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Bubble technology offers several operations that have no equivalents in
technologies based on magnetic recording. Examples of such operations
are: transfer, reversal of the direction of propagation, and opening and
closing of gaps in the data stream. This paper* shows how such operations
can be used to dynamically reallocate data in the bubble memory, causing
it to become an integrated memory hierarchy. A considerable improvement
in performance results. A model is presented which relates the bubble
memory with dynamic reallocation fo stack processing, a technique used
in the evaluation of memory hierarchies. With the aid of this model it
becomes possible to calculate the performance of the bubble memory using
published data derived from the traces of selected typical programs.
Memory design is optimized for the execution of such programs. Design
parameters are proposed for a 2-Mb bubble memory with 128 detectors
which, in the execution of the type of program for which data were available,
requires an average of only 8.8 shifts for access and an average of 12.1
shifts per memory cycle. If bubbles are propagated at a rate of 1 MHz, the
average access and cycle times for this memory become 8.8 us and 12.1 us,
respectively. Such performance, in conjunction with the low cost per bit
offered by bubble technology, is expected to have a major impact. The per-
formance of this memory, when operated in conjunction with a faster
buffer, is also calculated. The use of a 64-kb buffer is shown to reduce the
average number of shifts for access to 1.05, and the average number of
shifts per cycle to 1.9.

I. INTRODUCTION

One major area of application of magnetic bubble technology is
mass memory.! The potential advantages of bubbles over disk files
and drums are: shorter access time, lower cost and power dissipation,

* The contents of this paper were presented at the 1972 Intermag Conference by
P. I. Bonyhard.
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reduced volume, and a higher degree of modularity.2 Moreover, there
are several operations which can be performed on the information in a
bubble memory which cannot be performed by conventional magnetic
recording. The purpose of this paper is to show that a magnetic bubble
memory can function as a hierarchy, given certain operations which
are not difficult to realize.

The operations relevant to this paper are: transfer, instantaneous
reversal of the direction of propagation, and removal of bubbles from
a propagate channel while closing the gap left by them or creation of
a gap while inserting new bubble information into the channel. Transfer
of bubbles from one propagate channel to another already plays an
important role in the design of bubble mass memories."? By a process
of (7) propagating forward n cycles, (it) removing bits from the channel
and closing the gap, (ii) propagating backward n cycles, and (i)
opening a gap and reinserting the bubbles, a permutation of the
information in the channel is effected. It will be shown how a simple
algorithm using one permutation element per propagate channel causes
the memory to function as an integrated hierarchy. We also show how
this dynamic reallocation of data can be combined with the major-
minor loop organization' so as to optimize memory cost performance.
It is concluded that the improvement is so substantial as to have a
major impact in the computer industry.

II. DYNAMIC DATA REALLOCATION IN CLOSED LOOP SHIFT REGISTERS

Consider an assembly of simple, closed loop shift registers as shown
in Fig. 1a. Information propagates in all registers synchronously under
the influence of a common rotating drive field. One page of information
is stored along a horizontal line, a particular page being formed by
the black dots in Fig. la. It is inherent in the dynamic scheme that
each page must carry its own reference address and some of the bits
of the page are devoted to this purpose. Thus, extra loops, totaling
log: (number of pages), have to be provided.

Upon request for a specified page, information is shifted clockwise
until the appropriate group of detectors, the position of which is
marked D in Fig. 1b, detects the right address. This takes, say,  cycles
of propagation. Now the page can be read or rewritten. The memory
next is reset by shifting z cycles counterclockwise. Using the circuit
arrangement of Fig. 1b, the addressed page will remain arrested at
the detectors while all other pages move back. A T-bar realization
of Fig. 1b is shown in Fig. 2. This design has been operated quasi-
statically to demonstrate feasibility.
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Fig. 1-—Assembly of shift register loops for dynamic address reallocation.

