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This paper presents a theoretical treatment of the roundoff noise problem
for the special case of cascade realizations of Finite Impulse Response
(FIR) digital filters.t Explicit relations for evaluating roundoff noise with
the usual assumption of uncorrelated samples are presented. Useful scaling
methods are stated and classified as to conditions when these methods are
optimum. Important differences between use of these scaling procedures for
Infinite Impulse Response (IIR) filters and FIR filters are poinled out.
Finally, useful properties of linear phase FIR filters are discussed.

I. INTRODUCTION

In recent years, many techniques have been developed for the
design of Finite Impulse Response (FIR) digital filters.?~® It is now
possible to readily design filters with arbitrary frequency or time
response characteristics using the windowing,?? frequency sampling,*
or optimal design®® methods. While both the windowing and fre-
quency sampling techniques yield suboptimal filters, they are useful
because of their simplicity and ease of design. The optimal design
technique is of special importance because the filters it generates can
be proved to be optimum in a certain sense,” and because efficient
algorithms exist for its implementation.”?

As a result of these important developments, the FIR type of
digital filter is becoming increasingly attractive as an alternative to the
IIR (Infinite Impulse Response) type of filter for practical applications.
A major advantage of FIR filters over IIR filters is that an FIR filter

T This paper is based on a thesis' submitted in partial fulfillment of the require-
ments for the degrees of Bachelor of Science and Master of Science in the Department
of Electrical Engineering at the Massachusetts Institute of Technology in September
1972.
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can have an exactly linear phase response while approximating an
arbitrary magnitude frequency response. But even without considering
this important advantage, current research? is revealing that in certain
cases FIR filters are competitive with IIR filters in terms of speed and
cost. Thus the implementation of FIR filters using finite-precision
arithmetic is becoming an important area for research.

Up to the present, little is known as to how different types of IR
filter realizations behave with respect to quantization effects. Since
hardware, specifically for the purpose of realizing FIR filters, has
already been built for experimentation by various research groups,'"
it is important to obtain more knowledge to guide the implementation
phase of FIR digital filter design. The purpose of this paper is to
present a theoretical treatment of several problems associated with
implementations of these filters.

1I. PRELIMINARY REMARKS

The effects that quantization has on an IIR filter can be classified
into three basic categories:

(7) Quantization of the values of samples derived from a con-
tinuous input waveform causes inaccuracies in the representa-
tion of the waveform (A-D noise).

(i) Finite-precision representation of the infinite-precision filter
coefficients alters the frequency response characteristics of the
filter (coefficient accuracy problem).

(i17) Tinite-precision arithmetic causes inaccuracies in the filter
output (roundoff noise) which, together with the finite dynamic
range of the filter, limit the signal-to-noise ratio attainable.
Also, finite-precision arithmetic can lead to limit cycles where
the output samples are generally highly correlated.

These same quantization effects also occur in finite wordlength FIR
filters with the important exception that limit cycles cannot occur in
nonrecursive realizations of FIR filters. In this paper only the third
type of quantization effect, viz., roundoff noise, will be discussed.
Furthermore, fixed-point arithmetic with rounding will be assumed.

Except for the first category above (A-D noise), all quantization
effects depend in degree and character on the type of structure used to
implement a filter. There are three well-known structures in which an
FIR transfer function can be realized. They are the direct form, the
cascade form, and the frequency-sampling structure.’? Other less
well-known structures based on polynomial interpolation formulas
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Fig. 1—Cascade-form filter section.

are also possible; these include the Lagrange, Newton, Hermite, and
Taylor structures.’® However, it is as yet unclear under what circum-
stances, if any, these other structures may be more advantageous than
the well-known structures.

Only the cascade structure will be discussed in this paper. A second-
order filter section, as shown in Fig. 1, will be used as the basic building
block for the cascade structure. Although several minor variations to
this configuration for the filter sections are possible,' the results pre-
sented here are sufficiently general so that they can be readily applied
to other configurations as well.

Aside from section configuration, the prime issues that must be con-
fronted in the realization of filters in cascade form are scaling and
section ordering. Proper scaling must be performed on a filter in
cascade form in order that full use of the dynamic range of each section
can be made while avoiding error-producing overflows. By proper
scaling, the signal-to-noise ratio of a filter can be maximized for a
given quantization step size and section ordering.

