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Experimental results on roundoff moise in cascade realizations of
Finite Impulse Response (FIR) digital filters are presented in this paper.*
The entire roundoff noise distribution (i.e., over all possible orderings)
is given for several low-order filters using both sum and peak scaling.
Based on observations about this distribution, as well as intuitive argu-
ments about the effects of ordering on roundoff noise, an algorithm for
minimizing roundoff noise is presented. Experimental verification of this
algorithm for a wide range of fillers is given.

I. INTRODUCTION

As discussed in previous works,!? the implementation of FIR filters
using finite precision arithmetic has become an important issue in
recent years. For cascade realizations of FIR filters, roundoff noise
is a crucial problem. In Refs. 1 and 2, some of the theoretical bases for
the analysis of roundoff noise in the FIR cascade form have been
considered. This paper presents a large body of experimental results
which depict the dependence of roundoff noise on several of the
important parameters of a cascade FIR low-pass filter. Most impor-
tantly, these results point to an algorithm which can find efficiently,
for a cascade filter, an ordering which has a noise variance very close
to the minimum possible. Experimental verification of this algorithm
for a wide range of filters is presented.

Low-pass, extraripple? filters are used throughout these investigations
as being representative of FIR filters. It will be seen that most results

* This paper is based on a thesis' submitted in partial fulfillment of the require-
ments for the degrees of Bachelor of Science and Master of Science in the Department

of 7]'Electrio:al Engineering at the Massachusetts Institute of Technology in September
1972.
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should not depend on the type of filter used. Figure 1 shows the mag-
nitude response of a typical extraripple filter (which by definition has
linear phase) and the parameters which define it. Of the four parameters
F,, Fy, Dy, and D,, only three can be independently specified. The
parameters N (impulse response length), F1, Dy, and D, will be chosen
as independent variables in these investigations. The studied ranges of
variation of these parameters are as follows:7 = N = 129,0.1 2 D, =
0.001, 0.1 = Dy = 0.001, 0 < F; < 0.5, and 0 < F, < 0.5 (sampling
frequency = 1). These ranges comprise a large range of the signifi-
cant values that these parameters take on. In the present state of the
art in real-time digital filter hardware, 128th-order (N = 129) is the
highest order that can be implemented in cascade form at a sampling
rate of 10 kHz (e.g., typical for speech processing).*-* I'urthermore, the
stated ranges for Dy and D, are those significant for many speech
processing systems.®

While a great deal of experimental data has been collected, only
representative examples will be presented here. For more examples
see Ref. 1.

1I. PRELIMINARY REMARKS

In Ref. 2 it is shown that given a transfer function H (z) to be realized
in cascade form and the order in which the factors of H(z) are to be
synthesized, there remain N, degrees of freedom (including gain of
filter) in the choice of filter coefficients, where N, is the number of
sections of the filter. Scaling methods are developed to fix these N,
degrees of freedom, and two particular methods, viz., sum scaling and
peak scaling,* are shown to be optimum for the particular classes of
input signals which they assume. These scaling methods will be
applied in this paper.

The prime issues in the realization of filters in cascade form are
threefold—scaling, ordering, and section configuration. Because of the
simplicity of a 2nd-order FIR filter, there is little freedom in the choice
of a structure for the sections of a cascade filter. In Ref. 2, the con-
figuration shown in Fig. 2a is assumed because it turns out to be the
most useful in a practical situation. Another configuration, Fig. 2b,
is also mentioned in Ref. 2. Because, as seen from Fig. 2c, these two
configurations can be readily accommodated in a more general sub-

* Sum (peak) scaling is defined to be a method of scaling where the scale factors
for the cascade sections are chosen so that the sum of the impulse response magnitudes
(peak of the magnitude of the frequency response) up to that section does not exceed
one.
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Fig. 1—Definition of filter parameters Dy, Ds, F,, and F..

filter structure, it is here assumed that the configurations of Figs. 2a
and b are both used in a cascade structure, depending on whether
bo; # boi or by = bs; respectively. The configuration of Fig. 2b has
the advantage of having lower noise than the configuration of Fig. 2a.
The option of summing all products in an increased length register
before rounding is also possible for all configurations. However, the
gain in signal-to-noise ratio does not seem to be worth the required
sacrifice in speed (assuming serial arithmetic).” In any ecase, all re-
sulting noise variances would simply be scaled down by a factor of
from 2 to 3 if this strategy were used instead of rounding after each
multiplication, as assumed here.

Other possible section configurations will be discussed later on. Since
scaling is treated in depth in Ref. 2, the major concern here is the
ordering of sections. Unlike the scaling problem, no workable optimal
solution (in terms of feasibility) to the ordering problem has yet been
found for cascade structures in general. The dependence of output
roundoff noise variance on section ordering, given a sealing method,
1s so complex that no simple indicators are provided to assist in any
systematic search for an ordering with lowest noise. Any attempt to
find the noise variances for all possible orderings of a filter involves on
the order of N,! evaluations, which clearly becomes prohibitive even
for moderately large values of N,. Thus there is little doubt that
optimal ordering with time constraint is by far the most difficult
issue to deal with in the design of filters in cascade form.
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Fig. 2—(a) Cascade form filter section. (b) Alternate cascade filter section. (c)
General cascade filter section.

Since finding an optimal solution to the ordering problem through
exhaustive searching is very time consuming (if not impossible in any
feasible amount of time) for all but very low-order filters, it is im-
portant to find out how closely a suboptimal solution can approach
the optimum and how difficult it would be to find a satisfactory sub-
optimal solution. Even this concern, however, would be unfounded if
the roundoff noise level produced by a filter were rather insensitive to
ordering. Then the difference in performance between any two order-
ings may not be sufficient to cause any concern. However, Schiissler
has demonstrated that quite the contrary is true.”-* He showed a 33-
point FIR filter which, ordered one way, produces ¢* = 2.4 @? (where
Q is the quantization step size of the filter), while ordered another way
yields ¢? = 1.5 X 10 @* (assuming all products in each section are
summed before rounding). This represents a difference of 1.6 bits versus
14.6 bits of noise. Clearly, the difference is large enough so that the
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problem of finding a proper ordering of sections in the design of a cas-
cade filter cannot be evaded.

An important question to pursue in investigating suboptimal solu-
tions is whether or not there exists some general pattern in which
values of noise variances distribute themselves over different orderings.
For example, for the 33-point filter mentioned above, are all noise
values between the two extremes demonstrated equally likely to occur
in terms of occurring in the same number of orderings? Or, perhaps,
only a few pathological orderings have noise variance as high as that
indicated. On the other hand, perhaps only very few orderings have
noise variances close to the low value, in which case an optimum solu-
tion would be very valuable, while a satisfactory suboptimal solution
may be just as difficult to obtain as the optimum.

In the next section, these questions will be answered by investi-
gating filters of sufficiently low order so that calculating noise variances
of N,! different orderings is not an unfeasible task. The implications of
results obtained will then be generalized.

III. CALCULATION OF NOISE DISTRIBUTIONS
3.1 Methods

The definitions of sum scaling and peak scaling in Ref. 2 indicate
that, for I'IR filters, sum scaling is much simpler to perform than peak
scaling. To achieve peak scaling, the maxima of the functions F;(ei)*
must be found for all 7 given an ordering. Even using the FFT, this
represents considerably more calculations than finding Y3, | f:(k) |
for all 7 as is necessary for sum scaling. In the 33-point filter mentioned
above, Schiissler used peak scaling on both the orderings. It will be
shown in Section IV that, given a filter, peak and sum scaling yield
noise variances that are not very different (within the same order of
magnitude), and, in fact, experimental results indicate that they are
essentially in a constant ratio to one another independent of ordering
of sections. Hence the general characteristics of the distribution of
roundoff noise with respect to orderings should be quite independent
of the type of scaling performed. In order to save computation time,
sum scaling will be used in these investigations.

