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The Poincaré sphere has been applied to the analysis of orthogonalizing
two polarization ellipses by a differential phase shifier and a differential
attenuator. The condition of minimum differential attenuation for removing
a given amount of nonorthogonality vs determined. A previously reported
transformation via two nonorthogonal linear polarizations should be used
for two slender ellipses.! Another transformation via two opposilely
rotating ellipses having parallel axves and equal axial ratios should be
used for two fat ellipses. System applications of the transformations are
discussed.

I. INTRODUCTION

A method of recovering the orthogonality of two polarizations in a
radio communication system was presented recently.! Two arbitrary
polarization ellipses are first transformed simultaneously into two
nonorthogonal linear polarizations by a differential phase shifter, and
then the nonorthogonality is removed by a differential attenuator.
It is of interest to ask whether that transformation is optimum for
system applications.

Before proceeding further, we will define the optimum transforma-
tion. Clearly, it is desirable to minimize the differential attenuation
that we must introduce to correct for nonorthogonality. However, in
order to achieve maximum bandwidth, we also should minimize the
differential phase shift even if we assume, as we do here, that the
polarization characteristics of components in the system are not very
frequency sensifive over the operating bandwidth. This assumption is,
for example, expected to be valid for any depolarization in the main
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beam of reflector-type antennas provided there is no polarization dis-
tortion in the feed radiation. If necessary, we can apply polarization
correction separately to each of the subbands within a wide band.

In a practical dual-polarization radio system, the two orthogonal
polarizations feeding the transmitting antenna are either linear or
circular. Signal generators and detectors are always linearly polarized ;
however, conversion to circular polarization for radio transmission is
sometimes made to avoid effects such as Faraday rotation. If the
transmission medium and the radiating systems introduce only mod-
erate polarization distortion, the dual polarization signals appear as
two slender or two fat polarization ellipses at the receiving terminal,
depending on whether linear or circular polarizations are being used.
This classification into two types of elliptical shapes suggests an opti-
mum transformation for each type. However, the validity of the trans-
formations presented in the next section is independent of the shapes
of the ellipses. A practical design of adjustable differential phase-
shifters and attenuators has been suggested by E. A. Ohm.?

The following analysis will be presented with the aid of the Poincaré
sphere. This geometrical representation of the polarization of a plane
electromagnetic wave was introduced to radio engineers by G. A.
Deschamps.? For convenience of the reader, a summary of the Poincaré
spherical representation is given in the Appendix.

II. ANALYSIS
2.1 Minimum Differential Attenuation

Let us first find the condition for minimum differential attenuation
required for removing a given amount of nonorthogonality between
two polarizations. Each polarization is represented by a point on the
Poincaré sphere. If the great circle arc connecting two points on the
sphere is a semicircle, then the two polarizations are orthogonal to
each other. The degree of nonorthogonality between two polarizations
can be measured by the deviation of the great circle arc from a semi-
circle. Let two nonorthogonal elliptically polarized waves be repre-
sented by points M, and M; on Poincaré sphere as shown in Fig. la.
The great circle are connecting M, and M, intersects the equator at C.
The longitudes of M, and M; with respect to C are twice the orientation
angles of the two polarization ellipses with respect to the X-axis of a
set of X-Y coordinates. This relationship is skgﬁehed in Fig. 1b. Since

™

M, and M, are nonorthogonal to each other, M,C 4+ M.C < . Orthog-
™

onalization is accomplished by stretching the great circle arc M, M.
to the value of .
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Fig. 1—Orthogonalization by differential attenuation.

™ N
. . . taniM,C  taniM.C | |
If a differential attenuation of 2 fl\ = d ,2\ is imposed
taniM{C  tan3MiC
™ ™
along the X-axis such that MiC 4 MiC = =, then the two polariza-
m ™
tions M, and M, will be orthogonalized. Since tan $Mi{C tan 1M:C =1,
the required differential attenuation is minimized by maximizing

) M
\/ta.n $M,C tan M,C with a proper differential phase shift, which
I I ™
implies the constraint that M,C + M,C = M;M,. In this way, the
)
minimum differential attenuation needed is found to be tan +M,;M,

') 'Y ™
when M,C = M,C. For the given degree of nonorthogonality, 7—NM; M.,
the orthogonalization can be performed by the minimum differential

™
attenuation tan $M,M, only if the two elliptical polarizations have
the same axial ratio. Thus the two arbitrary elliptical polarizations
must first be transformed by a differential phase shifter to allow a
minimum differential attenuation.