Proper ordering must also be determined for a filter in cascade form
if the filter is to be useful at all, since the noise output of a cascade
filter can depend dramatically on the way it is ordered. For example,
Schiissler’ showed a 32nd-order FIR filter which, ordered two different
ways, vields output noise variances that differ by a ratio on the order
of 108, The problem of section ordering for cascade FIR filters has been
investigated in depth,"' and the results show that for higher-order
filters, the variation of output noise variance across all orderings is
much greater than 108,

Jackson' has formulated the roundoff noise problem for a general
digital filter and has proposed an approach to the scaling of filters to
satisfy dynamic range constraints. Most of his results can be specialized
to the case of IR filters by assuming a constant polynomial in the
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denominator of the transfer function. However, the different perspec-
tive obtained by studying the FIR case separately affords many
additional insights.

In this paper, formulas for the evaluation of roundoff noise variances
in the FIR cascade structure are presented. Also, specific scaling
methods for FIR filters are defined, two of which can be proved to be
optimum for two classes of input signals. Finally, certain properties
of the linear phase cascade structure useful in the study of section
ordering are stated and can be proved. However, for reasons of space,
no proofs are included in this paper. They can be found in Ref. 1.

III. DEFINITIONS

The general transfer function for an N-point FIR filter can be
written in the form

N—1
H@) = 2 h(k)z™* (1)
k=0

where the real-valued sequence {h(k), k =0, ---, N — 1} is the im-
pulse response of the filter. Alternatively, H (z) can be expressed in the

factored form
Ny

H(z) = II (boi + briz™* + bpz™) (2)
=1
where b;;, j =0,1,2, =1, ---, N, are real numbers and N,, the
number of factors, is defined as
N-—-1
N odd
N, =
N
— N even
2

and b;y, = 0 if N is even.
A linear phase filter is defined to be a filter, the transfer function H (z)
of which is expressible in the form

H(Z) ] z=el® = H(ej"") = 4+ | H(efﬁ’) | g~ jaw (3)

where « is a real positive constant with the physical significance of
delay in number of samples. The factor + is necessary since H (e?)
actually is of the form

H(e) = H*(ei)e i
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where H*(e’“) is a real function taking on both positive and negative
values. It is useful to define a mirror-image polynomial (MIP) of
degree N to be a polynomial of the form ¥ §_; a:z*, the coefficients of
which satisfy the relation

Ar = AN_k 0=k=N.

Necessary and sufficient conditions on H (z) such that a filter with
transfer function H (z) has an exactly linear phase response can then
be stated as follows:

Theorem 1: H (z) can be expressed in the form (3) if and only if one of
the following equivalent conditions hold:

(@) h(k)=h(N—1—4%k),0=k=N-1.
(#%) If 2: is a zero of H(z), then 2! is also a zero of H(2). Also, if

2; = + 118 a zero of H(2), then it occurs in even multiplicity.
(vi7) Suppose z; is a zero of the ith factor in (2). Let S = {i: 2; 15 real)
and Q = {i:1 & S}. Then f(2) = [lies (boi + brz™ + baiz7?) is
a mirror-tmage polynomial in 27, and for all 71 € Q, either
bo; = by, or there exists j # 1, j € @, such that

bl]l' bh' b2i

== 4
baj b1y by @)

Furthermore, the following is a sufficient condition for H(z) to be expres-
sible in the form (3):

(i) In (2),for 1 £ 1 £ N,, either by; = 0and by; = by, or by; = by,
or there exists j # 1, 1 < 7 = N,, such that

In all cases the value of a s = (N — 1)/2.

It should be pointed out that a section with by; = b,; is necessarily
one which synthesizes either two complex conjugate zeros on the
unit circle, or two reciprocal zeros on the real axis, or two identical
zeros at +1 or —1. Furthermore, two sections which satisfy (4) are
precisely those sections which synthesize reciprocal zeros (i.e., if z;
is a zero of one section, then 2! is a zero of the other section). Thus,
taking (2) as the basis for the FIR cascade form, condition (i) of
Theorem 1 provides a way to assign zeros to individual sections of
the cascade structure so that linear phase is guaranteed independent
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of scaling or ordering. Hence, in this paper the following convention
of zeros assignment for linear phase filters will be adopted: complex
zeros are grouped by conjugate pairs, real zeros that are reciprocals of
each other are paired together, while doubled or higher multiplicity
zeros are grouped by pairs of the same kind. In this way the only zero
that can occur by itself in a section is z = — 1 (since by Theorem 1,
2z = + 11is not allowed as a zero of odd multiplicity).