Returning to the question of section configuration, for Infinite
Impulse Response (IIR) filters Jackson® has introduced the concept of
transpose configurations to obtain alternate structures for filter see-

* Fi(e’®) and {f:(k)} are defined in Refl. 2 and are the frequency response and
impulse response of the cascade of sections 1 to 7.
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Fig. 3—(a) Transpose configuration of Fig. 2a. (b) Alternate configuration of
Fig. 2a. (c) Alternate configuration of Fig. 2b.

tions. However, the application of this concept to Fig. 2a yields the
structure shown in Fig. 3a, which is seen to have the same noise
characteristics as the structure in Fig. 2a since, by the whiteness
assumption on the noise sources, delays have no effect on them. There-
fore, the structure of Fig. 3a has no advantages over other structures
as far as roundoff noise is concerned. The only other significant alter-
nate configuration for Fig. 2a is shown in I'ig. 3b. The counterpart
for Fig. 2b is Fig. 3¢ and is valid when by; = bs;. Both of these new
configurations have exactly the same number of multipliers as the
original ones. However, one noise source is moved from the output
to essentially the input of the section. Thus it is advantageous to use
the structures in Figs. 3b and ¢ for the 7th section when

1
b SO < T g (1)
.k k

0%

where {g:(k)} is, as defined in Ref. 2, the impulse response of the
equivalent filter seen by the ith noise source. However, in order to
have no error-causing internal overflow when the input and output
of a section are properly constrained, the structures of Figs. 3b and ¢
can be used only when bo; < 1. If by; > 1, either four multipliers are
required, or Fig. 3b reduces to Fig. 2a.

In the investigations that follow, for each section of a filter, the
configuration among Figs. 2a, 2b, 3b, and 3¢ which is applicable and
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results in the least noise will be employed. It turns out that this
flexibility in the choice of configuration has little effect on the noise
distribution characteristics of a filter. For low-noise orderings, the con-
figurations of Figs. 2a and b are almost always more advantageous
than the other configurations. For high-noise orderings, the alternate
configurations help to reduce the noise variance, but the difference is
comparatively small. Thus in actual filter implementations the
structures in Figs. 3b and ¢ may be ignored.

Figure 4 is the flow diagram of a computer subroutine which is used
to accomplish scaling, choice of configuration, and output noise vari-
ance calculation given a filter and its ordering. The input to the sub-
routine consists of N, (the number of sections) and the sequence
{Ci:, 1= j=<4, 1=i=N,}, the elements of which are unscaled
coefficients of the filter, defined by

Hi(z) = C1i(Cai + Csiz™* + Caiz™®) l1=7= N, (2)

where H.(z) is the ith section in the filter cascade. The sequences
{f(k)} and {g:(k)} in Fig. 4 are the impulse responses of the cascade
of the first 7 sections and the last (N, — 7) sections respectively. The
coefficients {C;} on input are assumed to be normalized so that, for
all 7, C;; = 1 and at least one of Cy; and Cy; equals 1. On return {C i}
contains the scaled coefficients and Nx is the value of output noise
variance computed in units of @2, where Q is the quantization step
size of the filter.

Using this subroutine, the noise output of all possible orderings of
several FIR filters ranging from N, = 3 to N, = 7 was investigated.
By Theorem 7(7i) in Ref. 2, for any filter with at least one set of two
complex conjugate pairs of reciprocal zeros, there are at most N,!/2
orderings that differ in output noise variance. This is true since if all
orderings are divided into two groups, according to the order in which
the reciprocal zeros are synthesized in the cascade, then Theorem
7(i7) establishes a one-to-one correspondence between each ordering
of one group and some ordering of the other group. Thus, in the investi-
gation of all possible noise outputs of a filter, where possible, a pair
of sections which synthesize reciprocal zeros is chosen and all order-
ings in which a particular one of these sections precedes the other are
ignored.

3.2 Discussion of Results

Using the methods and procedures described, the noise distributions
of 27 different linear phase, low-pass extraripple filters were investi-
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Fig. 5—Positions of the zeros of one filter.

gated. Twenty-two of these filters are 13-point filters, since N = 13
represents a reasonable filter length to work with. Thirteen-point
filters have six sections each, corresponding to 6! or 720 possible order-
ings of sections. By reducing redundancy via Theorem 7 of Ref. 2,
the number of orderings it is necessary to investigate reduces to 360
for all but 2 of the 22 filters.

The results of the investigations for all 27 filters will eventually be
presented. Meanwhile, attention is focused on a typical 13-point filter.
As an example, a filter with 4 ripples in the passband, 3 ripples in the
stopband, and passband and stopband tolerances of 0.1 and 0.01,
respectively, is used. By passband and stopband tolerances is meant
the maximum height of ripples in the respective frequency bands.
Figure 5 shows the positions of the zeros of the filter in the upper half
of the z-plane. Each section of the filter is given a number for identifica-
tion. The zeros that a section synthesizes are given the same number,
and these are shown in Fig. 5. Table I shows a list, in order of increas-
ing noise magnitude, of all 360 orderings investigated and their cor-
responding output noise variances in units of @?, computed according
to Fig. 4. A histogram plot of the noise distribution is shown in Fig.
6a, and a cumulative distribution plot is shown in Fig. 6b.

Two characteristics of the histogram shown in Fig. 6a are of special
importance because they are common to similar plots for all the filters
investigated. First of all, most significant is the shape of the distribu-
tion. It is seen that most orderings have very low noise compared to
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TaBLE [—NoI1sE VARIANCE oF ALL 360 ORDERINGS
or A 13-PoinT FILTER

Order Noise Order Noise Order Noise
263451 1.0983 416253 1.5957 621453 2.4335
145263 1.1104 341625 1.6081 245613 2.4699
145362 1.1131 436152 1.6170 134652 2.4854
163452 1.1382 142635 1.6286 236415 2.6285
245163 1.1601 412653 1.6354 613425 2.5443
245361 1.1605 421653 1.6418 314652 2.5643
362451 1.1834 241635 1.6458 623415 2.5703
246351 1.2305 243615 1.6524 631425 2.6047
162453 1.2456 243561 1.6539 632415 2.6073
361452 1.2561 164352 1.6583 425631 2.6090
261453 1.2783 264153 1.6817 612435 2.6228
143652 1.2841 346215 1.6829 621435 2.6461
146352 1.3245 346125 1.6904 425613 2.6785
415263 1.3298 364251 1.7040 145632 2.6801
415362 1.3325 164253 1.7101 134562 2.6991
243651 1.3356 413562 1.7171 145623 2.6993
345261 1.3546 3426156 1.7177 624351 2.7021
345162 1.3568 342561 1.7192 326415 2.7167
246153 1.3652 413625 1.7449 134625 2.7269
346251 1.3660 431562 1.7483 126453 2.7639
341662 1.3666 426315 1.7560 314562 2.7779
425163 1.3687 431625 1.7762 234651 2.7927
425361 1.3692 412563 1.7835 314625 2.8058
146253 1.3763 416325 1.7854 634251 2.8110
163425 1.3797 426135 1.7865 614352 2.8229
342651 1.4009 364152 1.7869 624153 2.8368
263415 1.4151 421563 1.7900 614253 2.8747
1426563 1.4160 416235 1.8083 634152 2.8939
241653 1.4332 412635 1.8480 415632 2.8994
426351 1.4392 436215 1.8509 216453 2.9085
346152 1.4489 421635 1.8544 415623 2.9187
162435 1.4582 436125 1.8585 126435 2.9765
261435 1.4909 423615 1.8610 324651 2.9809
361425 1.4976 423561 1.8626 624315 3.0190
143562 1.4977 264315 1.8638 624135 3.0495
362415 1.5002 432615 1.8858 614325 3.0644
413652 1.5034 432561 1.8873 614235 3.0873
435261 1.5227 264135 1.8943 234615 3.1005
435162 1.5249 164325 1.8998 234561 3.1110
143625 1.5256 164235 1.9227 216435 3.1211
436251 1.5341 364215 2.0208 634215 3.1278
431652 1.5347 364125 2.0284 634125 3.1354
416352 1.5439 136452 2.0700 124653 3.2439
423651 1.5442 316452 2.1489 324615 3.2977
264351 1.5470 236451 2.2117 324561 3.2992
246315 1.5474 623451 2.2534 214653 3.3885
142563 1.5642 632451 2.2904 124563 3.3920
146325 1.5660 613452 2.3028 124635 3.4565
432651 1.5690 136425 2.3115 246531 3.4977
426153 1.56739 631452 2.3632 214563 3.5367
246135 1.5778 316425 2.3904 246513 3.5672
341562 1.5803 326451 2.3999 214635 3.6011
241563 1.5814 245631 2.4004 426531 3.7063
146235 1.5889 612453 2.4102 426513 3.7758
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357

