Copyright © 1973 American Telephone and Telegraph Company
THE BeuL SysTEM TECHNICAL JOURNAL
Vol, 52, No, 3, March, 1973
Printed in U.S.A.

Slope Overload Noise in Linear Delta
Modulators With Gaussian Inputs

By L. J. GREENSTEIN
(Manuseript received September 22, 1972)

This paper derives a slope overload noise power formula for linear
della modulators having ideal integrators and Gaussian random inputs.
Although the same problem has been treated by others, the present result
18 the only one applicable to all slope-following capacities and input spectra.

Despite its singleness of purpose, the paper divides logically into two
parts. In Part 1, a common element in all previously published results
18 used to derive a new slope overload noise power formula. This derivation
18 analytically rigorous and provides some useful insights, but pertains
to a particular kind of spectrum and so is incomplete.

The more universal result we seek is derived in Part 2. The approach
here is far less rigorous and amounts to approximating the influences of
other kinds of spectra by modifying the result of Part 1. The final expres-
ston contains four spectrum-related coefficients, for which simple formulas
are given, and has an estimated accuracy of 1 dB for all cases of practical
wnterest. Compuled results are given for two important families of spectra
and comparisons are made with previously published results.

Part 1

I. INTRODUCTION
1.1 Objective

This paper presents some new theoretical results on slope overload
noise in linear delta modulators. In particular, we derive the mean
power of the (unfiltered) slope overload noise at the demodulator
output when the modulator input is a stationary Gaussian random
process and the modulator feedback path contains an ideal integrator,
Fig. 1. This same problem has already been treated by other investi-
gators, notably Zetterberg,! Rice (with O’Neal),? Protonotarios,® and
Abate,* but several factors have prompted a reexamination. One is
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Fig. 1—Linear AM codec with perfect feedback integrator. (a) Equivalent block
diagram. (b) Input and feedback signals. (c) Model used.

that some important disparities among the results of these separate
studies remain unresolved ; another is that the existing formulas do not,
either individually or collectively, pertain to all slope-following
capacities and input spectra; and finally, few explicit clues are avail-
able as to just how accurate each formula is and where it loses validity.
In response to this situation, we have endeavored to find an expres-
sion for slope overload noise power that is accurate for all slope-
following capacities and input spectra of possible interest. The result
reported here satisfies that objective.

1.2 Noise Descriptions and Definitions

The idealized AM codec (coder/decoder) shown in Fig. 1 ex-
emplifies the process we want to analyze: Every r seconds the in-
put signal (z(¢)) is compared with a locally quantized version of
itself (y(£)), and a unit impulse is generated with a polarity that is
(Eg;:;;fe) if (2 Z g) The resulting binary impulse stream is
applied through a feedback gain factor (8) and ideal integrator to
produce y(t). At the decoder, y(t) is reconstructed by using a replica
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of the coder feedback network, and a final low-pass filter smooths the
sharp edges of y(f), vielding a closer approximation to z(f).

Since y(f) cannot change by more than 8 units in r seconds, §/7 is
the highest input signal rate-of-change that the AM codec can follow.
We call §/7 the AM slope-following capacity and denote it by x,. When
|dx/dt| exceeds this quantity, slope overload occurs and gives rise to
the kind of error shown in Fig. 1b. In addition to this sporadic form
of distortion, the “hunting’’ of y(t) for z(t) by means of quantum steps
gives rise to a perpetual distortion called granular noise. Obviously,
granular noise is reduced by decreasing §, but at the expense of a
reduced slope-following capacity and, hence, greater slope overload
noise.

To delineate slope overload and granular noise for purposes of this
analysis, let us suppose that x(f) is passed first through a AM codec
having infinitesimal § and 7, but with the ratio between them the same
as in the actual system (Fig. 1a). The decoded output (before the
final filter) will then be the smooth function ¥(f) shown in Fig. lec.
If 5(f) is then passed through the actual system, the decoded signal
will be a very close approximation to y(t), Fig. 1b. In agreement with
previous conventions, we define slope overload noise to be the differ-
ence between 2 (f) and 5(¢) ; and the remaining distortion, (5(t) — y(t)),
is defined to be granular noise. This essentially is the approach tacitly
followed in most of the published literature on AM noise.’=7

We define a slope overload noise burst to be the nonzero difference
between x(f) and ¥(!) over an interval [f,,t;], which starts because
|dx/dt| > x, at t = t, and ends because §(t) intersects a(f) at t = fs,
(e.g., see Fig. 2, in which {, = 0). The mean power of these bursts,
averaged over all time, is the slope overload noise power.

Two qualitatively different kinds of noise bursts can be identified.
One is the kind initiated when |dx/dt| increases through z, while ¥ (¢)
is following x(t), which we call primary noise (see Figs. 1c and 4b).
The other arises when a prior burst terminates at a point where |da/dt|
already exceeds v, (see Fig. 4¢) ; the new burst that commences at this
point we call secondary noise.

Finally, the slope overload factor is defined to be the ratio of the
slope-following capacity to the rms input signal derivative, i.e.,

A '

8= (da/dt) o

It should be obvious that the noise power decreases monotonically
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Fig. 2—Zetterberg's noise model.

with increasing 8. It is also clear that when S is large (in which case
|dx/dt| rarely exceeds x,), secondary bursts are rare so that primary
noise dominates the noise process; and that, by the same token,
secondary noise dominates the noise process when S is small.

1.3 Equivalent Input Process

The generality of our analysis will be enhanced if we can assume
that {2(f)] is a bandlimited process. This assumption is made valid
by regarding {z(f)} as an equivalent process related to the true one as
follows: Let the true input process be {x,(t) |, having a power spectrum
X.(f). Since the delta modulator really acts on discrete samples of
the input separated by r seconds, its response is the same as if the
input were a process {x(t)} having sample functions of the form

© sin (w(t — k7)/71)
2) = x =k = 2
and a power spectrum
i n 1
X(H= X Xo(f+:); 0§f§;only. (3)
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We will assume here that the sample function and slope overload noise
depicted in Fig. 1c correspond to the bandlimited process {z(t)}, i.e.,
that the input spectrum is X(f). If {z,(f)} is bandlimited by some
frequency W = 1/(27), the two processes, and consequently their
spectra, are one and the same. (This condition is usually tacitly—
though not always rightly-assumed in AM noise analyses.) If {x,(f)}
is not so limited, the difference between the two processes is aliasing
distortion, which can be analyzed separately.