The definition (3) of a linear phase filter requires the filter to have
both constant group delay and constant phase delay. However, if
only constant group delay is desired, a second type of “linear phase”’
filter can be defined in which the phase of H (e’*) is a piecewise linear
funetion of w, i.e.,

H(e#) = = |H(e#)|e/0ow, (5)

It can be shown! that with the constraint (1) on the form of H(z), the
only possible solutions for g e[—m, 7] is g = + (kr/2), k=0, 1, 2.
If 8 = 0, £, (5) reduces to (3). Thus the only new cases added are
when 8 = =+ 7/2. These cases arise exactly when z; = 4 1 occurs as
a zero of H(z) in odd multiplicity, or, equivalently, when {h(k)}
satisfies

h(k) = — (N —1—k O0=k=<N-L

Filters of this special type are useful in the design of wideband differ-
entiators.'s However, this type of filter will not be considered in this
paper and the term “linear phase filter” will be restricted to refer to
those filters satisfying (3).

IV. THEORY OF FIR CASCADE STRUCTURES
4.1 Roundoff Notse in the Cascade Structure

The analysis of roundoff noise in this paper is based on the usual
model used for such analyses in digital filters.®'"18 In particular, each
multiplier in a filter is modeled as an infinite-precision multiplier
followed by a summation node where roundoff noise is added to the
product so that the overall result equals some quantized level. Each
noise sample is modeled as a random variable with uniform prob-
ability density on the interval (—Q/2, @/2) and zero density elsewhere,
where Q is the quantization step size. Thus each sample is a zero-mean
random variable with a variance of Q*/12.

Furthermore, the following assumptions are made:

(¢) Any two different samples from the same noise source are
uncorrelated.
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(77) Any two different noise sources (i.e., associated with different
multipliers), regarded as random processes, are uncorrelated.
(#77) Each noise source is uncorrelated with the input signal.

Thus each noise source is modeled as a discrete stationary white
random process with a uniform power density spectrum of magnitude
Q2/12.

Applying this model to the filter section shown in Fig. 1, the addition
of a noise source to the output of any multiplier is seen to be equiv-
alent to adding a noise source to the output of the section. Therefore,
to model a section of a cascade filter, k; noise sources are added to the
output of the section, where k; is the number of multipliers with non-
integer coefficients in the section. Or, equivalently, by assumption ()
above, one noise source of variance k;(Q*/12) can be added instead.

For the configuration shown in Fig. 1, k; is in general equal to 3.
However, when by; = bs;, the signals of the two branches feeding the
multipliers with coefficients by; and bs; can first be summed before
being multiplied by the common coefficient, thus reducing k; to 2.
Furthermore, by a sacrifice in speed (assuming serial arithmetic),
it is possible, as demonstrated by practical hardware,® to reduce
k; to 1 for all 7 by summing all products in each section before per-
forming rounding. It is of interest to point out that the same can
be done in the direct form, resulting in effectively only one noise
source of variance Q2/12 feeding into the output of the filter.

Before proceeding further, some notations need to be developed.
Let H.(z) denote the transfer function of the ith section of a filter
H(z), i.e.,

Ns
H(z) = II Hi(2) (6)
i=1
where
H;(z) = boi + bzt + bz (7)

As a convention, filter sections will be numbered in inereasing numbers
according to increasing distance from the filter input (i.e., the section
at the input is called the 1st section).

Furthermore, define

N
II Hi(z) 0=7=N,-—1
Gi(z) = jmitr (8)
1 1=N,
and let {g;(k)} be the impulse response of G;(z), i.e.,
Gi(z) = X gi(k)z7*. 9
k
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Fig. 2—Equivalent models for a filter in cascade form.