Order Noise Order Noise Order Noise
264531 3.8141 341526 5.8993 413265 16.5228
264513 3.8836 452613 5.9446 431265 16.5541
163245 4.0265 413526 6.0362 463521 16.5661
146532 4.0376 345216 6.0375 463512 16.6163
146523 4.0569 346521 6.0426 412365 16.6522
162345 4.0697 425316 6.0520 421365 16.65687
261345 4.1025 431526 6.0674 134265 17.5048
361245 4.1445 346512 6.0928 314265 17.5837
345621 4.2234 451632 6.1475 243165 17.7595
4165632 4.2570 451623 6.1668 342165 17.8249
345612 4.2737 435216 6.2055 423165 17.9682
416523 4.2763 436521 6.2106 432165 17.9929
263145 4.2914 436512 6.2609 124365 18.2607
164532 4.3715 243516 6.3368 214365 18.4053
362145 4.3766 364521 6.3805 234165 19.2166
164523 4.3907 342516 6.4021 324165 19.4048
435621 4.3915 364512 6.4307 642351 21.7670
435612 44417 423516 6.5454 643251 21.8232
451263 45778 432516 6.5701 641352 21.8995
451362 4.5806 134526 7.0181 642153 21.9017
452163 4.6348 314526 7.0970 643152 21.9061
452361 4.6353 124536 7.2674 641253 21.9513
453261 4.7361 214536 7.4120 642315 22.0838
453162 4,7383 634521 7.4875 642135 22.1143
136245 4.9584 634512 7.5377 643215 22.1401
624531 4.,9693 453621 7.6049 641325 22,1410
145236 4.9857 453612 7.6551 643125 22,1476
245136 5.0354 234516 7.7939 641235 22.1639
316245 5.0372 324516 7.9820 143256 23.0109
624513 5.0388 451236 8.4532 341256 23.0934
613245 5.1911 452136 8.5101 142356 23.1403
415236 5.2051 451326 8.8996 241356 23.1575
612345 5.2343 453126 9.0573 413256 23.2302
425136 5.2440 452316 9.3181 431256 23.2615
631245 5.2515 453216 9.4189 412356 23.3596
621345 5.2577 462351 11.8333 421356 23.3661
236145 5.4048 463251 11.8896 642531 24.0341
145326 5.4322 461352 11.9658 642513 24.1036
142536 5.4395 462153 11.9680 134256 24,2122
623145 5.4466 463152 11.9725 314256 24,2911
241536 5.4567 461253 12.0176 243156 24,4670
632145 5.4836 462315 12.1501 342156 24,5323
614532 5.5361 462135 12.1806 641532 24.6126
614523 5.6553 463215 12.2064 641523 24,6319
126345 5.5880 461325 12.2073 423156 24,6756
326145 5.5930 463125 12.2140 432156 24,7003
415326 5.6515 461235 12.2302 124356 24.9681
412536 5.6589 462531 14.1004 214356 25.1128
421536 5.6653 462513 14.1699 234156 25.9240
345126 5.6759 461532 14.6789 324156 26.1122
216345 5.7326 461523 14.6982 643521 26.4998
143526 5.8168 143265 16.3035 643512 26.5500
245316 5.8434 341265 16.3860 132645 81.4953
435126 5.8440 142365 16.4329 312645 81.5742
452631 5.8751 241365 16.4501 231645 85.2733
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TaBLE [—Conlinued.

Order Noise Order Noise Order Noise

321645 85.4615 231465 116.6240 465213 180.9850
123645 87.0142 321465 116.8120 465132 181.3550
213645 87.1589 123465 118.3650 465123 181.3750
456231 99.7815 213465 118.5090 465321 182.8770
456213 99.8510 132456 119.5530 465312 182.9270
456132 100.2220 312456 119.6320 645231 190.8490
456123 100.2410 231456 123.3310 645213 190.9180
456321 101.7430 321456 123.5190 645132 191.2890
456312 101.7940 123456 125.0720 645123 191.3080
132465 112.8460 213456 125.2170 645321 192.8110
312465 112.9250 465231 180.9150 645312 192.8610

the maximum value possible. In fact, the lowest range of noise vari-
ance, in this case between zero and 2 @7, is the most probable range in
terms of the number of orderings which produce noise variances in this
range. The distribution is seen to be highly skewed, with an expected
value very close to the low-noise end, in this case equal to 19.5 @
In fact, from the cumulative distribution it is seen that approximately
two-thirds of the orderings have noise variances less than 4 percent
of the maximum, while nine-tenths of them have noise variances less
than 14 percent of the maximum.

The second characteristic is that large gaps occur in the distribution
so that noise values within the gaps are not produced by any orderings.
While Fig. 6a shows this effect only for the higher noise values, a more
detailed plot of the distribution in the range from zero to 28 @*, as in
Fig. 6¢, shows that gaps also occur for lower noise values. Thus noise
values tend to occur in several levels of clusters. These observations
provide the general picture of clusters of noise values, the separation of
which increases rapidly as a function of the magnitude of the noise
values, thus forming a highly skewed noise distribution.

The significance of these results is far-reaching. Given a specific
filter, because of the abundance of orderings which yield almost the
lowest noise variance possible, it is concluded that it should not be too
difficult to devise a feasible algorithm which will yield an ordering,
the noise variance of which is very close to the minimum. Thus, as
far as designing practical cascade filters is concerned, it really is not
crucial that the optimum ordering be found. In fact, it may be far
more advantageous to use a suboptimal method, which can rapidly
choose an ordering that is satisfactory, than to try to find the optimum.
The reduction in roundoff noise gained by finding the optimum solu-
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tion is probably, at best, not worth the extra effort from the design
standpoint. At least up to the present, no efficient method for finding
an optimum ordering has been found.

In Section VI, a suboptimal method is presented which, given a filter,
yields a low-noise ordering efficiently and has been successfully applied
to a wide range of filters. Before presenting the algorithm, the be-
havior of roundoff noise with respect to scaling and other filter parame-
ters will be further investigated. Also, the nature of high-noise and low-
noise orderings will be discussed, so that they can be more easily
recognized.
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Fig. 7—(a) Noise distribution histogram of typical 11-point filter. (b) Noise
distribution histogram of another 13-point filter. (¢} Noise distribution histogram
of a 15-point filter.
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Before ending this section, the noise distribution histograms of an
11-point and one more 13-point filter are presented in Figs. 7a and b.
These are seen to exhibit all the characteristies discussed above. The
major difference between the noise distributions of the two 13-point
filter examples presented lics in the magnitude of the maximum and
average noise variances. This difference will be accounted for presently.