Furthermore, one wishes to obtain two orthogonal linear or circular
polarizations immediately following orthogonalization. This require-
ment determines the prerequisite condition that two nonorthogonal
elliptically polarized waves should first be transformed into two non-
orthogonal linear polarizations or two oppositely rotating elliptical
polarizations having parallel major and minor axes and equal axial
ratios, both of which are limiting cases of two elliptical polarizations
with the same axial ratio.



322 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

(a) (b) MyB - BN

Fig. 2—Simultaneous transformation of two elliptical polarizations into two linear
polarizations.

2.2 Two Slender Ellipses

If the transmitting antenna is fed by two orthogonal linear polari-
zations, moderate polarization distortion in a radio communication
system will produce two slender polarization ellipses at the receiving
terminal. At that point, the orthogonalization should begin by a
simultaneous transformation of the two polarization ellipses into two
linear polarizations. This transformation has been obtained previously ;'
however, it will be described here in terms of the Poincaré sphere.

Let two nonorthogonal elliptic polarizations be represented by two
points, M, and M, in Fig. 2a. The intersection C of the great circle
arc with the equator designates a set of coordinate axes X-Y which is
shown in Fig. 1b. The polarization ratios of the two polarization ellipses
in terms of these X-Y coordinates will be related by tan ¢, = tan ¢..
Replacing each side of this equation by eq. (11) yields:

tan 2a; csc 28, = tan 2a» csc 28,. (1)

Substituting 8. = 81 — 8 into eq. (1), one obtains the solution for the
orientation of the X-Y axes

tan 20!2
cos 20 —
8 1 - tan 2a; 0 << T @)
=—¢cot! | ——m8M8M8M8M |, -
! 2 sin 20 ' 2

~
The are M,;M.; can be rotated onto the equator by applying the follow-
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ing differential phase delay to the components in the Y direction
¢ = tan™' [tan 2a, esc 28, ]. (3)
Now the angle ¢ between the two linear polarlzatlons represented
by M{ and Mj in Fig. 2b is half of the sum of the ares CMI and CMQ

v=v1+ 7 (4)

(1 4+ tan? @;) — (1 — tan? ;) cos 28;
(1 + tan? @;) + (1 — tan? a;) cos 28;
using eq. (10). This angle ¢ may be changed to =/2 if a differential
attenuation of tan (y/2) is imposed on the components in the direction
B bisecting the two linear polarizations. This direction will be oriented
at an angle

is obtained

where y; = tan™!

= 3(v1 — 72) (5)

with respect to the X direction of the coordinates in Fig. 1b.

The above equations can be easily identified with those in Ref. 1.
One notes that the transformations are valid for the two polarizations
located on the same side as well as on opposite sides of the equator
of the sphere.

2.3 Two Fat Ellipses

If the transmitting antenna is fed by two orthogonal circular polari-
zations, two fat polarization ellipses will appear at the receiving ter-
minal if the radio communication system is moderately contaminated
by polarization distortion. Here the orthogonalization should be
started by the simultaneous transformation of two given ellipses into
two oppositely rotating ellipses having parallel major and minor axes
and equal axial ratios. One locks for an X'-Y’ cartesian coordinate
system in terms of which the polarization ratios of the two ellipses
become complex conjugates of each other after a proper differential
phase delay is introduced along the axes. The X'-Y’ coordinates cor-
respond to the point C’, and the proper differential delay is represented
by A on the Poincaré sphere as shown in Fig. 3a. Let us write down
the expression for the polarization ratio in terms of the X'-Y’
coordinates!

. _ 2 tan ai
(1 + tan?a;) — (1 — tan®a;) cos 28; 7*° ll:n —tantai) siuzs:]
[
(1 + tan? ;) + (1 — tan? a;) cos 28} (6)
0 < |Pi < = when tan a; > 0;

P, =
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Fig. 3—Simultaneous transformation of two polarization ellipses into two ellipses
with parallel axes and equal axial ratios.

where 7 = 1, 2;

™ ™
—§< |P: <§whensin2ﬁ$>0.