Then a cascade filter can be modeled as in Fig. 2a or equivalently
as in Fig. 2b, where {e:(n)} is the noise source for the ith section.
Letting [ £;(n)} denote the noise sequence at the filter output due to
the 7th noise source alone gives

Ein) = Z gi(k)ei(n — k). (10)

By the stationarity of {e:;(n)}, the varlance of E;(n) is independent
of n; hence denoting this variance by o7, assumption (i) above leads
to the relation

= ¥ gilbei(n — B’

= ki szg(k) (11)

Now the total noise output is gwen by
N

E(n) = 2 Ei(n) = Z L gi(k)es(n — k). (12)

=1 i=1 &k
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Therefore by assumptions (z) and (1)

ot = F¥n) = 3 o (13)

i=1

4.2 Methods of Scaling to Meet Dynamic Range Constraints

A practical digital filter, necessarily implemented as a physical
device, must have a finite dynamic range. Especially when fixed-point
arithmetic is employed, this dynamic range sets a practical limit to
the maximum range of signal levels representable in a filter and acts
to constrain the signal-to-noise ratio attainable.

In some filter structures such as the direct form, given the filter
transfer function, the designer has no control over the relative signal
levels at points within the filter. Only the gain of the overall filter
can be varied. However, in a cascade realization with N, sections
there are N, — 1 degrees of freedom available in addition to the
overall filter gain and the ordering of sections.

To see this, a factorization for H(z) is defined which is unique up
to ordering of factors, in the form

HGz) = 8 TI A.)

i=1

Ai(z) = aoi + ariz™ + sz (14)
where {a;;} satisfies
2
ao: = 0, Elajil =1 it=1,---,N.. (15)
=0

Then the transfer function for the 7th section in a cascade realization
can be written as

Hi(z) = 8:l:(2) (16)

where S; is an arbitrary constant, subject only to the constraint that
Ny

II5: =s. (17)

Thus given 8, N, — 1 of the S/s can be chosen at will.

Any rule for assigning values to {S;} will be referred to as a sealing
method. Obviously, some scaling method must be employed in the
design of a cascade filter whether or not one is concerned with dynamic
range constraints, since numerical values must be assigned to the S/'s.
When dynamic range is an issue, the constraints it imposes can be
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met in some best manner by choosing the proper scaling method.
In this paper, filters, designed so that no arithmetic overflow in them
can cause distortion in the filter output, will be studied. Therefore, the
investigation of scaling methods will be restricted to those methods
which guarantee that for a given class of input signals no distortion-
causing overflow occurs in the scaled filter.

It can be shown! that, in an addition operation, if two’s comple-
ment arithmetic is used, as is usually the case, then as long as the final
result is within the representable numerical range, individual partial
sums can be allowed to overflow without causing inaccuracies in the
result. In this paper, it is assumed that all additions in a filter are
done using two’s complement arithmetic. Then, to guarantee that no
distortion caused by overflow occurs at a cascade filter’s output, only
the input and output of each filter section need be constrained not to
overflow.

To simplify the discussion of scaling methods, the following defini-
tions are used. Let

Fie) = 5 fulk)e* = TT H ) (18)
and - ! 1<i<N,
Fiz) = X filk)e* =TT H,(z). (19)
k=0 i=1

Also, let {v:(n)} be the output sequence of F;(z) or H,(z). Furthermore,
assume that the maximum magnitude of numerical data representable
in a filter is 1.0. Then the necessary overflow constraints on a cascade
filter can be stated as

[vi(n)| = 1 1=:1= N, all n. (20)

Necessary and sufficient conditions for (20) to hold for two classes
of input signals are given below. Theorem 2 deals with the class of
input sequences {x(n)} which satisfies |z(n)| = 1 for all n. For sim-
plicity, this class is refererd to as “class 1.” Theorem 3 deals with
the class of inputs with transform X (e/*) which satisfies

]_ 2

2r

This class will be called “class 2.”” By virtue of the fact that

| X () |dw < 1.

z(n) = -2—1—[h X(ew)elrdw (21)
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and hence
1 27
2(n)| S — f | X(e) | du (22)
2‘11' o

class 2 is a subset of class 1.