Also presented is the noise distribution for a 15-point filter, in Tig.
7c. The caleculation of this distribution involves 2520 different order-
ings. This histogram shows even stronger emphasis on the distribution
characteristics discussed and, together with Figs. 6a and 7a, suggests
that the skewed shape and large-gap properties of the noise distribu-
tion of a filter become inereasingly pronounced as the order of the filter
increases. Thus it is expected that the results presented can be general-
ized for higher-order filters.

3.3 Dependence of Distributions on Transfer Function Parameters

From all the caleulated noise distributions of the previous section,
the interesting fact is observed that, though different filters may pro-
duce very different ranges of output noise variances when ordered in
all possible ways, the noise variances for each filter always distribute
themselves in essentially the same general pattern. The differences in
noise variance ranges among different filters is accounted for by investi-
gating the dependence of noise distributions on parameters which
specify the transfer function of a filter.

The noise distributions of scveral low-pass extraripple filters with
various values of the parameters, N, F1, Dy, and D, were computed us-
ing the methods deseribed. Since all these distributions have the same
general shape, they can be compared by simply examining their maxi-
mum, average, and minimum values. A list of all the filters, the noise
distributions of which have been computed, including those already dis-
cussed, is presented in Table II. These filters are specified by five pa-
rameters, namely the four already mentioned, plus N ,, the number of
ripples in the passband. Since all the filters are extraripple filters, it is
more natural to specify N, than F,. Of course, N, and F, are not inde-
pendent. The maximum, average, and minimum values of the noise dis-
tributions of each of these filters are listed in Table II. The last column
in this table will be discussed in Section VI,

Filters numbered 1 to 5 in Table II are very similar except for their
order in that they all have identical passband and stopband tolerances
and approximately the same low-pass bandwidth. The maximum,
average, and minimum values of their noise distributions are plotted
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TasLE II—LisT oF FiLTERS AND THEIR NOISE
DISTRIBUTION STATISTICS

Noise Variance

# N N, Fy D D, Max Avg Min | Algl
1 7 2 0.212 | 0.1 0.01 1.24 | 0.84 | 037 0.37
2 9 3 0.281 | 0.1 0.01 626 254 | 0.73 0.73
3 11 3 0.235 | 0.1 0.01 19.41 | 4.79 | 0.68 0.68
4 13 -4 0.279 | 0.1 0.01 192.86 | 19.55 1.10 1.10
5 15 4 0.244 | 0.1 0.01 923.63 | 54.45 1.02 1.16
6 13 3 0.100 | 0.001 | 0.001 15.84 3.01 0.65 0.69
7 13 4 0.261 0.05 0.004 | 119.48 | 12.91 0.96 1.02
8 13 1 0.012 | 0.01 0.01 9.91 1.61 0.32 0.35
9 13 2 0.067 | 0.01 0.01 16.30 2.94 0.44 0.47

10 13 3 0.138 | 0.01 0.01 42.63 5.94 0.71 0.73

11 13 4 0.213 | 0.01 0.01 69.76 8.52 0.82 0.91

12 13 5 0.288 | 0.01 0.01 76.43 | 11.01 1.44 1.52

13 13 6 0.364 | 0.01 0.01 52.54 | 10.33 1.92 2.43

14 13 3 0.201 | 0.1 0.01 96.25 | 12.09 0.81

15 13 3 0.179 | 0.05 0.01 69.26 | 9.02 | 0.76

16 13 3 0.154 | 0.02 0.01 50.63 6.87 0.72

17 13 3 0.123 | 0.005 | 0.01 37.36 5.33 0.70

18 13 3 0.106 | 0.002 | 0.01 32.83 4.80 0.69

19 13 3 0.095 | 0.001 | 0.01 30.53 4.53 0.69

20 13 3 0.124 | 0.01 0.1 132.57 | 17.56 1.02

21 13 3 0.129 | 0.01 0.05 85.84 | 11.45 0.83

22 13 3 0.135 | 0.01 0.02 54.94 7.47 0.75

23 13 3 0.141 | 0.01 0.005 35.59 5.07 0.68

24 13 3 0.144 | 0.01 0.002 26.44 4.37 0.68

25 13 3 0.146 | 0.01 0.001 22.52 4.07 0.70

26 15 4 0.185 | 0.01 0.01 417.08 | 27.38 1.00

27 15 1 0.255 | 0.1 0.001 | 601.83 | 35.15 1.02

on semilog coordinates in Iig. 8a. It is seen that all these statistics of
the distributions have an essentially exponential dependence on filter
length. The less regular behavior of the minimum values is believed
to be caused by differences in bandwidth (¥,) among the filters.
Figure 8b shows a similar plot of the same distribution statistics for
filters numbered 8 to 13 as a function of F,. These filters have identical
values of N, D;, and D,, and represent all six possible extraripple
filters that have these parameter specifications. From TFig. 8b it is
seen that with those parameters mentioned above held fixed, the noise
output of a cascade filter tends to increase with increasing bandwidth.
Filters numbered 14 to 25 all have fixed values of N, N, and either
D, or D,. Plots of the distribution statistics of these filters as func-
tions of D; and D, are shown respectively in Iligs. 8¢ and 8d. These
plots indicate that, as the transfer function approximation error for a
filter decreases, so does its noise output. Though the plots are made
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holding N, rather than F, fixed, it is seen that, at least for the filters
used in Iig. 8d, bandwidth increases with decreasing approximation
error. Since the noise output of a filter is found to inecrease with band-
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width, it is expected that noise would still decrease with stopband
tolerance D, if F; were fixed instead of N,. In any event, the variation
of F, among these filters is small.

Figures 8b to 8d are all plots of statistics for 13-point filters. Notice
how the maximum, average, and minimum curves all tend to move
together. In particular, the average curve almost always stays approxi-
mately halfway on the logarithmic scale between the maximum and
minimum curves. This phenomenon is, of course, simply a manifesta-
tion of the empirical finding that noise distributions of different filters
have essentially the same shape independent of differences in transfer
characteristics.

To summarize, it has been found experimentally that with other
parameters fixed, the roundoff noise output of a filter tends to increase
with increases in all four independent parameters N, Fy, D;, and D
which specify its transfer function. In particular, noise output tends to
grow exponentially with N. It was not shown that the noise output of
a filter with a fixed ordering and scaled a given way always varies in
the way indicated when its transfer function parameters are perturbed.
What has been shown is perhaps a more useful result from the design
viewpoint. These findings imply that, other things being equal, a
transfer function with, for instance, a higher value of D, is likely,
when realized in a cascade form, to result in a higher noise output than
a transfer function with a smaller value of D, realized by the same
method. Though these results were found using only low-order filters,
it is expected they could be generalized for higher-order filters as well.
Section VI will present experimental evidence to confirm this
expectation.

IV. COMPARISON OF SUM SCALING AND PEAK SCALING

The claim was made earlier that the results obtained on the noise
distribution of filters ought to be quite independent of whether sum
scaling or peak scaling is used. This claim will now be sustained
heuristically and experimentally.

Let « denote the ratio of the maximum gain (over all frequencies)
of a low-pass extraripple filter scaled by sum scaling to the maximum
gain of the same filter peak scaled. Then it must be true that a = 1,
since by definition the maximum gain for peak scaling is exactly one,
while for sum scaling it must be no more than one if class 2 signals
(which are a subset of class 1) are to be properly constrained (by
Theorem 3, Ref. 2). Furthermore, it can be easily shown' that
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a = 1 — 2¢ where e is defined as
2 r(k)

I @)

with {h(k)} being the impulse response of the filter and {r(k)} being
the magnitude of the negative portion of {h(k)}, i.e.,
—h(k) h(k) <0

® =1y h(k) 2 0

(4)

For a low-pass filter, the envelope of {h(k)} has the general shape
of a trunecated (sin z) /x curve, hence e is expected to be a small number.

