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Tube Waveguide for Optical Transmission
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The dielectric optical waveguide described in this paper has an annular
cross section, the refractive index of which is higher than the indices of
the material inside and outside of the ring. The solution of the eigenvalue
problem is an approximation which is valid for small refractive index
differences of the three media. The resulting approximate eigenvalue
equation s far simpler than its exact counterpart. The cutoff conditions
of the first three modes and the eigenvalue of the lowest-order mode are
presented graphically.

I. INTRODUCTION

Dielectric optical waveguides have become interesting since it has
been demonstrated that the losses of dielectric materials can be quite
low.'=* The conventional optical fiber waveguide consists of a solid
dielectric core surrounded by a dielectric material with lower refractive
index. This structure has the advantage of being particularly simple.
In this paper we analyze a different type of dielectric optical waveguide.
Our structure consists of a dielectric tube which is filled and surrounded
by dielectric material with lower index of refraction. Such structures
have been analyzed before.t A complete discussion of and references to
the literature can be found in Ref. 5. However, the exact analytical
treatment is extremely complicated so that the resulting theories are
hard to apply to practical situations. Recently A. W. Snyder® has
shown that the analysis of the conventional optical fiber waveguide
becomes much simpler if one assumes that the difference of the refrac-
tive indices of core and cladding material is only slight. D. Gloge’
has developed Snyder’s theoretical work even further. On the basis of
this simplified method of analysis, it is possible to treat rather com-
plicated optical waveguide structures more simply and still obtain
results that are applicable to most cases of practical interest. The
simplification that results from the assumption of only slight index
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differences is particularly appropriate since most practical dielectric
optical waveguides satisfy this requirement.

An approximate eigenvalue equation for the modes of the tube
waveguide and an equation describing the cutoff conditions for these
modes are derived in this paper. The connection of the tube waveguide
with the dielectric slab waveguide in the limit of large tube radii and
with the solid-core optical fiber in the limit of small tube radii is
discussed. The cutoff condition for the first three modes is represented
graphically and the eigenvalue of the first mode is plotted.

For simplicity we assume throughout that the index of the material
inside of the tube is smaller than or equal to the index of the material
surrounding the tube.

II. APPROXIMATE MODE ANALYSIS OF THE TUBE WAVEGUIDE

The geometry of the tube waveguide is shown in Fig. 1. Following
the ideas of Snyder and Gloge®7 we express the electric and magnetic
field components in rectangular cartesian coordinates and write®
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Fig. 1—Cross section of the tube waveguide.
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It is assumed that the time and z dependence of the field are determined
by the factor
ei(u!—ﬂz)_ (5)

B is the propagation constant in z direction, w is the radian frequency.
The parameter K; is defined as

K? = n?k” — Bt j=1,2,0r3 (6)

with
k? = w2eu,. (7
Equations (1) through (4) are exact and are simply four of Maxwell’s

six equations written in a different form. If the refractive indices are
all nearly the same, n; = ns = n3 = n, we must have

B = nk, (8)
so that

K; < B. 9)
It is thus apparent that the transverse field components are much
larger than the longitudinal components if the refractive indices are

all very nearly the same. The longitudinal field components are
obtained as solutions of the wave equations.® We use the expressions

14K, ) .
E, = o {Zos1(Kjr) sin (v + 1)¢ + Z,_4(Kjr) sin (v — 1)} (10)
i
€ ’lAJKJ
H, = — J: [Z,+1(K,‘T) Ccos (1’ + 1)¢
o 2k

— Z, 1(Kjr)cos (v — 1)¢}. (11)

The exponential factor (5) has been suppressed. Z,(K;r) is a cylinder
function and A, is an arbitrary amplitude factor. Substitution of (10)
and (11) into (1) through (4) results in

E, = A;Z,(K;r) cos ve, (12)
H,= — 1'11,,-44,-\/E Z,(K;r) cos vo, (13)
Hao
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and

E, =0, H,=0. (14)
These equations are approximations that hold provided that (8) is
applicable.

In the three regions shown in Fig. 1, we use the following cylinder
functions and parameters, assuming n; > ns > N

Ky = 6 = (8 — nk?)}
Z, = J,(6r)

A

] for 0<r=<b (15)

K=« = 2k2_ 2%
1 K (ny IS)] or b<r<a (16)
Z, = J,(xkr) + BN,(xr)
2
—iK, = v = (82 — nkH}
o 'ycn(? " )] for a =r . (17)
Z, = H, (iyr)

J,, N, are the Bessel and Neumann functions and H," is the Hankel
function of the first kind. We use the functions with imaginary argu-

14 28
122 24
10— 20
8 16
Vc-:— Ve
6 1.2
a 08
2 0.4
0 Ll Ll L1 o
0.001 2 4 6 B8p.01 2 4 6 81 2 4 6 B 4

dfa

Fig. 2—The cutoff value of the normalized frequency V for G = 0 as a function
of t(,ihe ratig of I}'ws\ll Othicknexs d to tube (outer) radius a. The cutoff value for the
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Fig. 3—The cutoff value of V as a function of d/a for G = 0.7.

ments instead of modified functions. This practice is in agreement with
Jahnke and Emde® as well as with Gradshteyn and Ryzhik."® The
amplitude coefficient A; appearing in (10) through (13) also assumes
different values in the three regions of space, j = 1, 2, 3.