1.4 The Spectral Moments

The spectral moments of the input process play a decisive role in
establishing the past and present slope overload noise formulas.
Following the convention of most authors, we define the nth moment
to be

by = /,, WX (f)df. (4)

The bandlimited nature of X(f), as discussed above, guarantees the
finiteness of all the moments. It is easy to show that the complete
set of these finite moments, (bo, by, bs, -+, bn, -+ +), uniquely deter-
mines X (f), just as the converse is true.

It should be obvious that b, is the mean power of the nth derivative
of z(t), i.e., b, = (2™ (1))%. Thus, for example, Vb, is the rms derivative
of the input and so (1) can be rewritten as

S = 2,/ Vb,. (5)

Also, by is nothing other than the input signal power, as distinct from
the ac input power which we denote by ¢2. If the input contains no
discrete de component, then by = ¢?; otherwise, b, exceeds ¢ by the
amount of the de power.

Finally, we note from (4) that b, is real and non-negative because
X(f) is. An additional relationship for b., derived by applying the
Schwarz inequality to (4), is

2

bn—l

bn 2
bn—i

nz 2, (6)

1 =

that is, b, for n = 2 has a lower bound determined by the previous
two moment values. We shall utilize this relationship later.
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1.5 Outline of the Work

Our objective is to find a suitable approximation to the true slope
overload noise power formula, the latter being denoted by N(S).
Section II describes the methods and results of previously published
analyses. While the various approaches differ, they all suggest that
this noise power is essentially determined by S and the first three
spectral moments, bo, by, and bs. Section IIT treats this possibility as a
premise and identifies a simple two-band process, the parameters of
which can be chosen to yield any (b, by, bs) and which can be analyzed
precisely. The slope overload noise power for this process is derived
and is denoted by N (S).

Unfortunately, N.»(S) is not precisely applicable to all spectra
having the same b, b1, and b,. Instead, it is a lower-bound variation
for all such spectra, which becomes increasingly unreliable in general
as S decreases. To obtain a more universal estimate [denoted by
N ,(S)] it is necessary to determine how much the slope overload noise
power deviates from N,;(S) for spectra other than the two-band kind.

To this end, Section IV derives a noise power formula, N,(S),
applicable to all spectra but confined to the large-S region (S = 3.5),
and Section V derives a noise power formula, N,(S), applicable to all
spectra but confined to the small-S region (S = 0). Section VI then
combines these results to obtain a two-region approximation, N ,(S),
which is accurate for all X (f) and S. The result is given by (62) and
(77), where as, as, a1, @z, as, and a, are related to the spectrum parame-
ters bo, by, bs, bs, ba, bs, X(0), and S5 w2[ X (f) — X (0)]df. Further
study shows that (77) alone can be used over all S with an accuracy
of 1 dB or better up to S = 6.5, beyond which point N (S) is at least
119 dB below the input signal power. For practical purposes, therefore,
our final approximation to N (S) is just (77), with ai, as, a, and a,
given by (72) through (75).

Section VII demonstrates the new result for two important families
of spectra, and compares N,(S) with the noise power formula of
Protonotarios. The latter is found to be highly accurate for most
spectra of practical interest and S = 2.0.

II. REVIEW OF PREVIOUS WORK

In the approaches of Zetterberg, Rice, and Protonotarios, N (8) is
approximated as the product of the mean energy (&) per slope over-
load burst and the average rate of occurrence (R) of such bursts. A
burst is assumed to commence whenever |z'(f)| increases through
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the value x), which means that only primary noise is considered in
these studies. The average rate of these events is known from the
earlier work of Rice® to be

1 |b, ,
R = —q/—exp { — (23)2/2b,}. (7)
T Vb
To find &, Zetterberg uses the model shown in Fig. 2, where the solid
line of slope z, represents the demodulator output for the duration of
the burst, i.e., from ¢ = 0 to ¢t = t5. Clearly, the noise is

n(t) = x(t) — [x(0) + zit]; 0=1t=tonly (8)

which is the first burst depicted in Fig. 2. To avoid deriving the
random quantity ¢,, Zetterberg regards the slope overload burst to be
the entire excursion of a(f) above the line [x(0) + z,t], which is the
variation m(f) in Fig. 2 rather than just n(f). This is obviously an
approximation, since m(f) can contain one or more spurious bursts
that are not really part of the original noise burst, as seen. Such
bursts, however, are low in both energy and probability of occurrence
when § > 1.

Zetterberg proceeds by finding, at each ¢, the average of m? over
the noise burst ensemble, and then integrating over all time and
multiplying by R, (7). If done correctly, this leads to an estimate of
N(S) which is marred only by the inclusion of spurious burst con-
tributions and the ignoring of secondary noise effects. In fact, however,
Zetterberg errs in defining the initial conditions of the burst and in
averaging over these conditions, leading to an incorrect solution.*
In addition, Zetterberg makes a number of functional approximations
and at least one algebraic error.* For all these reasons, his final result
is incorrect and will not be repeated here.

The approach of Rice reverses that of Zetterberg, in that the energy
per burst is found first and then averaged over the noise burst ensemble.
The problem of spurious bursts is thus avoided, but at the expense of
having to find ¢,. Rice accomplishes this by expanding x () into a power
series about { = 0, and then ignoring fourth-order powers in ¢ and
higher, an approximation that gains in validity with increasing S.
In addition, he approximates the third derivative of x(f) at{ = 0 by
its conditional mean given that 2'(0) = x.. This ean be shown to be
— (bz2/bg)x), and the relative variation of 2””/(0) about this value tends
to be small when S > 1.

* See Protonotarios? for a discussion of these errors.



394 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

Using these two approximations, and correctly identifying and
averaging over the initial conditions of the burst, Rice obtains the
result

243 /by 1 .
Ng(S) = :@(b_g) EGXP (—82/2). (9)

Note that the ratio of noise power to signal power (bo) depends solely
on S and v £ b}/bob.. From (6) we see that v = 1 and observe that
v = 1 only for an infinitely narrowband spectrum.

It should also be noted that, as S — 0, Ng(S) increases without
bound at a rate S—% This is clearly not a true representation since
N(S) should approach the ac signal power (¢?) in the limit of zero
slope-following capacity.*

Noting the disparity between Zetterberg's result and Rice’s, even
at large S where both should converge to exactness, Protonotarios has
attempted to settle the issue by combining Zetterberg’s more accurate
model with Riee's correct averaging procedure. His analysis leads to a
double integral solution which is exact except for the inclusion of
spurious contributions and the ignoring of secondary noise effects.
In reducing this formal result, Protonotarios makes some functional
approximations and obtains the following:

Np(8S) = 243 bi ! S2/2)A(x) 10
= 1 (o) 7 (524G 10
where
2518 2 1/8
X = 3 S/ (b1/babo) (11)

and A(-) is a function involving powers and exponentials of the
argument, [eq. (66) of Ref. 3]. Once more, the ratio of noise power
to signal power depends solely on S and v. In the limit as 8§ — «, A (x)
approaches 1 and so N »(S) converges to Rice’s result, Nz (S). In the
limit as S — 0, A (x) varies as S* so that N p(S) varies as S~' rather
than S—% This is still an unbounded increase, however, so that (10)
is still not acceptable as a complete characteristic.