TaBLE III—LisT oF FILTERS AND THE RESULTS
oF ORDERING ALGORITHMS

Noise Variance
D1 = 0.01 . Sum
D2 = 0.001 Peak Scaling Scaling
# N N, F @ Alg 1 Alg 2 Alg 1
28 13 4 0.219 0.65 1.25 1.26 0.90
29 15 4 0.193 0.68 1.23 1.22 1.02
30 17 5 0.230 0.61 1.99 2.49 1.37
31 19 5 0.207 0.64 1.93 1.92 1.47
32 21 6 0.236 0.59 2.50 2.61 1.58
33 23 6 0.216 0.61 2.57 2.91 1.77
34 25 7 0.240 0.57 3.756 3.62 2.36
35 27 7 0.223 0.59 3.95 4.11 2.45
36 29 8 0.243 0.55 4.54 5.04 2.67
37 31 8 0.227 0.57 5.27 5.88 2.74
38 33 9 0.244 0.54 7.81 6.67 4.59
39 35 9 0.231 0.55 6.01 6.43 3.72
40 33 1 0.005 1.0 0.47 0.48 0.53
41 33 2 0.029 0.82 0.60 0.67 0.60
42 33 3 0.059 0.73 0.89 1.00 0.80
43 33 4 0.090 0.68 1.43 1.36 1.16
44 33 5 0.121 0.63 2.29 1.84 1.71
45 33 6 0.152 0.60 2.48 2.70 1.61
46 33 7 0.183 0.58 3.47 3.37 2.30
47 33 8 0.214 0.61 472 5.23 3.38
48 33 10 0.275 0.52 10.04 8.16 4.83
49 33 11 0.305 0.52 15.68 11.35 8.30
50 33 12 0.334 0.50 13.43 14.88 6.27
51 33 13 0.363 0.50 21.35 17.62 9.14
52 33 14 0.392 0.50 41.64 31.41 15.40
53 33 15 0.419 0.51 55.20 41.13 2212
54 33 16 0.448 0.53 89.52 65.66 38.23
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TasLe IV—LisT oF FILTERS AND THE RESULTS
oF ORDERING ALGORITHMS

Noise Variance

N =33 : Sum

N, =8 Peak Scaling Sealing
# F D, D. . Algl | Alg2 Alg 1
55 0.211 0.01 0.002 0.59 5.63 5.33 3.34
56 0.208 0.01 0.005 0.57 5.13 5.69 3.18
57 0.205 0.01 0.01 0.56 5.05 5.27 3.34
58 0.202 0.01 0.02 0.55 7.63 8.31 4.01
59 0.197 0.01 0.05 0.53 11.34 12.53 6.92
60 0.193 0.01 0.1 0.51 46.33 22.99 16.88
61 0.238 0.1 0.01 0.58 9.90 9.01 5.61
62 0.227 0.05 0.01 0.58 8.91 7.35 5.52
63 0.214 0.02 0.01 0.56 8.87 5.75 4.32
64 0.196 0.005 0.01 0.56 5.47 4.69 3.68
65 0.185 0.002 0.01 0.56 5.95 4.08 3.41
66 0.178 0.001 0.01 0.57 4.10 4.11 2.85

In fact, it is easily shown! that, for a low-pass filter, if the passbhand
tolerance D, is much less than the maximum passband gain, as is
usually the case, then to an excellent approximation @ = 1 — 2e. It is
now shown that if 2 is the output noise variance of a filter with sum
scaling and ¢ is the output noise variance of the same filter except
with peak scaling, then ¢ = a?(s'?). To show this, the optimality
properties for sum scaling and peak scaling, proved in Ref. 2, Theorem
4, are invoked. Since the gain of the sum-scaled filter is « times that of
the peak-scaled filter, the ratio of their signal-to-noise ratios for class
2 inputs must equal « times the inverse ratio of their rms noise values
(square root of variance), i.e., with S/N for sum scaling and S/N’
for peak scaling,

S/N _ o 5)
s/N' o

But since peak scaling is optimum for class 2 inputs and class 2is a sub-
set of class 1, then S/N’ = S/N. Thus ¢? = a%’%. For an alternative
derivation see Ref. 1.

In Tables III and IV, a list of filters and some results of Section VI
are presented. Together with these results are listed measured values
of a for each filter. Observe that, for these typical filters, « ranges from
0.5 to 1. Furthermore, for each filter, the last and third to last columns
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Fig. 9—Peak scaling versus sum scaling noise output comparison for a typical filter.

of Tables III and IV list the noise variances that result from the same
ordering using sum scaling and peak scaling respectively. Comparing
these, it is seen that, in almost every case, ¢* < (¢'?).2 In particular,
this is true if « is not too close to 1.0. The case where ¢ > (¢'?) and
a = 1 is filter number 40 in Table III. However, except for the un-
interesting cases of filters with all zeros on the unit circle, in general,
a < 1, and it is expected that ¢* = (¢?). Thus for all practical pur-
poses it can be assumed that

o2

’
a'?

2

IIA

1. (6)

IA

[+

From eq. (6), it is seen that the output noise variance for a filter
with sum scaling is comparable, at least in order of magnitude, to that
for the same filter ordered the same way with peak scaling applied.
In fact, experimental results show that given a filter, the noise vari-
ances for sum scaling and peak scaling are in an approximately con-
stant ratio for almost all orderings. An example of this result is shown
in Fig. 9, where the noise variances for sum scaling and peak scaling of a
typical filter are plotted against each other for each ordering. The
resulting points are seen to form almost a straight line with slope
approximately equal to 2, so that essentially ¢’ = 2¢? for all orderings
of this filter.

Thus the noise distributions of the previous section are essentially
unchanged if peak sealing is used instead of sum sealing. To illustrate
this, Fig. 10 shows the noise distribution for the filter of Fig. 6 with
peak scaling used instead of sum scaling.
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Fig. 10—Noise distribution histogram of filter of Fig. 5 using peak scaling.

The evaluation of noise variances with peak scaling is done in essen-
tially the same way as that described in Fig. 4. Using a 128-point FF'T
to evaluate two transforms at a time (exploiting real and imaginary
part symmetries) to give the maxima of the F;(e’*) for 360 orderings,
the computations for peak scaling were found to require four times as
much time as that for sum scaling.

V. AN INTUITIVE EXPLANATION OF ROUNDOFF NOISE DEPENDENCE ON
ORDERING IN TERMS OF SPECTRAL PEAKING

That roundoff noise is distributed in the way shown with respect to
orderings for a filter is an intriguing fact which is by no means obvious.
The dependence of roundoff noise on ordering involves complicated
matters like differing spectral shapes of different combinations of
individual filter sections and the interactive scaling of signal levels
within a filter necessitated by dynamic range limitations. As such, this
dependence is much too complicated to visualize intuitively. It is
proposed that the relative level of roundoff noise in a filter is adequately
determined in order of magnitude by the amount of peaking in certain
subfilter spectra. Thus it will be shown that, since the dependence on
ordering of the amount of peaking of these spectra is not too difficult
to visualize, by judging the relative amount of peaking of these spectra,
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the relative merit of an ordering in terms of high-noise or low-noise
output can be determined by inspection. These findings explain the
general shape of noise distributions.