Theorem 2: Suppose |x(n)| = 1. Then |[v:(n)|<1, 1 <7< N, and
all n, if and only f

2i
2 | filk)|
=0
Theorem 3: Suppose 1/(27) Ji*™ | X (&) |dw = 1. Then |vi(n)| = 1,
1 £ ¢ = N, and all n, if and only if

[Fi(eju)lél i=1""!N8 0w

A
-
-
|
-
=

(23)

IIA

2. (24)

Conditions (23) and (24) of Theorems 2 and 3 can be restated to
give conditions on {S.}. Recall that the H,(z)’s are unique once H (z)
is given, hence the F;(z)’s and {f:(k)}’s are also unique. Equations
(16), (18), and (19) give

) = (11850 (25)
and JTI
F,‘(Z) = (H Sj)F{(Z) . (26)
Therefore, conditions (23) and (24) can be restated respectively as
i 29 —1
I 150 s [ 2 1701 ] l @7
and o o i=1,--,N,.
I8 =L max fﬁf(e"‘“)[]“J (28)
=1 05w =2r

These then are conditions which, for the class of inputs concerned, a
scaling method must satisfy. It will be shown next that in some sense
optimum scaling methods are obtained when (27) and (28) are satis-
fied with equality. For ease of reference, two scaling methods will
first be defined.

Define sum scaling to be the rule:

i 24 -1
os,=[Zawl] =10, (29)

k=0
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or stated recursively,

'[éutf‘l(k)l]_l ;
l[(ﬁsf)i[ﬂ(k)q'l .

Also, define peak scaling to be the rule:

Il

1
(30)

P

Il
o
2

ﬁ S; = [ max |Fi(e)|]! i=1,---,N, (31)

J=1 05w E2r

[ max | By(eiwy] ] 1 =1
05w S2r

S =] °F (32)
[(ffs) max u«‘",-(es'w)q_1 i=2 - N,

J=1 02w =2x

or

Theorem 4: Given an FIR transfer function to be realized in cascade
form (as defined in Fig. 1) using fixed-point arithmelic of a given word-
length, and given the ordering of filler sections, assume that:

(7)) The number of noise sources in each section (i.e., k;) s tnde-
pendent of the scaling method.
(i) All filter coefficients can be represented to arbitrary precision.
(i77) No overflow is allowed to occur at the input and output of each
section.
(iv) The overall gain of the filter is maximized subject to no overflow
at the filter output.

Then each of the following scaling methods is optimum for the class of
input signals stated, in the sense that it yields the minimum possible
roundoff noise variance as defined in (13) among all scaling methods
which satisfy conditions (it7) and (i) above for the class of inputs
considered.

(¥) Sum scaling for class 1 signals.
(72) Peak scaling for class 2 signals.

Thus optimal scaling methods are established for two classes of
input signals. It is possible to define other classes of signals by con-
sidering the “Lp norm” of their transforms.'®:!? Specifically, the Lp
norm of X (e#) is defined as

1 2 1/p
|X(ef“)|,=[— f |X<ef~)|vdw] lspse (33
2‘71' 0
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where for p = = the limit as p — « of the right-hand side is meant.
For each p, a class of signals can be defined consisting of those se-
quences with transforms which satisfy

[X(e*)]l, = 1. (34)

Signals satisfying (34) will be referred to as Lp-norm constrained
signals. Note that L;-norm constrained signals are simply class 2
signals.

For proofs of the following useful theorem, refer to Refs. 1, 20, and 21.

Theorem 5: Let X (e7*) and Y (e#) be transforms of sequences. Then

(4) [ X ()] = max | X (e7) |
(¥7) [ X(e)Y(e)||ls = [|X(e)|| Y (e5)]|,
if 1/p+1/q =1, l=pg=w=
(477) [X(e™)|, = || X(e)|. i 1<r=<s=<w.

Since with input {z(n)},

vi(n) = 2if” Fi(e7) X (e7@)eivndw, (35)
so that '
1 [
fvi(n)| = ﬂ[ |Fi(e’) X (e7) |dw = ||[Fi(e?) X (e?)]1,  (36)

by Theorem 5 (77),
li() [ Z[|Fi(e®)] 5| X (e)]l 1 =7=N. 37)

Hence for L,norm constrained signals, ie., if || X (e#)], <1, the
following scaling method (L -norm scaling) is obtained.

q
p=—
IF el = 1 e (38)
I e, R
or stated in terms of {S;},
ILS; = [IF@)ll,] i=1,-, N.. (39)

J=1

Notice that by virtue of part (i) of Theorem 5, L.-norm scaling is
just peak scaling which has been shown to be optimum for class 2, or
L;-norm constrained, signals. Furthermore, by part (i77) of the theorem,
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the following hierarchy of classes of signals is obtained :

class 1 D eclass 2 D Lynorm constrained D L,-norm

constrained
fl=p=gqg= ™.