Abate’s derivation of N (S) follows an approach quite different from
the others. Using simulation results reported by O’Neal® for three
particular spectra, he has developed an empirical relationship between
the AM sampling frequency and the slope overload factor for which

_ *If the input contains a discrete dc component, the delta modulator will follow
it exactly so long as 8  0; hence the result limgo N (8) = ¢
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granular-plus-slope overload noise power is minimized. Combining
that relationship with a simplifying approximation to van de Weg's
formula for granular noise power,® Abate obtains the following expres-
sion for slope overload noise power :

T|'2
N4(8S) = —
) =07 Gy
where W is the signal truncation bandwidth.* We see that N 4(8) goes
to a finite value as § — 0, and that its variation at large S is expo-
nential ; in both respects, it differs from N (S) and N »(8). If we now
define

by

(1 4 38) exp (—38) (12)

PN 82 bg
= — (13)
27 (27 W),
(12) reduces to the form
2
b
Ni(S) = K (b—‘) (1 + 38) exp (—3S). (14)
2

Evaluating K for the spectra studied by O’Neal, we find that it lies
between 1.074 and 1.75 for the three cases, a range of just 2 dB.
It is tempting to speculate, therefore, that (14) is a more correet form
in general than (12), with K a universal constant on the order of unity,
and that the apparent 2-dB spread in K over the three spectra is a
result of experimental uncertainties. If we accept this notion, we again
have the result that the ratio of noise power to signal power depends
solely on S and ~.

III. NOISE POWER IN TERMS OF by, by, ba

3.1 The Two-Band Process

The published results cited above suggest that N(S) is essentially
the same for all processes having the same values for the zeroth, first,
and second moments. Assuming for the present that this supposition
is correct, we call attention to the two-band process, the spectrum of
which is shown in Fig. 3a. In the limit as the two bands become in-
finitely narrow, the zeroth, first, and second moments become pre-
cisely bo, by, and b,. By analyzing this simple process, therefore, we
can derive an exact noise power formula [N,,(S)] in terms of be, by,
and b, and then see how universal it really is.

* The three spectra treated by O'Neal are of the truncated Butterworth type,

with corner frequency-to-bandwidth ratios of 0.068, 0.25, and «. The data used to
derive (12) cover an S-range from about 1.4 to 4.2.
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Fig. 3—The two-band random process. (a) Power spectrum. (b) Sample function,

To appreciate the simplicity of the two-band process for purposes
of analysis, we should view it in the time domain. A sample function
is shown in Fig. 3b and is seen to consist of a dc level, D, plus a sinusoid
having radian frequency w, = Vby/by, phase ¢ = wdty, and amplitude
A. D is a Gaussian variate, whose mean and variance across the sample
function ensemble are 0 and (bo — b3/bs), respectively; ¢ is a uni-
formly distributed variate on [—=, +7]; A is a Rayleigh variate of
mean-square value 2b3/b.; and D, ¢, and A are mutually independent.

We can derive the slope overload noise power for this process by
finding the mean noise power associated with a given sample function
and averaging over the distributions on D, ¢, and A. This approach is
simplified by the fact that D and ¢ do not really influence the result.
That is, the noise pattern for a given sample function converges
ultimately to a variation about D that depends solely on the sinewave
amplitude and frequency (Fig. 4).

We thus see that the noise power per sample function is the steady-
state noise energy per half-cycle, denoted by &(A), times the rate of
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occurrence of half-cyeles, which is Vb,/by /. The total noise power for
the two-band process is then the average of this quantity over the
distribution on 4, i.e.,

1 [by [
N = 1y / 8(4)p(4)dA. (15)
T Vb Jo —~
(pdf of A)
Since A is known to be a Rayleigh variate of mean-square value
(2b7/b,), the only unknown is the energy function &(A4).

3.2 Derivation of §(A)
Three distinct regions of A can be identified, each giving rise to a
distinct pattern of signal and noise. The region depicted in Fig. 4a
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(Region 0) is one in which no slope overload occurs because |2’ (8) |
< 2! at all t. Clearly, §(4) = 0 in this case. The region depicted in
Fig. 4b (Region 1) is one in which slope overload occurs in each half-
cycle, but over less than the complete interval. We see that the noise
in this case is primary noise, as defined earlier. Finally, the region
depicted in Fig. 4c (Region 2) is one in which slope overload occurs
for the entire duration of each half-cycle. The noise in this case is
seen to be secondary noise.*

To find & in Region 1, we analyze the burst spanning [t,, t, + At]
in Fig. 4b. The noise energy in this burst is

to+At
& = [ [A4 coswd — {2, — zo(t — L)} ]%dt. (16)
ta

The quantities x, and ¢, are found by means of trigonometric identities
to be

. 1 x
To = VAZ — (zh/w,)? and ¢, = —sin™! (A ) 17

Wo Wo

Unfortunately, the quantity At cannot be solved for explicitly, but is

* For the special process under discussion, we see that a given sample function
has either no noise at all, primary noise only, or secondary noise only. For more
spectrally distributed processes, both kinds of noise occur in the same sample func-
tion and in a less regular pattern.
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related to A by the transcendental equation

[w,,ﬂt — sin (wgﬁ\l):r B (Aw,,)z . A (18)
1 — cos (w,Atl) B g =&

ID
We can relate & to A (or £) by combining (16), (17), and (18) and
eliminating the common parameter, w,At, between (16) and (18).
The result is a unique correspondence between w38/ (x)? and £ having
the variation shown in Fig. 5 for Region 1. (Note that Region 1 cor-
responds to the -interval [0, #2/47].) A highly accurate functional
description of this variation has been found to be

3
08 81
De® £72[0.43 exp (—0.5014%) + 0.57 exp (—2.108)];
(z,)2 140~
0=t<n¥/4. (19)

Comparison with exact results shows this function to be accurate to
within 0.8 percent.

To find & in Region 2, we analyze the burst spanning [,, t, + At]
in Fig. 4c. In this case, z, and ¢, are given by (17), as before, but
w,At is precisely = for all A. Applying these relationships to (16) and
performing the indicated integration, we obtain

(:E)gz - % I:E - (3 - %2)]1 £ = w%/4. (20)

This variation is also shown in Iig. 5.