Given a linear phase filter with z-transform H (z), define transfer
functions A;(z),i = 1, - - -, N,, to have the property that A, (z) is pro-
portional to the transfer function for the 7th section of the filter, and
each |H:(e’*)| for all 7 has a maximum over w equal to C, where C is
chosen so that the overall filter frequency response H (e7) has a maxi-
mum in magnitude equal to one. Clearly ¢ = 1. Define transfer
functions

1T )

/‘Ii(z) = _

. (7)
Biz) = II By

j=it1

and define a number Pk to be the largest value of max,|A.(e/)| or
max, | Bi(e’)| for all 7. It will be argued that, given an ordering, a
large value of Pk indicates a high-noise output, while a low value of
Pk indicates a low-noise output.

To see this, define G:(e”) to be B,(e’) with its maximum in mag-
nitude over w normalized to unity. Then it can be easily shown!® that if

A;

max | Ai(e) |
B; = max | Bi(e7«) |

Q* 1
"12 2x

(8)

2r
C.=k f | Gi(e’®) | 2dw
0
(where k; is the number of noise sources in the 7th section), then the
output noise variance due to the 7th section is given by

For the moment assume that C, is a constant factor independent of
ordering. Then ¢% is proportional to (4.B;)%. Note that for any i, 4;
and B; are the maxima of two functions the product of which is H (e’«).
Furthermore, for some i either A; = Pk or B; = Pk. Now suppose
Pk > C. Without loss of generality, it may be assumed A; = Pk.
Then argue that 4;B; > (.

Clearly A; = |A(e’)| for some wo. Now A:(2)B:(z2) = H(z), and
H (2) is a function with zeros only in the z-plane other than the origin.



370 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

Also, at least in the case of well-designed band-select filters, the zeros
of H(z) are well spaced and spread out around the unit circle. The
zeros of a typical filter are shown in Fig. 11a. Furthermore, |H (e%)]|
<1. Thus in order for |A;(e’)| to have a large peak at w,, several
zeros of H (z) which occur in the vicinity of z = e*# must be missing
from A;(z), while most of the remaining zeros must be in A;(z). This
means that B;(z) has a concentration of zeros around e*/“. By the re-
sult of Theorem 6(z) in Ref. 2, which says that the maximum of the
magnitude frequency response of a filter section occurs at either w = 0
orw = mdepending on whether the zeros synthesized are in the left half
or the right half of the z-plane, it is seen that most factors of Bi(e?v)
must have maxima in magnitude which occur at exactly the same w.
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Fig. 11—(a) Zero positions of a typical 67-point filter. (b) Zero positions of filter
number 14 of Table I1.
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Now C is found to be an increasing function of N}, where typically
C > 2. Hence | B;(e’*)| is very likely to have a peak which is at least
1, or B; =2 1. Thus A.B;> C. By the same token, if B; = Pk and
Pk > C, then A:B; > C.

Hence if Pk > C, then for at least one 7, o> = (4.:B:)2C; where
A:B;> C. Compared with a nominal value of say A:B; = C, the
resulting difference in output noise variance can be great. When Pk
takes on its lowest possible value, viz., Pk = €, the o> ’s are compara-
tively small for all 7, hence it is expected that the resulting ¢2 is among
the lowest values possible. Thus there exists a correlation between
high values of Pk and high noise, and low values of Pk and low noise.

Concerning the assumption that € is constant independent of order-
ing, it is reasonable as long as only order-of-magnitude estimates are
of interest. Since by definition max,|G:(e/“)| = 1 independent of
ordering and 7, it can be expected that variations in C; with ordering
are much less than variations in (A4.B;)%.

Based on these results, it can be concluded that an ordering which
groups together, either at the beginning or at the end of a filter, several
zeros all from either the left half or the right half of the z-plane is
likely to yield very high noise. This observation is based on the fact
that since zeros from the same half of the z-plane produce frequency
spectra the maxima of which occur at exactly the same w, several zeros
from the same half of the z-plane can build up a large peak in the pro-
duct of their spectra H,(ei«). On the other hand, a scheme which
orders sections so that the angle of the zeros synthesized by each
section lies closest to the w at which the maximum of the spectrum
of the combination of the preceding sections occurs is likely to yield
a low-noise filter.

The above observations are found to be true for all the filters the
noise distributions of which were investigated. For example, from
Table I, it is seen that those orderings which group together all three
sections 4, 5, and 6 of the filter of Fig. 5 either at the beginning or at the
end of the filter are precisely those which have the highest noise.
Namely, they account for all noise variance values above 26.6 Q2.
Using the results on the noise distribution of a filter and the results
of this section, it can thus be said that the comparatively few orderings
of a filter which have unusually high noise can be avoided simply by
judiciously choosing zeros for each section so that no large peaking
in the spectrum, either as seen from the input to each section or from
each section to the output, is allowed to occur. In particular, this can
be done by ensuring that from the input to each section the zeros
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synthesized well represent all values of w, i.e., the variation in the
density over w of zeros chosen should be minimal.

These observations have the implication that low-noise orderings
for a filter are those which choose zeros in such an order that they
“jump around”’ about the unit circle and are well “interlaced,” whereas
high-noise orderings are those which allow clusters of adjacent zeros
to be sequenced adjacently in the filter cascade. Since there are cer-
tainly far more ways to sequence zeros so that they satisfy the former
property than the latter, it is clear why most orderings of a filter have
low noise.

The values of Pk for all orderings of several filters were measured,’
and they show good correlation with ¢?, thus supporting these argu-
ments. For reasons of space, the results are not tabulated here. How-
ever, Figs. 12 and 13 show plots of the spectra from each section to the
output of a high-noise and a low-noise ordering for a typical 13-point
filter, the zeros of which are shown in Fig. 11b. Both orderings are
peak scaled, so that the spectra from the input to each section of the
filter have maxima equal to one. Thus, in reference to eq. (9), 4.B: is
equal to the maximum of the spectrum from section (z + 1) to the
output. The ordering of Fig. 12 has ¢* = 186 @, while that of Fig. 13
has o2 = 1.1 Q% It is seen that, as expected, AB; has a large value for
at least one 7 in the high-noise ordering, reaching a value of 60, while
for the low-noise ordering 4;B: < 2.2 for all 7. Furthermore C;, which
is proportional to the integral of the square of the spectrum from section
(¢ + 1) to output with its maximum normalized to unity, does not
vary too much between the two orderings. Finally, note that the spec-
trum of each section in the low-noise ordering does indeed tend to
suppress the peak in the spectrum of the combination of previous
sections. Thus the arguments of this section are supported.

VI. AN ALGORITHM FOR OBTAINING A LOW-NOISE ORDERING FOR THE
CASCADE FORM

An extensive analysis of roundoff noise in cascade form FIR filters
has been presented in this paper and in Ref. 2. However, an investi-
gation of roundoff noise would not be complete without studying the
practical question which in the first place had motivated all the
analyses and experimentation. The question is, given an FIR transfer
function desired to be realized in cascade form, how does one sys-
tematically choose an ordering for the filter sections so that roundoff
noise can be kept to a minimum?

A partial answer to this question has already been given in the
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high-noise ordering.
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previous section. However, no completely systematic method has yet
been devised for selecting an ordering for a filter guaranteed to have
low noise. Ultimately, one wishes to find an algorithm which, when
implemented on a computer, can automatically choose a proper order-
ing in a feasible length of time.

Avenhaus has studied an analogous problem for cascade IIR filters
and has presented an algorithm for finding a “favorable’” ordering of
filter sections.’® His algorithm consists of two major steps; a ‘“‘pre-
liminary determination” and a ‘“final determination.” In this section
an algorithm is described for ordering FIR filters which is based upon
the procedure used in the “preliminary determination” step of Aven-
haus’ algorithm. It has been found that a procedure appended to the
proposed algorithm similar to Avenhaus’ final determination step
adds little that is really worth the extra computation time to the
already very good solution obtainable by the first step. Hence such a
procedure is not included in this algorithm.