In order to be able to match the boundary conditions, we transform
the cartesian components to vector components in cylindrical polar
coordinates

Ey;= —E;sin¢ + E,cos ¢
= 3A;Z,(Kyp)[cos (v + 1)¢ + cos (v — 1)¢ ] (18)

Hy = %n_,-A,'\/EZ.(K,-T}[Sin (v + 1)¢ —sin (v — 1)9]. (19)
Ho

The boundary conditions require that E., E,, H., and H, are con-
tinuous at » = b and at r = a. The boundary conditions thus provide
us with eight equations. However, our approximate treatment of the
modes yields only four arbitrary constants, A,, 4., A; and B. The
situation is further aggravated if we observe that the field components
contain the functions sin(» 4+ 1)¢ and sin (v — 1)¢ and corresponding



428 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

expressions with the cosine function. Since the boundary conditions
must hold for all values of ¢, we must equate the coefficients of the
functions with » + 1 independently of those with » — 1, thus doubling
the number of equations. In spite of this apparently hopeless situation,
approximate solutions are possible. The equations that result from
the requirement that the tangential components of E are continuous at
the boundaries differ from the corresponding equations resulting from
the boundary conditions for H only by factors n;. Since our approach
is based on assuming that all n; are nearly the same, we set these
factors all equal to the same average value n and, after dividing by 7,
obtain equations that duplicate those obtained from the boundary
conditions for E. To the approximation considered here, the E and H
boundary conditions lead to the same set of equations, reducing their
total number to one half of the original number. To satisfy the con-
tinuity of £, and E, at r = b, we equate the coefficients of sin (v + 1)¢
and obtain

J,(xb) + BN,(xb)
3 = Al 2
4 J,(76b) (20)

and the determinantal condition
s J141(16b) Jopa1(kb) + BN, y1(xb)
1 = K .
J,(16b) J,(kb) + BN,(xb)

Equating the coefficients of sin (» — 1)¢, we obtain a similar result
with the only difference that » + 1 is replaced by » — 1 in (21).
Equation (20) remains the same. With the help of the recursion
relations® ' for cylinder functions, it is easy to prove that eq. (21) is
not changed if » + 1 is replaced by » — 1. We thus find ourselves in
the happy position of being able to satisfy—at least approximately—the
eight boundary conditions at r = b with the two available coefficients.
In an analogous fashion, we obtain from the boundary conditions at
r = a the equation

(21)

_ Ju(xa) + BN (xa)

A 22
H® (iva) ' -

2

and the determinantal condition

H(v0) _ Jea(ka) + BNya(ea)

vy H:”(’&'TG) = J.(xa) + BN,(xa) )
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Fig. 4—Same as Fig. 3, G = 1.5.

The ecigenvalue equation is obtained by eliminating B from (21) and
(23). We find

kJ(166) T, 1(kb) — 16, (xb)J ,+1(i6b)
k ,(16b) N ,51(xb) — 18N, (xb)J ,41(i6b)

H " (iya) T via(xa) — ivd,(xa)H  x(iva)

= . (24
HO DN ilsa) — NG H D va)

The constant B is given by
_ ke, (100)J 1 1(kb) — 10 ,(kb)J ,41(76b) (25)

& (10D) N ,11(xb) — iﬂN.(xb)J.H(z'ab)-

It can be shown that the eigenvalue equation (24) specializes to the
eigenvalue equation (d = a — b)

tan kd = ——— (26)

of the asymmetric slab waveguide in the limit ¢ — « and b — . The
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distinction between TE and TM modes of the slab waveguide is lost
in our approximation.

We are mainly interested in the cutoff conditions of the modes in
order to find the separation between the lowest and the next higher
mode which determines the range of single-mode operation. Cutoff is
defined by the condition

vy = 0. (27)

In order to determine the cutoff frequency, we use (27) in (24) and
obtain the cutoff equation

b b b b
Jy (iGV —) Ji+1 (V _) —iGJ, (V 4) Jot1 (iGV —)

d d d d

b b b b
g, (z’GV —) N, (V—) — iGN, (V—) Jos1 (iGV—)

d d d d

a
Jo1 (V E)
=— " . (28)

a
N,1 (V—)
d

The parameters appearing in this equation are defined as follows:

V = (n1 — na)kd (29)
and
ny — na\}
G = ( 2 3) - (30)
nﬁ —_ n2
1 2

For future reference, we derive an interesting relation for the mode
with » = 0. The cutoff condition (28) allows the solution V = 0 for
» = 0. We find as the condition that V = 0, the relation

d nzl—nii 1
_=1_< ):1_m. (31)
a (1 4+ G2}

In the limit of infinite radii, @ — < and b —«, we obtain from (26)
the cutoff condition for ny > n. = nj

V = arctan G. (32)
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Fig. 5—Same as Fig. 3, G = 5.3.