In general, class 1 and class 2 signals are the most useful to consider.
Lo-norm constrained signals with Ly-norm scaling are useful when all
inputs to a filter have finite energy bounded by a known value. For, by
Parseval’'s Theorem, the energy of {xz(n)} is simply given by
(/| X (e#)||-)2. Henee, if the input signals are first scaled so that their
maximum energy is 1.0 (or the squared dynamic range of the filter),
then L,-norm scaling is sufficient to ensure no overflow.

Ls-norm scaling finds greater application for FIR filters than for
IIR filters because, in the former case, it is applicable for a larger class
of input signals. In particular, an Nth-order FIR filter has only N
samples of memory; thus if the input signal to an Nth-order FIR
filter consists of bursts of energy spaced more than N samples apart
with zero energy in between, then the filter will effectively “see’’ only
one burst at a time. Hence, the maximum energy of a burst can be
used as the bound on the energy of the input as far as scaling is con-
cerned. Thus an infinite-energy signal can have the effect of a finite-
energy signal on an IR filter.

Clearly, sum scaling and peak scaling can also be applied to IIR
filters.!® In fact, Theorems 2 and 3 are also valid for IIR filters.
However, the input sequence needed in Theorem 2 to prove necessity
in the case of IIR filters is an infinite-duration sequence extending to
— w with full dynamic range magnitudes, and signs that match those
of {f:(k)} for some 4. Since [ f:(k)} for IIR filters is infinite in duration
for all 7, clearly such an input sequence is highly improbable. Hence,
class 1 signals have been deemed too restrictive a description for
ordinary inputs to an IR filter, resulting in too stringent a scaling
method.!8

However, for FIR filters it is not difficult to find an input sequence
within dynamic range which will require sum scaling to ensure no
overflow, since only a small, finite portion of the sequence need match
up with the {f;(k)}’s. For example, if F1(z) has a zero with angle wo,
7/2 < wy < m, then all three samples of {fi(k)} have the same sign;
hence an input sequence need only have three consecutive samples of

value 1 before |v,(n)| = X2 &| f1(k)| for some n.
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4.3 Properties of the Linear Phase Cascade Structure

Two theorems regarding certain properties of the linear phase
cascade form are now given. These results are useful in the investiga-
tion of ordering of cascade filter sections.!¢

Theorem 6. Let H;(z) be the transfer function for the ith section of a
linear phase FIR filter in cascade form, where

Hi(2) = bo; + bz ! + byiz™?,

and let w; be the angle of one of its zeros, —r < w; < w. Then for all i:

( A P
| H(eim) | 0= [ <§
(7) max |H(e’)| =

w m™

Hien| s lal s«

2
(i7) 2 |bi| = max [Hi(e™)| = max (|Hi(e?)|,|Hi(e’r)|).
I=0 w
The next theorem is concerned with the equivalence of certain order-
ings with regard to output noise variance. In particular, it states that
with peak scaling each pair of sections in a filter which synthesize
reciprocal zeros is completely interchangeable without affecting the
output noise variance of the filter. With sum scaling, however, this
is not necessarily true. Nevertheless, a weaker condition can be stated
which says that, with sum scaling, if every pair of sections which
synthesize reciprocal zeros of a filter is interchanged in position, then
output noise variance is not changed. Figure 3 illustrates two such
equivalent orderings.

Theorem 7: Let {H (2)} and {H(2)} be the section transfer functions of
two orderings for a linear phase filter H (z), both scaled by the same method,
thus

Ng Ns
H(z) = 1 Hi(z) = II Hi(2).
=1 i=1
Then filters with section transfer functions {H(z)| and {H;(z)} produce
tdentical oulput noise variances if either of the following conditions is
true:
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40
Im[z]1
2 03 06
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Fig. 3—Two orderings with equal output noise variances.

(i) Peak scaling is used and for each i, H(z) and H:(z) have either
the same zeros or reciprocal zeros [1.e., Hi(z:) = 01if H:(z"YH = 0]

(i7) Sum scaling is used and for all 1, 27" is a zero of H;(z) whenever
z; 18 a zero of Hi(2).
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