Now let the physical page locations be numbered 1, 2, 3, --- , n,
according to their distance from the detectors. A given page will reside
in a location, the number of which is equal to the number of requests
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Fig. 2—Magnetic circuit used to realize the function of Fig. 1b.
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that have been made, since the page was last requested, for pages
originally in locations with higher numbers. Pages never requested will
lie in the locations with the highest numbers. Thus recently used
pages are mnear the ‘“‘top,” whereas less recently used pages are
farther down. This replacement algorithm has been discussed before
in the literature and has been named “the stack.”?

It will now be shown how the average number of shifts necessary
to reach an addressed page in the bubble stack can be calculated.
Consider the stack to be arbitrarily divided into two parts, one part
consisting of pages in locations 1, 2, +++ , ki, and the other part of
pages in locations k; + 1, k; + 2, - -+, n. It should be recognized that
the first k; page locations can be thought of as forming a “buffer” and

TasLe [—Hir Ramo Data (REPRODUCED FrROM REF. 4)

Buffi
Suiz:r Page Size (Bits)

(Bits) |Classes| 128 256 512 1k 2k 4k 8k 16k* 32k*

8k 1 0.894 0.915 0.928 0924 0.884 0.792 0495 — —
4 0.895 0.916 0.921 0.904 0.791 — — — —
16 0.891 0.903 0.860 — —_— — —_ —_ -
64 0.857 — — — — — — - —

16k 1 0.931 0.949 0.957 0.958 0.950 0.912 0.824 0.56 —
4 0.931 0.948 0.954 0.955 0.933 0.808 — - —
16 0.930 0.943 0.943 0909 — — - - -
64 0.921 0913 — —_ — — — - -

32k 1 0.951 0.969 0.973 0.978 0.977 0.966 39 0.86 0.64
4 0.955 0.969 0.973 0.977 0.974 0.951 34

16 0.955 0.968 0.972 0.970 0.933
64 0.955 0.963 0.948 —

oo
-3~

RN
N

256 093¢ — — —
64k 1 0.977 0.986 0.988 0.985 0.987 0.987 0.98¢ — —
4 0.981 0.986 0.988 0.986 0.987 0.985 0.965 — —
16 0.981 0.985 0.988 0.987 0.983 0.95¢ — —_ -

64 | 0979 0984 0985 0974 — —
256 | 0.974 0971 — — —

128k 1 0.985 0.993 0.994 0.996 0.993 0.992 0.994
4 0.990 0.993 0.994 0.996 0.994 0.992 0.993
16 0.990 0.994 0.995 0.997 0.995 0.991 0.957
64 0.990 0.994 0.995 0.995 0.985 —

256 0.989 0.992 0.986 — — —

LT
LT

256k 1 0.989 0.996 0.997 0.997 0.999 0.994 0.997 — —
16 0.994 0.996 0.997 0998 0.998 0.996 0997 — —
32 0.994 0.996 0.998 0.998 0.998 0.997 0997 — —
64 0.994 0.996 0.998 0.998 0998 0.988 — — —

256 | 0.994 0.996 0097 0992 — —
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the last n — k; pages a “‘memory” in the terminology conventionally
used for two-level memory hierarchies.>* Whenever a page is brought
from the memory to the buffer, the page currently in the k;th position
moves from the buffer to the memory. Clearly, this page is the least
recently used page in the buffer, so that the replacement algorithm in
this two-level hierarchy is “least recently used” (LRU). Hit ratios,
that is, fractions of all requests that can be satisfied from the buffer
without reference to the memory, can be found in literature. A par-
ticularly useful set of hit ratio data is given in Table IT of Ref. 4 and
is reproduced as Table I of this paper. The columns marked with
asterisks contain entries obtained by graphical extrapolation from the
original data.