3.3 Expression for N (S)

We now have expressions for & in the three regions of A and can
average this complete result over the distribution on 4 (or ¢) to find
N, (15). By using (18), along with w? = by/b,, S = 2//vb,, and the
fact that A is a Rayleigh variate of mean-square value (2b}/b,), we

obtain
S? hE 52
== - — &) 2 —1
p(&) 3 exp( Z)exr)( 5 E) 13
= 0; elsewhere. (21)
Combining this with (15), (19), and (20), we obtain

by by b:
Nu(S) = (bi) Fy(S) + (b—) Fa(S) = (b—) F(S) (22)
2 2 2

Primary Secondary
oise Noise
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where F(8S) £ Fi(S) + F.(S), and

i 35 Qv (w5 (5 o)

w2 (82
+ 0.57Q {Z (E + 2.10)]]; (23)

ras) = [1+ (T e |- (4 5)5) @
e 24 exp 4/ 2|

1 (105vr _
Qfu] = m‘ T erf (Vu)

7 35 105
_ [u"’” + 5 uslz 4+ " udl? 4 5 ulfz] exp (—u) ] . (25)

The variation F (8) is shown in Fig. 6 along with its component parts,
F1(S) and F.(S). These curves indicate, for the two-band process,
which region of S is dominated by primary noise and which region
by secondary noise.

The only inexactness in our result for N,»(S) arises from the func-
tional fit to & in Region 1, (19). Since this fit is accurate to within
4+ 0.8 percent at all ¢ and both &(£) and p(£) are non-negative fune-

0
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Fig. 6—Normalized noise powers for the two-band process.
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Fig. 7—Comparison of N (S) with previous results.

tions, the given expression for N,,(S) is also accurate to within =4=0.8
percent (or #=0.035 dB).

3.4 Comparisons and Interpretations

The variation of N, with § is plotted in Fig. 7, along with the varia-
tions of Ng, (9); Np, (10); and N 4, [(14) with K = 17. Of particular
interest is the fact that N.»(S) converges with the results of Rice and
Protonotarios as § — «. The approximations underlying the analyses
of Rice and Protonotarios become increasingly valid as S increases,
so the convergence of N,(S) with their results is not surprising. The
apparent dependence of noise power on the moments b; and b, alone
at large S is explained by the fact that slope overload bursts are of
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short duration in this region ; hence, they are shaped primarily by the
lower-order curvature of (f), which is reflected in b, and b;. As S
decreases towards small values, however, the higher-order curvature
of z(f), reflected in bs, by, ete., also influences the noise bursts and,
consequently, the noise power. We should therefore expect the true
noise power [N (S)] associated with a given spectrum to reflect other
features of that spectrum at low S besides by and b,. If this is so, then
N .+(S) cannot be assumed to be a universal formula.

To show that this expectation is correct, we note that, as S — 0,
N .» converges to bi/b,, which is precisely the ac power (o%) in the two-
band process. This is a quite general result, ie., N (S) always con-
verges to ¢? as S — 0. However, some other process having the same
bo, b1, and b, can have an ac power anywhere between b3/by and by,
so that N (S) will not converge to bi/b, for all spectra having these
moments in common.

We conclude, then, that N(S) and N,(S) converge at high S but
become increasingly dissimilar as S decreases towards zero, the dis-
similarity depending on the differences between the actual process
spectrum and the two-band spectrum having the same bo, by, and b,.
In Part 2 (following), we will derive a factor which relates N w(S)
and N (S) when X (f) is not a two-band spectrum.

Part 2
IV. NOISE POWER FOR S = 3.5

We now derive a noise power formula applicable to all spectra, with
S large (primary noise only). The derivation combines the power series
method of Rice with the infinite-time averaging procedure used by
Zetterberg and Protonotarios. The differences here are that many
terms of the power series expansion are included, and steps are taken
to minimize the contributions from spurious bursts. The complicated
expression that results is reduced to a simple formula [N:(S)] that
displays explicitly the influence of the higher-order spectral moments.

4.1 Power Series Representation of the Noise Burst

Let ¢ = 0 be the time origin of a particular positive-going burst, so
that z'(0) = 2/ and z”(0) > 0, e.g., Fig. 2. Beginning at ¢ = 0, 5(t)
follows the straight line x(0) + z/t until this ramp function intersects
x(f) again. We can therefore define the quantity
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v(t) = x(t) — [z(0) + 4t]; t>0 (26)
and write the variation of the noise burst as

n(t) =v(t) ifo@) >0 foral 0<t' =1t
= (0 otherwise. 27)

Henceforth, we shall use the symbols 7, and v, to denote n(t) and v(f),
respectively.

Following Rice, we can express z(f) by a power series expansion
about ¢ = 0. Noting that 2’(0) = z; and denoting 2z’ (0) by z/, v, can
be written as

1
= 1z _|_ ”’{O)tﬂ + o O (28)
m.

We now invoke the property of Gaussian random processes that the
mth and (m — 2)th derivatives at a given time instant are related by

"t 4 g, (29)

m—2

z(m) = -

where dp, is a zero-mean Gaussian variate of mean-square value

2

) bm_
dp = by — —— (30)
bmk2
With this relationship we can write v, as follows:
t? bs 14 b bs t°
V= {x’o’[_—ﬁ.ﬁ_._f___.___
21 by 4! by by 6!
,[bg B by by 5 by by b O :”
b1 3! by b3 5! bl bs ba 7!
LN [P Y
’ o e, 51 Lb, el
A

where A, is the first bracketed quantity and &, is the second. We see
that A, is the conditional mean of », given that z'(0) = z, and
z''(0) = x;’; and that 8, is a linear sum of mutually independent zero-
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mean Gaussian variates (ds, di, etc.) whose mean-square value at
time ¢ is therefore

2 ta b“ tﬁ 2—2
=i=[Gnst )

L(E_BE )?+ } 32)
(4! b, 6! N

2l

We thus have the result that the conditional pdf of » at time ¢ is

. 1 1/v, — AN\?
plve|zh, 27} =EGXP ‘—5( . ) I (33)
¢ ¢

4.2 Derivation of Mean Noise Power

Let n? be the conditional mean square value of n at time ¢, given
that z'(0) = z. and z”(0) = z/' > 0. To find the mean burst energy
when 2’/ (0) = x,, we must average n? with respect to z,’ and integrate
the result over all time. We can then multiply this mean energy by the
mean rate of primary noise burst occurrences to obtain the mean noise
power. This approach is valid so long as secondary noise can be
neglected, which it can in the region § = 3.5 under consideration.