No statement was made by Avenhaus as to what range of noise
values can be expected of filters ordered by his algorithm, nor did he
claim that his algorithm always yields a low-noise ordering (relatively
speaking, of course). However, based on the results of Sections III
through V, it will be argued heuristically that the proposed algorithm
always yields filters which have output noise variances among the
lowest possible. Together with extensive experimental confirmation,
these arguments provide confidence that the proposed algorithm
produces solutions that are very close to the optimum.

Application of Avenhaus’ procedure to FIR filters allows the intro-
duction of modifications which reduce significantly the amount of
computation time required. Also, while IIR filters seldom require
a higher order than the classic 22nd-order bandstop filter quoted by
Avenhaus, practical FIR filters can easily require orders over 100.
Though the same basic algorithm should still work for high orders, care
must be exercised in performing details to avoid large roundoff errors in
the computations. Through proper initialization, the proposed algo-
rithm has been successfully tested for filters of order up to 128.

6.1 Description and Discussion of Basic Algorithm

The basic procedure or algorithm proposed by Avenhaus is simply
the following. To order a filter of N, sections, begin with 7 = N, and
permanently build into position 7 in the cascade the filter section which,
together with all the sections already built in, results in the smallest
possible variance for the output noise component due to noise sources
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in the 7th section of the cascade. Because in the FIR cascade form noise
is injected only into the output of each section, for FIR filters the
procedure needs to be modified by considering the output noise due to
the section in position 7 — 1 rather than 7 when choosing a section for
position 7. But the 4th section is determined before the (7 — 1)th
section, hence the number of noise sources at the output of the
(i — 1)th section is unknown at the time that a section for position
i is to be chosen. This problem is overcome by assuming all sections
to have the same number of noise sources. Then o7 is simply propor-
tional to ¥k ¢%(k) independent of what the ith section is, where
{gi(k)} is the impulse response of the part of the filter from section
(i + 1) to the output.

Hence the revised basic algorithm for ordering FIR cascade filters is:
beginning with i = N., permanently build into position i the section
which, together with the sections already built in, causes the smallest
possible value for 3« g7_, (k). Once this basic algorithm is determined, it
is necessary only to decide on a scaling method and a computational
algorithm for accomplishing the desired scaling and noise evaluation
before an ordering algorithm is completed. Prior to discussing these
issues, let us consider why the basic algorithm described above is al-
ways able to find a low-noise ordering.

The reason why the algorithm might not be able to find a low-noise
ordering is that rather than minimizing 3_ o> directly, it minimizes
each o% individually where for af, 1< j=<N,—1, the search is
essentially conducted over only (j 4 1)! out of the total of N,!
possible orderings. Now this set of (j + 1)! orderings depends on which
sections were chosen for positions j + 2 to N, in the cascade if j < N,
— 1. Hence in choosing a section for position j, previous choices might
prevent attainment of a sufficiently small value for oy

The basis for the following arguments is presented in Section V.
Let H(z) be an appropriately scaled filter. Given [, 1 =l = N, — 1,
suppose ¢ is small for all ¢ = 1. Then the zeros of 1T, 41 Hi(2) must
be well spread around the unit circle in the z-plane since a clustering
would cause large peaking in J[¥.4, H:(e*) for some k = I, hence
a large value of ot. But this means that the remaining zeros of H(z),
namely those in [[;-; H:(z), must also be well spread around the unit
circle, since the zeros of H (z) are distributed almost uniformly around
the unit circle. Hence it ought certainly to be possible to find some pair
of zeros in [T}, H:(z) which, when assigned to position [, causes little
peaking in [[iZ! H.i(e?) or JIi=; H.(e*), and thus results in a small
value for oi_,. By induction, then, o can be chosen small for all 7.
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For small it is true that there are very few zeros left as candidates
for position [, but in these positions little peaking in the spectra can
oceur since the overall spectrum ]2, H,(e*) must be a well-behaved
filter characteristic. Typically in a high-noise ordering, o reaches a
peak for I somewhere in the middle between 1 and N,, while ¢} for
small [ has little contribution to o2, the total output noise variance.
Hence the choice of sections for small [ is not too crucial. Of course, the
eligible candidates are still well-spaced zeros as for larger I, so that
peaking should not be a problem.

Note that the reason the algorithm works so well is tied in with the
result of Section I1I that most orderings of a filter have comparatively
low noise. Because it is not difficult to find low-noise arrangements of
zeros, 3. o5 can be minimized approximately by minimizing each o2
independently, searching over a much smaller domain. If the sum
3 o could not be segmented, searching for a minimum would be
essentially an impossible task because of time limitations.

6.2 Two Versions of the Complete Algorithm

Having discussed why the basic algorithm works, the practical
problem of implementing it is now discussed. First of all, there is the
choice of scaling method to use in computing the > ¢5(k). As in the
calculation of noise distributions in Section III, sum scaling is to be
preferred since it can be carried out the fastest. Figure 14 shows a
flow chart of the ordering algorithm in which sum scaling is employed.
Calculation of ¢* (Nx in the flow chart) is done exactly the same way
as in the algorithm of Fig. 4.

Using this ordering algorithm, over 50 filters have been ordered and
the noise variances in units of @* (§ = quantization step size) of the
resulting filters are shown in the last columns of Tables II through
IV. Note that these noise variances are computed with sum scaling
applied to the filters. The corresponding noise variance values for peak
scaling have also been computed for the filters of Tables IIT and IV.
These are shown in the third to the last column of the tables. The
comparability of these noise values to those for sum scaling is a con-
firmation of the results of Section IV.

For an alternative implementation of the basic ordering algorithm,
peak scaling can be used. To distinguish between the two different
resulting algorithms, the former (sum scaling) will be referred to as
alg. 1 and the latter as alg. 2. The only change needed in Fig. 14 to
realize alg. 2 rather than alg. 1is to replace 34| f:(k) | by max, | F:(e#)|
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for given 7 whenever it appears. Results of using alg. 2 on the filters of
Tables ITI and IV are shown in the next to last column of those tables.
Observe that though the two algorithms in general yield different
orderings for a given filter, the resulting noise variances are comparable.
Thus, using both alg. 1 and alg. 2, two separate low-noise orderings
for a given filter can be obtained. Further discussion of the results
will be given shortly.

Even with a scaling method decided upon, the questions still remain
of how i ¢2(k) and 34| f:(k)| or max,|F:(e*)| are to be computed
and how the sequence {10(:)} which describes how the filter sections
are ordered (see Fig. 14) is to be initialized. In obtaining the results of
Tables I1I and IV, the following has been done: 3« gi(k) and 3k | fi(k) |
were computed by evaluating {g:(k)} or {f:(k)} through simulation in
the time domain (i.e., convolution) and max, | F;(e/) | was determined
by transforming [ fi(k)} via an FI'T and then finding the maximum
value. Finally, {I0(:)} was initialized to IO(7) = 4,72 = 1, ---, N,. It
will be seen that these procedures must be modified for higher-order
filters. But meanwhile, the implications of these procedures in terms of
dependence of computation time on filter length is considered.

Clearly, in algorithmically computing the impulse response of an
N-point filter via convolution, the number of multiplies and adds

100
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05—
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01l | | L1
8 10 © 20 40 60 80 100 200

FILTER IMPULSE RESPONSE LENGTH

Fig. 15—Computation time versus filter length for ordering algorithm.



