) —y)*1=E [% *(y + ne) — y] + E(ny).  (34)

Differentiating this equation with respect to ¢, and equating to v the
value of ¢ that causes the derivative to be zero, we obtain
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E[?f% *(y + HG)]

T= 2
E[f; «(y + ﬂa)] + E(ny)

1 N-1
} Z giR:y(iT - tﬂ)
i=0
Y ' (35)
7 2 2 gigifaa(ir — jr) + Ns+ Na + Ng
1=0 j=0

Reference 8 demonstrates that, for low-noise encoding, the approxi-
mations R., = R,, and R.. = R,, + R.. [where R,.(-) is the auto-
correlation function of the unfiltered granular quantizing noise ] are ex-
tremely precise. Thus eq. (35) becomes

1 N1
- 2 giRy,(ir — )
I
Y= 1 N-18-1 ) (36)
F > 2 gk, (ir — j7) + Ne + Ns+ Na+ Ng
i=0 j=0
where
, N—1 N—1
No=—= 2 T ggifelir — jr)
-[2 =0 j=0

and is of the order of magnitude of Ng.! We now recognize that the
first term in the denominator of eq. (36) is ¢ [eq. (21)], the power of
the filtered signal component of the AM approximation. If we divide
numerator and denominator by this term (and substitute ¥, g; for I)
we obtain

Yo
= 37
v = n (37)
where we have defined
b= (No+ Na+ Ns+ Nu)/or (38)

which is the order of magnitude of Nr/¢2 Equation (31) follows
immediately from eq. (37).
VIII. SUMMARY AND CONCLUSION

Section VII presents the analytical steps enabling us to compute
the figure of merit, Z, of a AM/PCM encoder. The rationale for using



202 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1973

this figure of merit is presented in Section VI (Fig. 4) along with
results for some special cases of interest (Figs. 5, 7, and 8). The ultimate
utility of these results is that they enable the designer to determine
tradeoffs between AM sampling speed and digital filter order for
specified values of encoder quality (e.g., Fig. 6).

We should reiterate the conditions assumed for the encoder in deriv-
ing our results. First, we have assumed that the digital filter output is
at odd parity at every PCM sampling instant. Aside from simplifying
the roundoff noise analysis, this condition appears to correspond to the
simplest possible implementation of the PCM word generator. The
primary design constraint it imposes is the prohibition of digital filters
of orders 4, 8, 12, etc.

Second, we have assumed that the digital filter has uniform co-
efficients. This condition makes a complete noise analysis relatively
straightforward and also leads to a simple filter implementation.
Furthermore, it corresponds to a robust design that appears to be
near optimal in all cases of practical interest. Attempts to demonstrate
the latter point quantitatively have foundered on the difficulty of
assessing the roundoff noise power (N ) when the filter coefficients are
nonuniform. If we assume that, for any step size, d, the roundoff noise
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Fig. 9—Uniform filter assessment.
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power is nondecreasing with the number of bits truncated, we can
derive an upper bound on Z. A comparison of this upper bound, Z,
with the figure of merit resulting from uniform coefficients is shown in
I'ig. 9 for one case. Comparable results can be expected for other
combinations of signal spectrum, PCM word length, and filter order.

APPENDIX
Odd-Parity Filter Outputs

With the encoder delay equal to one-half the filter memory span
[eq. (13)], we consider symmetric coefficient sets

gi = gN-1-i t=0,1,---,3 N—1; N even

1
2
39
gi = gN-1-1) Z=0,1,,%‘(N—3), N odd. ( )

Such coefficients give equal weight to counter levels that are equally
advanced or retarded with respect to y(kr — &), the input value
estimated at ¢ = kr. Equation (39), when combined with eq. (1),
implies

IN—1
uk = 2 gl wiei + Wi von4id; N even  (40)
i=0
F(N-3)
Up = Grv—nWr—sv—n + 2 gilwi—i + we—wv—n+i]; N odd. (41)
1=0

With the counter levels, w;, alternating in parity, the two counter
levels in square brackets in eq. (40) are of opposite parity because the
difference in subscripts, N — 1 — 21, is an odd number. Hence, their
sum is odd. On the other hand, the two corresponding counter levels in
eq. (41) have the same parity, and thus an even sum, because
N — 1 — 2{ is even with N odd. These observations lead to the
following necessary and sufficient conditions for u; ranging over the
set of odd integers:

Condition A: With N even, u, is odd if and only if there is an odd
number of odd coefficients in the set go, g1, - - - , gan—1-

Condition B: With N odd, u; is odd at a PCM sampling instant if
and only if gyv-1) is odd and the low-speed clock is synchronized so
that PCM sampling instants occur when wi_3w-_1y is odd. This syn-
chronization can be achieved if the ratio of AM sampling rate to PCM
sampling rate is an even integer.
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In uniform filter encoders, Condition A is always satisfied when

N = 2, 6, 10, etc. It can never be satisfied with N = 4, 8, 12, etc. For
Condition B to be satisfied, the encoder must be synchronized such
that w;_y4: (the first term entering the accumulator described in
Section V) is odd when N = 1, 5, 9, ete; wx_n+1 must be even when

N

= 3,7, 11, ete.
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