From Protonotarios,® we know that the correct density function for
averaging with respect to the conditions z'(0) = z, and z;” > 0is

By |-z
Ty) = — - ; To =
P by P T Top,

while from Rice® we know that the mean rate of noise burst occur-
rences is (Vba/by/7) exp(—8?/2). The noise power in the region § = 3.5
can thus be accurately given by

- e (D) [
== — —_— x e — —
T Vb xp 2/J0 Jo ba

1
(%)

2b,

-exp { - } ni(z,, z;)dzdt. (35)

The remaining analytical task is to find ni(zl, zl').

The method of Protonotarios in this regard amounts to averaging v
over positive values using the conditional pdf of v, (33). To do this,
however, is to incur the spurious burst problem depicted by Fig. 8a.
The following line of reasoning leads to an improved procedure.

ih
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Ve, Nt

—(t) = vy

— e = N(t) = Ny

SPURIOUS
_ NOISE /// BURST

—~\\
‘.—D*)l

(b)

Fig. 8—An illustration of »; and n.. (a) v, and n.. (b) v, and »}*'.

Let A{* denote the partial power series for 4, up to and including
the fourth-order term, and let

o = A + 8. (36)

We can show that v{* =~ v, when ¢ is small and that », > »{* in general.

What we have found in particular is that, for S greater than about 2,
the difference between v, and v{* does not widen appreciably over a
typical burst duration (see Fig. 8b). Also, since A" is a strongly de-
creasing function of ¢ beyond its peak, v* tends to be the same.

We therefore calculate n} according to the following criterion: A
given value of v, is counted as part of the noise (i.e., n, is assumed to
be v,) if either {v, > 0, ¥ > 0] or {v, > 0, v < 0, i, < 0} ;* other-
wise, v, is not counted and »n, is assumed to be 0. For the sample func-
tion shown in Fig. 8b, this means that the energies in intervals A and
B are both counted in the calculation of n?; the energy in interval C

is not counted, since »/* < 0 and #, > 0; and the energy in interval D

is counted, even though it is clearly spurious. We can reduce contribu-

* The symbol v stands for dv(t) /dt.



406 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

tions of the latter type, however, by using a suitably finite upper limit
in the integration over time in (35). That is, we choose an upper limit
sufficiently high that virtually all legitimate noise contributions are
counted in the calculation but sufficiently low that some spurious
contributions are omitted. By studying the time variations of 4, and
5, under a wide variety of conditions, we have settled on an upper
time limit of 3.5 Vby/b..
Using the above criterion, we have been able to show that

2

_ . 2

nf = % (1 + 2a?)[1 + erf (as)] + ﬁ (2a — a4) exp (—af)}
2

+ % (erfe (&) (1 + 2a?)[erf () — erf (as)]

2 2
4+ — [aexp (—a?) — (2a — a4) exp ("M)]l (37)

Vr
where:
o = A,/ V2 (38)
s = AL V2 (39)
and

& L A,/A2(8)% (40)

To complete the derivation of N (S), we insert this complicated expres-
sion into (35) and perform the integrations over x;’ and ¢, remembering
to use an upper limit of 3.5 Vb;/b, in the time integral.

4.3 Simplified Formula

The formal solution just described is believed to be more exact
than that of Protonotarios [eq. (53) of Ref. 3], because it entails a
substantial reduction in the spurious burst contributions. Furthermore,
in reducing his formal solution to computation, Protonotarios makes
a number of functional approximations which obscure the influence
of the higher-order moments bs, by, ete. In reducing the present solu-
tion to computation, we must also make approximations but of a
different kind, i.e., those associated with performing numerical double
integration and truncating the infinite power series in the integrand.
The impact of the higher-order moments, however, is not approxi-
mated away in the process; in fact, the following discussion develops
an empirical expression [denoted by N:(S)] which exhibits these
influences explicitly.
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We define a dimensionless quantity, which we call the nth-moment
excess, as

bu — (bra/bas)

M, 2 . n>3. (41)
(b= /b7)

From (6) we know that M, = 0 for all n = 3 and, using Fig. 3, we
can show that M, = 0 for all n = 3 if and only if X(Jf) is the two-
band spectrum. We can therefore say that N(S) differs from N,,(S)
only to the extent that M, M, ete., are not zero. A simple model
~ that reflects this fact is one which deseribes the logarithmic difference
between N and N,; as a linear combination of the moment excesses,

In(N/th) =A.;”3+Bﬂf4+CM5+ (42)

where the coefficients A, B, ctc., are, in general, functions of S. To
the extent that this representation is aceurate, it is reasonable to
assume further that the higher-order terms, involving M, M, etc.,
are negligible for § = 3.5. The reason is that these moment excesses
have little influence on slope overload bursts at such high slope-
following capacities. The result of this line of reasoning is an approxi-
mation of the form

N(S 2 3.5) = Nu(S) explA(S)My + B(S)M, + C(S) M)
£ Ni(S). (43)

We have tested this approximation by applying the double integral
solution for N(8), (35) and (37), to a number of spectra, using a
ninth-order power series to represent »,. With the computed noise
powers for these spectra, we have then obtained results for A (S),
B(S), and C(S) over the range 3.5 < S < 10.0 (Fig. 9) which appear
to be quite accurate. In particular, the use of (43) with these results
is found to predict N(S = 3.5), as computed from (35), to within
0.2 dB for all spectra of practical interest.

There exist, however, special conditions on X(f) for which (43)
yields too high estimates of the true noise power. This can occur when
X (f) contains an isolated high-frequency component which contributes
materially to bs, by, and/or b; but not to by, by, or b.. Under such eircum-
stances, a(t) might change too rapidly during the noise bursts to be
properly analyzed by the power series approach as used here. Calcu-
lations indicate that these cases fall outside the range of practical
interest, so we need not consider them further.
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Fig. 9—Empirical results for 4, B, and C; § Z 3.5.

V. NOISE POWER FOR § = 0

We now derive another noise power formula applicable to all spectra,
but with § very small (secondary noise only). The representation we
seek is a partial power series of the form

N(S = 0) = o?[Cy 4+ CiS + 28] 2 N.(S) (44)

where ¢* is the ac power of the input process.

5.1 Formulation

The analysis assumes {x(f)} to be just the ac part of the input
process, so that 22(t) = ¢2. Since de components have no effeet on noise
power for S s 0, we are justified in ignoring them.