ROUNDOFF NOISE IN FIR FILTERS 381

required to calculate each point varies as N, hence the time required
to evaluate the entire impulse response must vary approximately as
N2 Now in the basic algorithm there are two nested loops, where the
number of times the operations within the inner loop are performed
is given by

Ny

Sy = N(N,+1)

i=1 2

N!

8

~

Clearly for alg. 1, the evaluation of X :|fii(k)| and X gi—,(k)
dominates all operations within the inner loop in terms of time re-
quired. Since the total number of points that must be evaluated in
order to compute {f,_i(k)} and {g,—:(k)} together turns out to be a
constant independent of I, the combined operations must have approxi-
mately an N? time dependence. Hence it is predicted that the com-
putation time required for alg. 1 must be approximately proportional
to N*. This prediction is verified in Fig. 15, where computation time
for alg. 1 on the Honeywell 6070 computer is plotted against N on
log-log coordinates for various values of N. As expected, these points
lie on a straight line with a slope very nearly equal to 4.

For alg. 2, exactly the same procedures as in alg. 1 are carried out
except that after each evaluation of {f:(k)} an FFT is performed.
Thus for a given N, alg. 2 always requires more time than alg. 1, with
the exact difference depending on the number of points employed in
the FFT.

6.3 Modification of Algorithm for Higher Filter Orders

For filters of length greater than approximately 41, it is found that
accuracy in the evaluation of impulse response samples by the methods
described rapidly breaks down. This phenomenon is chiefly due to the
fact that the initial ordering used is a very bad one. In particular, it is
not difficult to see that this ordering (i.e., I0({) = i) has a noise
variance which is among the highest possible and which increases at
least exponentially with N. Thus all attempts at evaluating the impulse
response of the filter by simulation in the time domain are marred by
roundoft noise.

A natural possibility for resolving this problem is to perform cal-
culations in the frequency domain. This has been tried as a modifica-
tion to alg. 2. In particular, rather than computing F;(e/) from
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{f:(k)}, it is evaluated as a product of H.(e®), I =1, ---, ¢, where
H,(e*) is computed from the coefficients of section ! via an FFT. In
this way the accuracy problem was solved, but computation time in-
creased significantly. As an example, the 67-point filter listed in Table
V was ordered using this method. The resulting noise variance was a
reasonable 26.6 @, but even with a 256-point FFT the computation
time required amounted to 7.2 minutes, more than 7 times that re-
quired for alg. 1 to order the same filter.

A far better solution is as follows. The conclusion of Section I1I-that
most orderings of a filter have relatively low noise-means that, if an
ordering were chosen at random, it ought to have relatively low noise.
The strategy is then to use a random ordering as an initial ordering
for alg. 1. A given ordering of a sequence of numbers {IO(?),7 =1, - - -,
N.) can be easily randomized using the following shuffling algorithm :*

Step 1: Set j«— N..

Step 2: Generate a random number U, uniformly distributed be-
tween zero and one.

Step 3: Set k«— [jU] + 1. (Now k is a random integer between 1
and j.) Exchange I0 (k) <= 10(}).

Step 4: Decrease j by 1. If j > 1, return to Step 2.

By adding a step to randomize the initial ordering 10(z) = ¢ in alg.
1, the inaccuracy problem was eliminated. The interesting question
now arises that, since most orderings of a filter have relatively low
noise, can we not obtain a good ordering simply by choosing one at
random? The answer is yes in a relative sense, but, as will shortly be
seen, a random ordering is far from being as good as one which can be
obtained using the ordering algorithm.

The extra step of randomizing the initial ordering for alg. 1 requires
negligible additional computation time, and a filter with impulse re-
sponse length as high as 129 has been successfully ordered in this way.
The time required to order this filter was approximately 13.5 minutes.
Except for time limitations, there is no reason why even higher-order
filters cannot be similarly ordered. Further results are described in the
next section.

6.4 Discussion of Results

Note in Table 11 that alg. 1 can result in a noise variance which is
very close to the minimum, if not the minimum. From this observation
and the conclusions of Section III on the dependence of the minimum
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TaBLE V—LisT oF FILTERS AND THE REsSULTS oF ALg 1’

Noise Variance

D, =0.01 Ordering Alg 1/

# N N, F, D, | Sequential | Random | Sum sc | Peak sc
38 33 9 | 0.244 | 0.001 1.0 X 10" | 6.2 X 1(° 4.59 7.81
67 47 12 | 0.237 | 0.001 | 43 X 107 | 2.2 X 108 6.47 12.07
68 67 17 | 0.242 | 0.001 | 3.3 X 10*" | 1.5 X 10° 16.77 30.03
69 101 25 | 0.241 | 0.001 > 10%% | 1.4 X 10° 41.93 73.55
70 129 20 | 0.153 | 0.0001 — 5.5 X 10t 17.98 37.54

noise variance for a filter on different parameters, we can be quite con-
fident that the noise variances shown in Tables IIT and IV are also very
close to the minimum possible. The filters of Tables IIT and IV were
chosen intentionally to show the dependence of the results of the order-
ing algorithms on various transfer function parameters. It is seen that
the noise variances indeed behave in the way that would be expected
from the results of Section 111. In particular, ¢2 is seen to be essentially
an inecreasing function of N, Fy, D,, as well as D,. The results of
Tables III and IV are then a confirmation of the expectation that
the conclusions of Section III on the general dependence of noise on
transfer function parameters can be generalized to higher-order filters.

The results of using the modified alg. 1 (denoted alg. 1’) on a few
filters are shown in Table V. Also shown in this table, for comparison,
are the noise variances of these filters when they are in the sequential
ordering 10 (7) = ¢ (where computable within the numerical range of
the computer) as well as when they are in a random ordering (obtained
by randomizing {I10(z)} where 10(i) = 7, as described above). Be-
cause of the potentially very large roundoff noise encounterable in
these orderings, the noise variances were computed using frequency
domain techniques. In particular, each H;(e) is evaluated via an
FFT, peak scaling is then performed, and finally o> is computed via
1/(27) Ji*7|G:(e*) | *dw rather than 34 ¢5(k).

From Table V it is seen that though the noise variances of the
random orderings are certainly a great deal lower than those of the
corresponding sequential orderings, they are far from being as low as
those obtained by alg. 1’. Thus it is certainly advantageous to use alg. 1
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(or 1’) to find proper orderings for filters in cascade form. In all the
examples given in Tables II through V, one can do little better in
trying to find orderings with lower noise. With the possible exception
of the uninteresting wideband filter, number 54 in Table III, all
filters have less than 4 bits of noise after ordering by alg. 1, while the
great majority have less than 3 bits. Thus it is not expected that these
noise figures can be further reduced by much more than a bit or so.

I'inally, in practice, cascade FIR filters of orders over approximately
50 are generally of little interest since there exist more efficient ways
than the cascade form to implement filters of higher orders. For filters
of, at most, 50th order, the computation time required for alg. 1 is less
than 20 seconds on the Honeywell 6070 computer. Thus alg. 1 (or 1')
is a very efficient means for ordering cascade filters.

VII. SUMMARY

In this paper, experimental results have been presented which show
that most orderings for an FIR filter in cascade form have very low
noise relatively, and that the shape of the distribution of noise with
respect to ordering is essentially independent of transfer function
parameters as well as method of scaling (sum or peak). An explanation
of these properties has been proposed, based on a characterization of
high-noise and low-noise orderings. Furthermore, the dependence of
noise on transfer function parameters and scaling has been investi-
gated. These results point to an algorithm for ordering cascade FIR
filters which has been implemented and tested for filters with a wide
range of values of transfer function parameters. In every case, the
algorithm gave results within expectation which were deduced to be
very close to the optimum. Justification for the success of the algo-
rithm has also been given.
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