In a two-level hierarchy, derived by cutting the bubble stack at
the kth location, the number of bits per page is equal to the number
of bubble loops, say, £{. The number of bits in the buffer is then £k,. If
the corresponding hit ratio is ki, then the average number of shifts
necessary per request might be estimated as

3 ks“-lh+n+k{—1(1 h)
- 2 1 2 1/ -

This is the average number of shifts in the buffer times the probability
of a hit, plus the average number of shifts to the memory times the
probability of a miss.
The bubble stack, however, can be cut at any location. A better

estimate is obtained by dividing the stack into m > 2 levels

- o mkit ki —1

S=————(hi — hisy) (1)

=1 2

where k, = 0, kw = n, and h, = 1. The best approximation to S is
achieved when every value of k between 1 and = is taken into account:

S— ¥ (k= 1)(he — hey).
k=1
This result is, of course, self-evident, as k¥ — 1 is the distance of the
kth location and Ay — hi—: is the probability of hitting the kth location.
S has been calculated on the basis of eq. (1) using the entries that
can be found in Table I. It is an overestimate because it divides the
probability equally among the levels between entries. Actually, the
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Fig. 3—Schematic representation of the operation of a major-minor loop organized
memory with dynamic data reallocation in the major loops.

probability must be monotonically decreasing. The results are tabu-
lated below:

Number of loops ' 128 256 512 1K 2K 4K 8K
Minimum number of bits per loop 2K 1K 512 256 128 64 32
Average number of shifts 57.8 259 12.13 5.67 3.08 1.44 1.05

The minimum number of bits per loop listed in the above tabulation is
based on the information kindly provided by the author of Ref. 4 to
the effect that the average program size used in deriving the hit
ratio data was 256 kb. Thus closed loop shift registers can access data
at least ten times faster with dynamic reallocation. A magnetic bubble
memory with this feature is, in fact, an integrated hierarchy.

III. DYNAMIC DATA REALLOCATION IN MAJOR-MINOR LOOP ORGANIZED
MEMORY PLANES

Dynamic data reallocation in closed loop shift registers does not
appear to be a very attractive bubble mass memory design. Each loop
must have its own detector, so that either the number of detectors or
the average number of shifts is high. The average number of shifts for
a given number of bits per detector does not compare too favorably
with the major-minor loop organization.! Dynamic reallocation may,
however, be combined with major-minor loop organization to form an
extremely attractive design. Dynamic reallocation can be performed in
the major loops only, in the minor loops only, or in both. The last of
these three options is probably too complex to be of practical use. A
design based on the first option is presented below. The second option
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may be a valid alternative but, at least in the authors’ opinion, it is
less attractive.

Figure 3 illustrates schematically how the system operates. The
information that may occupy the assembly of all the major loops
concurrently forms a class. One of the classes is selected by shifting
information in the minor loops until the required class is aligned for
transfer, and then transferring it into the major loops. Two bits from
each minor loop are transferred and the major loop is filled completely.
Consequently, two bits of each class are stored in each minor loop in
each memory plane. A plane consists of one major loop and all the
minor loops associated with it, as well as one detector and one con-
trolled bubble generator operating on the major loop. Once the right
class resides in the major loops, the major loops operate exactly as the
assembly of loops described in the previous section. The net result
is that page locations are dynamically reallocated within each class,
but pages are never permitted to cross class boundaries. Hit ratios
that correspond to such a multiclass system are given in Ref. 4, and
also appear in Table I.

It should be recognized that a page in this system consists of all
those bits that may concurrently be detected. Thus there is one bit of
each page in each plane. Also, the transfer mechanism considered here
is of the “conductor’” variety,' so that reversing the sense of propaga-
tion may be freely used to accomplish dynamic address reallocation
in the major loops. As this consists of an equal number of forward and
reverse shifts, the gaps left in the minor loops are correctly aligned at
the time the class is to be transferred back.