We consider z/ to be so small compared to Vb, (i.e., S so small
compared to unity) that the delta modulator is always in slope over-
load. In this case, the decoded output [denoted here by y(f) rather
than 7(f)] is just a succession of alternating ramps of slope +x,, the
slope polarity reversing whenever y(f) intersects 2(f). This situation is
illustrated in Iig. 10b. A valid model of the delta modulator for
analyzing this case is given by Iig. 10a (cf. Ref. 9), from which we
see that the noise signal is

a(t) = z(t) — y(t) = x(t) — % [‘ ng(uw)du (45)

where
ny(-) 2 sgn(n(-)}. (46)
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(a)
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ox(t)
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(k)

Fig. 10—Equivalent delta modulator and signals for 8 =~ 0. (a) AM model for
§ = 0. (b) Input and feedback signals.

The noise power in the region S = 0 can thus be accurately given by

1]

N(8) = z%(t) — 2z, l:a:(t) /

—o0

nq(u)du]

J

—2z(t)y(t)

+ (20)? /l flnq(u)nq(v)dudv. (47)

y¥(2)
If we envision each of these three terms as a power series in x,, we
see that 12—(1) has a zero-order term only (i.e., is independent of z);
—2z(t)y(t) may contain first-, second-, and higher-order terms; and

y*(t) may contain second-order terms and higher. We can thus rewrite
(47) as

N(S) = Ko + [Kizt, + Kao(z0)® + - -+ ] + [Kos(z0)? + -], (48)
— . f [ ———

z%(1) —2z(t)y(®) RO,

Retaining only terms up to second-order, substituting z, = Svb;, and
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comparing with (44), we see that

(Ksa + Kun)br

2

(49)

Cy = - 1= h 2
o? a? G

Clearly, K, = 2?(t) = o%, so that Co = 1 in all cases. The remainder
of this section is devoted to finding C; and C..

5.2 Derivation of Cy

We will derive C, by evaluating the first-order term of —2z(t)y(%),
(47), and then invoking (49). For z, very small, n,(f) does not differ
appreciably from z,(f) = sgn{z(f)}, which is the quantizer response to
z(t) applied alone. It is therefore fruitful to represent n,(t) as

nq(t) = x,(t) + 6(t) (50)
where 8(f) is a correction signal related to the finiteness of z; and is
defined by

6 =+—2 if y>z>0 (51)

{-{—2 if y<z<0
0 otherwise.

The relationships between ng(t), x,(t), and 8(¢) are illustrated in Fig.
11. Although the peak magnitude of 8(¢) is fixed, its “duty cycle”” can
be seen to depend directly on z,.

Inserting (50) into the cross term of (47) and interchanging the order
of integration and averaging yields
t

—2z()y(t) = — 2sz )z (u)du — 225 ft z(t)8(u)du. (52)

Since the duty cycle of 6(f) vanishes as z, — 0, we can see that the
first term must be identical to Kz, in (48), while the second term
contains Kaq(z))? plus higher-order terms in z,.

To evaluate the first term, we use a relationship applicable to
{z(t)} because it is a Gaussian process, namely,

) - L PRAZD

™ a ™ a

where R.(r) is the autocorrelation function of {x(t)}. We now apply
this to the first term of (52) and use the fact that the area under
R.(r) from 7 = 0 to r = o is 1X(0). Equating the result to Kz,
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2

Fig. 11—The relationships between z(¢), y(t), zo(t), ne(t), and 6(t).

we obtain
X 1 X(0) (54)
Y Ner o
which, from (49), yields
C ! I:X*—(O) ‘[b_ljl (55)
e Vor gl

5.3 Derwation of C;

The general approach used in the preceding analysis was also applied
to finding C,. Unfortunately, it leads to an approximation which is
both highly complicated and not sufficiently precise for many spectra.
For this reason, we have resorted to finding C, for a not-quite-Gaussian
process having the same spectrum as the specified Gaussian one, and
verifying that it is virtually exact under what appear to be “worst-
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case” conditions. The details, which are documented but not pub-
lished, ™ are quite involved and so we shall merely outline the approach.
Consider a wide sense stationary process {X(f)} having sample func-

tions of the form
%(t) = A cos(at + ¢) (56)

where A is a Rayleigh-distributed amplitude of mean-square value
2?; ¢ is a random phase uniformly distributed over [—, +=7]; and
& is a random frequency whose pdf is

1
p@) = — X(f = |a|/2m); all @. (57)
2q?

It can be shown that the power spectrum for this process is X (f), and
that the ensemble pdf of ¥ at any ¢ is Gaussian with zero mean and
variance o2 Thus, [%(f)} has certain properties in common with the
Gaussian process {z(f)} having the spectrum X (f).

We can derive the mean slope overload noise power for the process
{%(t)} by finding the noise power for a single sample function, (56),
and averaging over the distributions on 4, ¢, and @. Using the methods
of Section III, we can show that the averaging over A and ¢ yields

R(atla) = 4A4°F (m"’) (58)

xh|@) = 4
’ VA

where F(-) is defined by (23) through (25). Averaging (58) over the

pdf of &, (57), and replacing A? by 2¢? and z, by S+b,, we obtain

5o - [ X(f)F(%_f ) as. (59)

The derivatives of this function with respect to S can be found quite
simply, although some caution is required when evaluating them at
S = 0. The resulting value for C;(=4N"(0)) is found to be

szgf’:l f[X(f) X(O)] a (2”‘.,) fl

Ior most realistic processes, the continuous part of the power spec-
trum has zero slope at f = 0, i.e., X’(0) = 0. In that circumstance,
(60) reduces to the much simpler form

o m (2 o) (XD XO)

> T df;  X'(0) = 0. (61)
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Fig. 12—Two families of spectra. (a) Truncated Butterworth spectrum. (b) Band-
pass uniform speetrum.

In general, the above C, for the non-Gaussian process {%(t)} can-
not be compared with the C, for the Gaussian process {x(t)} since we
do not have a result for the latter case that is good for all X (f). We
do, however, have exact results under some special conditions on X (f)
for which C, is expected to be maximally dissimilar for the two pro-
cesses. The very close agreement observed under these conditions
persuades us that (60) is a reliable representation of (. for Gaussian
processes having any X (f).