Combining the condition |Pj| = |P3| and the relation 83 = B — 6,
one obtains
(1 + tan®a;) (1 — tan®ai)
— cos 26
1 (1 4+ tan?a;)(1 — tan®as)

m
B = —tan™! ! 0<p <- (7
12 sin 26 ' 5, 2 @

which fixes the X’-Y’ axes. The required differential phase delay A
along the Y’ axis is determined by

P{— A= — (|Pt—4)
which gives
= 3(|Pi + |PY). (8)
The above dlfferentlal phase shift corresponds to the rotation of the
great circle arc M M2 about the pomt C'. The transformed elhpses are

represented by Mj and M; where ] lN 1\12N and M; M2 is per-
pendicular to the equator as shown in Fig. 3b. The parallel major axes
of the transformed ellipses are oriented with respect to the X’ axis at
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Ad,, Ad, DIFFERENTIAL PHASE — SHIFTER
Aa,, Aw, DIFFERENTIAL ATTENUATOR

Am PHASE — SHIFTER WILL PERFORM POLARIZATION TRACKING FOR ORTHOGONAL LINEAR
POLARIZATIONS IA% PHASE — SHIFT AT BOTH TRANSMITTING AND RECEIVING ENDS WILL
BE NEEDED FOR ORTHOGONAL CIRCULAR POLARIZATIONS)

Fig. 4—Locations of the orthogonalization device.

)
an angle equal to § NC’. Using eq. (13), we have

IN%’— - 2| Pi| X , ,
7 = 3 tan wcosﬁflﬂl-lﬁa] : (9)
Now two oppositely rotating ecircular polarizations can be obtained by
imposing a differential attenuation along the major axis of the trans-
formed ellipses. The value of differential attenuation is also given by
tan (¢/2) where ¢ is determined by eq. (4) of the preceding section.
In addition to the differential phase shift for orthogonalization as
discussed above, circular polarization systems require A(w/2) phase
shift* at both transmitting and receiving ends to convert to the final
linearly polarized ports. The same amount of additional differential
phase shift overall will also be needed in a system using orthogonal
linear polarizations, if a Ar phase shifter is used for polarization
tracking.

IIT. DISCUSSION

The above analysis assumed that the device for orthogonalization
would be located at the receiving terminal as shown in Fig. 4a. Since
there always exist two elliptic polarizations which would become
orthogonal after going through a linear transmission system with a
certain polarization distortion, one can also put the differential ele-

* The notation, A(x/2), implies a differential phase shift of x/2.
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ments at the transmitting terminal as shown in Fig. 4b. Another ob-
vious corollary states that the dual-polarization radiation of an an-
tenna always can be orthogonalized in any particular direction. The
differential attenuator should be located as illustrated in Figs. 4a and
b at the receiver or the transmitter in order to satisfy the condition
for minimum differential attenuation. Sometimes it is desirable to use
differential elements at both the transmitting and receiving terminals.
For example, one may wish to eliminate the polarization distortions
of the transmitting and receiving antennas separately.

It is often claimed that the use of circular polarization in a satellite
communication system eliminates the need for polarization tracking.
In order to realize this advantage, the depolarization of the satellite
antenna radiation must be kept small over the entire coverage of ground
stations. Furthermore, the matching requirement at each discon-
tinuity of the waveguide feeding network and the radiating system is
more stringent for circular polarization, because multiple reflections
among the discontinuities often corrupt circular but not linear
polarization.
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APPENDIX
Poincaré Spherical Representation

A polarization ellipse shown in Fig. 5a is completely characterized
by the axial ratio, A = minor axis/major axis, and the orientation of
the ellipse. The sense of rotation can be taken into account by giving
+ or — sign to the axial ratio. Now we define tan~! 4 as the ellipticity
angle a with —45° < a < 45°, and take the angle between OX and
the major axis as the orientation angle g8 with —90° < 8 < 90°. Then
a point M on a sphere with longitude 28 and latitude 2« as shown in Fig.
5b completely specifies a state of polarization.

The points on the equator represent linear polarizations. The arc
between two points along the equator is twice the angle between two
linear polarizations. The points on the upper and lower hemispheres
correspond to clockwise and counterclockwise (wave approaching)
elliptical polarizations respectively, while the poles designate circular
polarizations. For each point which represents an elliptic polarization,
the projection K onto the equator defines the orientation of its major
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(a) ()

Fig. 5—Poincaré spherical representation of a polarization ellipse.

axis. Any set of X-Y coordinates can be specified by its X direction
which in turn corresponds to a point C on the equator. Then the
longitude of K can be measured with respect to C.

The polarization ratio P is a complex number defined as the ratio
between the Y and X components of the electric vector. Using the
expression for the polarization ratio in eq. (6) and the following for-
mulas for the spherical triangle shown in Fig. 5b,

cos 2y = cos 2a cos 28 (10)

tan ¢ = tan 2« csc 23, (11)

one can identify P = tan ye’*. The orientation and the ellipticity
can be expressed in terms of P as follows:

sin 2a = sin 2y sin ¢ (12)

tan 28 = tan 2y cos ¢. (13)

A differential phase delay of A of the Y component with respect to
the X component will correspond to a clockwise rotation A of the are
™

CM around the point “C’ on the Poinecaré sphere.
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