Reaching a page in the memory is accomplished in two steps. First
the right class is positioned and transferred into the major loops, and
then the page is brought to the read/write port. The latter step has
already been discussed in the previous section, but the former one,
class swapping, needs some elaboration. Following the approach taken
in Ref. 4, it is assumed that several programs are concurrently resident
in the memory. More specifically, the memory size is chosen to be
2 Mb, whereas the average program size is 256 kb, so that an average
of 8 programs may share the memory. It is assumed that each program
resides in some number of contiguous classes which will be called
active classes for the program currently being executed. The class
occupying the major loops at any given time can be looked upon as a
single-page buffer of a single-class two-level hierarchy, with all the
other classes forming the rest of the pages in the memory. Of course,
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for a single-page buffer the replacement algorithm is trivial. However,
as can be seen in Table I, the hit ratios associated with such single-
page buffers are still fairly high. Consequently, there is a good chance
that the next request is addressed to the class already in the major
loops, provided that the addressed class is not transferred back to the
minor loops until it is known which class is addressed next. Therefore,
it makes good sense to operate in this manner.

The average number of shifts necessary to bring out the new class,
provided that a “class-page” failure has occurred, will now be calcu-
lated. It is assumed that the particular program executed at the time
resides in m contiguous classes and the 7th class was addressed last.
In the absence of any further information, it appears to be reasonable
to assume that each other class is equally likely to be addressed next.
Consequently, the average number of shifts is

_ 2 si-l m—i S 1)1 . o
Sm=—(2j+2j)=(zmﬁ+(m i+ 1)(m — i)

m \j=1 j=1 m

It has to be remembered that there are two bits per class in each minor
loop. The average S, must be further averaged as ¢ assumes all values
between 1 and m, so that

2m2—1

m

ifﬁ ——Z(t—l)z
m ;

To this two further shifts must be added to accomplish in and out
transfer of two bits per minor loop. The total average number of class
swapping shifts per page request is

2m?—1
Scl = (1 - hcl) (_ + 2) (2)
3 m

where h., is the class hit ratio discussed earlier in this section, and is
the number of active classes.

To the class swapping shifts, given by eq. (2), one must add the
average number of shifts necessary to reach a page within the selected
class to get the total average number of access shifts per request to
the memory. The average number of shifts within the selected class is
given by eq. (1) with the hit ratios taken for the appropriate number
of classes. The latter quantity must be doubled when calculating the



BUBBLE MEMORY

315

average number of shifts per memory cycle. The results are given
below for three alternative designs labeled A, B, and C.

A B C
Bits per memory 2M 2M 2M
Planes per memory 128 128 128
Bits per plane 16k 16k 16k
Classes 64 128 256
Bits per minor loop 128 256 512
Minor loops per plane 128 64 32
Bits per major loop 256 128 64
Active classes 8 16 32
Active bits per minor loop 16 32 64
Class hit ratio =~ (.64 =0.56 0.495
Class swapping shifts 7.25 12.63 23.3
Class swapping shifts per request 2.61 5.56 11.8
Page search shifts 7.00 3.26 1.40
Total shifts per access 9.61 8.82 13.2
Total shifts per cycle 16.61 12.08 14.6

Details of the page search shift calculations are given in Table II.
The memory size was chosen to be consistent with Ref. 4, where the

TaABLE II—CALCULATION OF THE AVERAGE NUMBER OF PAGE
SEARCH SHIFTS FOR THREE DESIGNS

kit ki —1 }(hi — hisy)X
Design k; 2 ks hi —hioy (ki + kiy — 1)

8 3.5 0.894 0.894 3.13
16 11.5 0.931 0.037 0.43
A 32 235 0.955 0.024 0.56
64 475 0.981 0.026 1.24
128 95.5 0.990 0.009 0.86
256 191.5 0.994 0.004 0.77
6.99
4 1.5 0.891 0.891 1.34
8 5.5 0.930 0.039 0.21
16 11.5 0.955 0.025 0.29
B 32 23.5 0.981 0.026 0.61
64 475 0.990 0.009 0.43
128 95.5 0.994 0.004 0.38
3.26

2 0.5 0.880 0.880 0.440

4 2.5 0.934 0.054 0.135

o 8 5.5 0.955 0.021 0.115

16 115 0.980 0.025 0.287

32 23.5 0.990 0.010 0.235

64 47.5 0.994 0.004 0.190

1.402
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data came from, and the plane size was chosen as the one that would
provide an economical design on the basis of current cost estimates.