5.4 Final Result for N,(S)

Our final approximation to N(S = 0) is (44) with Co = 1 and C,
and C. given by (55) and (60). Note that when X (0) = 0, C, is zero
and (', is negative, so that N,(S) is convex at the origin; and that when
X(0) # 0, C, is negative and C, can be either positive or negative,
depending on X(f). For a spectrum like the one in Fig. 12b, this
implies a functional discontinuity at 8, = 0, which can be explained
as follows: So long as 8, # 0, the curvature of N,(S) is convex at the
origin, but it becomes concave at some S > 0. As 8, decreases, the
curvature at the origin becomes sharper and the point of inflection
occurs at successively lower values of S. Finally, in the limiting case
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8, = 0, the point of inflection oceurs at 8 = 0 and so N,(S) becomes
concave at the origin. Thus, an abrupt increase in X at f close to 0,
reflected in a large negative value of C,, signifies a very small range
of validity and calls for caution in using the new result for N (S = 0).
For concreteness, suppose that the continuous part of X(f) in-
creases to a large peak density at some low frequency f., where
JoK Vb:/2ra. To obtain a more useful approximation to N (S = 0)
under such circumstances, C; and C» should be recomputed as if the
point of high density were at f = 0 instead of f = f,, i.e., as if the
spectrum were X (f + f.). The resulting N .(S), (44), then corresponds
to a spectrum quite similar to X (f) but without the abrupt change
at low f. Consequently, it exhibits the correct “large-scale’ curvature
at low S while omitting the sharp ‘“‘small-scale’” curvature at S near
0 associated with the true C; and C.. An empirically derived rule-of-
thumb that leads to good results in all cases is the following: If
Cy < — 10, shift the continuous part of X(f) to the left until the
nearest high-density peak is at f = 0, and recompute Cy and C; for this
modified spectrum. Then compute the quantity ¢ = (0.5 C2 — 10 Cy)
using these values. If C exceeds the original value of Cs, use the newly
computed values of C; and C.; otherwise use the original ones.

VI. GENERAL NOISE POWER FORMULA

We now seek an expression for slope overload noise power [N ,(S) ]
which is accurate over all S for all spectra and is simple to use. Our
approach is to derive separate functional descriptions for the regions
0 < S < 4.0and S = 4.0. The descriptions are such that the resulting
N ,(S) and its first derivative are continuous at the boundary S = 4.0.

6.1 N,(S) for S = 4.0

The result N;(S), (43), gives a very accurate approximation to N (:S)
in the region S = 3.5. However, our result for N,s(S), (22) through
(25), is quite complicated, and the results for A(S), B(S), and C (8)
are available in graphical form only (Fig. 9). We now use these results
to derive a simple but still accurate representation for this region.

Taking a suggestion from Rice’s analysis,®> we speculate that N(S)
for § = 4.0 can be accurately approximated by

243 by exp (—82/2)
427 by RE
[exp (—azexp (—asS)] = No(S = 40).  (62)

N(S =z 4.0) =
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The quantity preceding the brackets is Rice’s result N £(S), (9), while
the bracketed term (with a; > 0) is a monotonically decreasing func-
tion that converges to unity as S — «. We choose a; and a; so that

N,(4.0) = N,(4.0) and N,(4.0) = Ni(4.0).
By using the data in Fig. 9 to obtain 4 (S), B(S), C(S), and their first

derivatives at § = 4.0, and the data in Fig. 6 to obtain N,;(S) and
its first derivative at S = 4.0, we obtain

0.2141 — 0.024M; — 0.196 M4 — 0.067M 5
0.6394 — 0.057M; — 0.426 M, — 0.093M 5

(63)

4]
and

where M3, M, M are the moment excesses defined by (41). Note that
when X (f) is the two-band spectrum, (M, = 0, n = 3), a; and a,
reduce to 2.45 and 0.336, respectively.

The above approximation to N (S = 4.0) can be tested by comparing
it with the more precise results computed for various spectra using
(35) and (37). The indications from such comparisons are that the
approximation is accurate to within 0.3 dB over S = 4.0 for all
Spectra.

6.2 N,(S) for 0 < S < 4.0

The analyses of Sections IV and V inform us about N(S) at the
extremities of the region 0 < S < 4.0, but not about the variation in
between. To estimate this variation reliably, it is convenient to express
N (8) in the form

N(S) = G(S)Nw(8) (65)

and then seek an approximation to G(S). The latter is a spectrum-
dependent function that differs from unity because-and to the extent
that-X (f) differs from a two-band spectrum having the moments b,
by, and b, (Fig. 3). From physical reasoning given earlier, we expect
that G(S) — 1 as § — = and that, as S decreases from high values
towards 0, (7(S) increases because-and to the extent that-bs, by, ete.,
exceed the minimum values, (6), corresponding to the two-band spec-
trum. The maximum value of G(S) should then be its value as S — 0,
which is ¢”(b./b7).

This reasoning is supported by careful scrutiny of the results for
N:(S) and N,(S), Sections IV and V. From Section IV we can show
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that G(8) is a nonincreasing function* for 8 = 3.5 and that it goes to
unity as § — . From the results of Section V we can show that G(S)
is a nonincreasing function* at § = 0 and that it goes to o2(by/b?) as
S — 0. A logical consequence of these observations is that, for 0 < S8
< 3.5, G(S) is either a nonincreasing function, or has at least two
extrema. The latter possibility has no physical basis in fact, and so we
conclude that G (S) is a nonincreasing function over all S, approaching a
maximum value of ¢*(b,/b}) as 8 — 0 and a minimum value of 1 as
S — oo,

Computations show that the decrease in G(S) over 0 < 8 < 4.0 is
less than 10 dB for all spectra of possible practical interest. Thus if we
can find a functional approximation to the quantity

() 2 1nG(S) =1 [N(S):] 0<8 <40 (66)
g(8) = In = In ; .
N (S)
that is accurate to within 410 percent, the resulting approximation
to G(S) will be accurate to within =1 dB for all spectra of interest.
This accuracy should be possible to achieve since g(S) near S = 0
and S = 4.0 are known from the results of Sections III, IV, and V,
and the above argument persuades us that ¢(8) is nonincreasing over
the region in between.
The function that we use to approximate ¢(S) is

0u(S) = In (a'by/bY) + xS + asfexp (asS + aiS) — 11 (67)

where a1, --- as are chosen to give ¢,(0), g,'(0), g.(4), and g;(4) the
values predicted by the results of Sections III, IV, and V. These values
are found by using (66), with N,(S) and N:(S) replacing N(S) at
S = 0 and S = 4, respectively. Thus, the following equations must be

satisfied :
ay + Aoy = 01; (68)

2
ﬂz(ai + 2ay) = 2C, — Cf + (4 - %), (69)

In (O'Ebz/bi) + 4a; + as[exp (4a;s + 16as) — 1]
= 0.057M; + 0.426M, + 0.093M;; (70)
and

a1 + as(as + Sa.) exp(da; + 16a4)
= — 0.024M, — 0.196M , — 0.067M; (71)

* In fact, G(S) is a decreasing function for all but the two-band spectrum, for
which case it is precisely 1.
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B1 a asz az [
0.02 —0.177 2.26 —3.93 —8.76
0.068 —0.151 1.29 —3.70 —7.04
0.10 —0.137 1.06 -3.75 —6.99
0.25 —0.096 0.66 —3.90 —7.03
0.50 —0.066 0.50 —3.91 —6.67
1.0 —0.047 0.42 —3.86 —6.22
2.0 —0.040 0.38 —3.84 —6.00

w —0.036 0.37 —3.83 —5.90

where Ci, C, and M.(n = 3) are given by (55), (60), and (41),

respectively.
A set of solutions that is quite accurate in most cases is the following :
a; = — 0.024M; — 0.196M, — 0.067M; (72)
ay = In (¢'bs/by) — 0.155M, — 1.210M, — 0.361M5  (73)

(C1 — ar)/as; as >0
a; = 0; a =0 (74)
‘Cl—ﬂ.l!/&g; [¢7) <0

2 w2
ZCQ—C1+<4—E)
ay = <— — a: ; as > 0. (75)
2 @y .
0; a =0

The results for a; and as when a, < 0 are approximations only, but a.
is nonpositive only when X (f) is relatively narrowband, i.e., when
o?by/bi = 1, in which case G(S) is close to 1 over all S. Hence, these
approximations lead to a quite accurate representation of ¢(S). In the

TABLE II—ForMuLA COEFFICIENTS FOR THE UNIFORM SPECTRUM

B2 a as a ay
0 —0.036 0.37 —3.83 —5.90
0.05 —0.036 0.32 —4.44 —8.21
0.10 —0.036 0.27 0.14 —11.96
0.20 —0.035 0.17 0.21 —7.58
0.30 —0.033 0.08 0.41 —7.95
0.40 —0.029 0.02 1.44 —18.30
0.50 —0.024 —0.01 —1.76 0
0.80 —0.004 —0.01 —0.43 0
1.0 0 0 0 0
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Fig. 13—Noise power results for several spectra.

more usual case where a, > 0, the above solutions are highly accurate
o long as 4a; + 16as £ — (4 4 Inas), a condition satisfied for most
spectra. If this inequality is violated, solutions for @i, --- a4 can be
found by graphical or computerized methods, but such situations
appear to be rare.

With ¢(S) approximated as above, N,(S) over 0 < § < 4.0 can be
expressed as the product exp (g.(S))N(S). To obtain a usable ex-
pression, however, N ;(S) should be given in a more simple form than
eqs. (22) through (25). An approximation to N(S) which is accurate
to within 2=0.3 dB is

2
b
Nu(S) = 3‘- [1+ 2.7538 + 2.95287]
P exp(—2.7535 — 0.3418%); 0 < S <40. (76)
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Fig. 14—Noise power results in greater detail.

Combining (76) with (67) leads to the following :

No(S) = o*[1 + 2.7538 + 2.95282] exp (—0.34152)
cexp {(a: — 2.753)8 + as[exp (asS + as8?) — 17}
0< S <40 (77

6.3 Final Expression

A highly accurate two-region approximation to N (S) is given by the
combination of (62) and (77). We have determined, however, that
(77) alone predicts N (S) with an accuracy of 1 dB or better for S
between 4.0 and 6.5 for all spectra. Moreover, we have determined that
N(S) is at least 119 dB below ¢? for § = 6.5 and for all spectra. Ob-
viously, then, (77) can be used over all S for which N (S) is not negli-
gibly small. We therefore present (77) as our final expression for slope
overload noise power, with a;, --- a, defined by (68) through (71)
and accurately approximated by (72) through (75) in virtually all
cases.

VII. NUMERICAL RESULTS

The new result has been applied to the two families of spectra shown
in Fig. 12. The Butterworth spectrum is characterized by an upper
truncation frequency (W) and the ratio (8;) of the 3-dB corner fre-
quency to W. Note that, when 8, — o, the spectrum approaches that
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TasLE I[I—N /N, IN DB FOR THE BUTTERWORTH SPECTRUM

}«,\ 0.036 0.111 0.289 0.556
(81 = 0.02) (8, = 0.068) (81 = 0.25) (Br = )
1.0 +2.85 +1.76 +1.44 +1.70
2.0 +0.41 —0.20 —0.22 —0.10
3.0 +0.43 —0.01 —0.04 +0.22
40 +0.96 +0.74 +0.71 +0.81
5.0 +1.14 +1.12 +1.11 +1.13
6.0 +0.90 +0.85 +0.80 +0.70

of bandlimited white noise. The bandpass uniform spectrum is charac-
terized by an upper truncation frequency (W) and the ratio (8,) of
the lower truncation frequency to W. Note that 8. = 0 corresponds to
bandlimited white noise in this case and that, as 3, — 1, the spectrum
becomes infinitely narrowband.

For each of these two families, the formula coefficients, (ai, as, as, as),
have been computed as functions of the respective g-parameter. The
results for the Butterworth spectrum are given by Table I and those
for the uniform spectrum by Table II. The values shown are rounded
to the decimal accuracy required.

Curves of N ,/o? versus S for several Butterworth spectra of practical
interest and for the narrowband spectrum are shown in Fig. 13. (The
curve for the narrowband case represents an upper bound on N (S)/o*
for all spectra.) Also, an informative closeup that treats more spectra
but over a reduced range of S is given by Fig. 14.

Since the new formula is highly accurate for all spectra, it can be
used to estimate the accuracy of the Protonotarios formula, (10).
Table III compares N »(S) with N ,(S) for various Butterworth spectra
spanning the range of v = b2/byby of practical interest, while Table
IV gives the comparison for various two-band spectra. The larger
errors in Table IV must be regarded as untypical, since the two-band
spectrum itself is rather artificial. For more typical spectra, we can

TaBLE IV—N p/N, IN pB FoR THE Two-BAND SPECTRUM

Y
\3\ 0.111 0.289 0.556 1
1.0 +5.04 +3.55 +2.49 +1.52
2.0 +2.45 +1.46 +0.75 +0.06
3.0 +1.97 +1.23 +0.70 +0.19
4.0 +2.05 +1.54 +1.12 +0.71
5.0 +1.79 +1.56 +1.30 +1.02
6.0 +0.84 +0.88 +0.74 +0.50
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expect the errors in the Protonotarios formula for given S and ¥ to be
more like the entries in Table III.

VIII. CONCLUSION

Aside from providing a new formula for slope overload noise power,
this work has served to resolve the disparities between previously
published formulas and can be used to identify the accuracies and
limitations of those most widely used. Furthermore, the new result
and the underlying methods of analysis can be extended to treat other
important topics that have been mostly ignored before. Among these
are the average duty cycle of slope overload, the slope overload noise
spectrum, the effects of leaky feedback integrators on slope overload
noise power, and the slope overload noise power for certain non-
Gaussian processes.
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