Each of the three designs has an overhead associated with it, because
of the extra planes needed to store the address tags of the reallocated
pages. This overhead for designs A, B, and C is 6.3 percent, 5.5 percent,
and 4.7 percent, respectively.

IV. THE USE OF A BUFFER TO IMPROVE PERFORMANCE

The best design outlined in the preceding section gave an average
eyele time of about 12.1 shifts or, assuming 1-MHz operation, 12.1 us.
The question arises of how this figure may be further improved by the
use of a smaller submicrosecond cycle time core or integrated circuit
buffer. The answer can be readily calculated, provided that the buffer
is divided into as many classes as there are active classes in the memory,
and that the page size in the buffer is the same as in the memory. Now,
if there are kp page frames per class in the buffer, then the pages
currently residing in location 1, 2, --- , kg of all active classes will
also appear in the buffer. This statement is not quite correct if the
buffer stores only read (fetch) data, whereas write (store) data are
sent from the central processor directly to the memory, but the differ-
ence is probably negligible.

It is, of course, also necessary to uniquely assign all nonactive
memory classes to buffer classes, so that program swapping can_take
place. This can be done as follows. In terms of Design B, let the 7 most
significant bits of the 14-bit page address be the class address. As
each program occupies contiguous classes, the 4 least significant bits
of the class address refer to classes in the same program for a typical
program size. Thus the 1st, 2nd, 3rd, and 4th least-significant bits of
the memory page address should be considered to be the buffer class
address.

The average number of shifts necessary in the memory per request
can now be calculated as follows. If the buffer hit ratio is hgs, then h.,
in eq. (2) should be replaced by hs, whereas all contributions to the
page search shifts, calculated in Table II, by values of k. = ks should
be neglected. The results are tabulated below, still for Design B.

Buffer size (bits) 8k 16k 32k 64k
Buffer bit ratio 0.891 0.930 0.955 0.981
Pages per class in buffer 4 8 16 32
Class swapping shifts 1.37 0.88 0.56 0.24
Page search shifts 1.92 1.71 1.42 0.81
Total access shifts 3.29 2.59 1.98 1.05
Total shifts per cycle 5.21 4.30 3.40 1.86
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V. DISCUSSION AND CONCLUSION

The availability of memories costing approximately the same or
less per bit as a disk file or drum with cycle times of about 10 us is
likely to have a major impact on the computer industry. This appears
to be the answer to the system designer’s old dream of a memory at
core speeds and disk costs. It looks like we can fulfill this dream with
bubble memories, provided that we can shift bubbles at 1-MHz rates,
which appears to be a reasonable objective. It may be added that
the organizations discussed here should be also applicable to other
forms of serial memory technologies, MOS registers, charge coupled
registers, etc.

The major applications for bubble memories with dynamic address
reallocation are likely to be in mini- and midi-computers and in other
systems with relatively less powerful central processors. The larger
systems and those with faster processors will probably find the buffered
configuration more attractive. For instance, one may use a 64-kb,
0.5-us access time, 1-us cycle time buffer to give an average access
time of about 1.5 s, and an average cycle time of about 3.0 us for
the 2-Mb bubble memory. In many systems this would be vastly
preferable to an all-integrated-circuit memory costing much more for
the same capacity, even if the latter memory has a cycle time of 0.1 ps.

Further work should be directed towards the assessment of the
applicability of these techniques to electronic telephone switching
systems.
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