III. DISCUSSION AND NUMERICAL RESULTS

We restrict our discussion to the case n, = ni. The cutoff values of
V [see eq. (29)] as functions of d/a are plotted in Figs. 2 through 6
as solid lines for the first three modes, » =0, v =1, » = 2. The V
parameter characterizes the tube waveguide in the limit of large radii
where it can be regarded as an asymmetric slab waveguide that is
bent into a circle. For large values of d/a, the waveguide approaches
an optical fiber with solid cylindrical core. Such a fiber is characterized
by a different ¥V parameter which can be expressed in our notation as
(a/d)V. In thelimit d/a = 1, both parameters coincide. The parameter
(a/d)V is plotted in the figures as a dotted line only for the mode
v = 1. Each curve, Figs. 2 through 6, is plotted for a different value
of G [see eq. (30)]. The relation between the G values and the ratios
of ny/n, and n,/n; is shown in Fig. 7.

Since the tube waveguide approaches the asymmetric slab in the
limit d/a = 0 and the solid-core fiber in the limit d/a = 1, the cutoff
values V = V. can be predicted at these limits. For d/a = 1, the
cutoff value of the solid-core fiber is obtained from

Ja(Ve) = 0. (33)
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The values of V. at d/a = 1 are, therefore, V. = Oforv =0, V. = 2.405
forv = 1,and V. = 3.83forv = 2.

At d/a = 0, we find the cutoff values for V from the asymmetric
slab formula (32).

We see from Figs. 3 through 6 that the curve with » = 0 seems to
end on the horizontal axis. Actually, the curve must be continued along
the horizontal axis at V = 0 to the point d/a = 1. However, to the
left of the point where the » = 0 curve reaches the horizontal axis,
V = 0 is not a legitimate solution of the cutoff equation. The d/a
value at which the » = 0 curve touches the horizontal axis is given by
(31). This phenomenon finds the following simple explanation (private
communication from E. A. J. Marcatili). As the mode approaches its
cutoff value, we have v = 0, and also § = 0, and V = 0. There isno
longer any transverse field variation so that the field “‘senses” only
the average value 72 of the dielectric constant of the tube,

abons + w(a® — bHn;

ra?

it =

(34)

The mode is no longer guided if the average dielectric constant #* is
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Fig. 6—Same as Fig. 3, G = 9.6.
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fF‘i§. 7—The parameter G is shown as a function of (n,/n; — 1) for several values
of ny/na.

equal to the dielectric constants n} of the outer medium. The condition
A2 = n; also leads to (31).

Figures 2 through 6 show that the cutoff points for all three modes
(v =0, 1, and 2) approach each other arbitrarily closely for small
values of d/a. It is thus apparent that single-mode operation in the
mode » = 0 becomes increasingly more difficult to achieve as the
ratio d/a is decreased.

I'inally, Fig. 8 shows a plot of the transverse decay parameter va
as a function of d/a. The curve is intended to provide information
about single-mode operation of the tube waveguide. However, since
it is desirable to operate with a tightly guided mode field, we chose as
the operating point for V the cutoff value of the second mode, V = V.,.
It is a remarkable feature of the curves of Fig. 8 that they become
independent of d/a for small values of this ratio. However, from the
point of view of field confinement, we must remember that it is not
va but rather yd that characterizes the rate at which the field decays
from the guiding structure-the tube—in radial direction. The crosses on
the curves in Iig. 8 indicate the points at which we have vd = 1, the
circles indicate the points yd = 0.5.
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Fig. 8—This figure shows the parameter ya as a function of d/a for several values
of G. V is taken equal to the cutoff value Ve of the mode » =1

IV. CONCLUSIONS

The eigenvalue equation for the modes of the tube waveguide has
been derived with the help of an approximate technique. The cutoff
values of the normalized frequency parameter V [defined by (29)] are
presented for the first three modes of the tube waveguide and the
transverse decay parameter ya is plotted for the lowest-order mode
under the assumption that this mode is operated at the point of cutoff
of the next-higher-order mode.

One may wonder if it is possible to use the tube waveguide with
single-mode operation to increase the mode radius compared to the
mode radius of the lowest-order HE;; mode of the conventional fiber.
This question has been studied under the assumption that both wave-
guides provide an equal amount of field confinement. The criterion for
field confinement is the radial decay parameter v. It was consequently
assumed that the v values of both waveguides are identical. Surpris-
ingly, it was found that under the condition of single-mode operation
for each guide and the requirement of equal field confinement, the
mode radius of the tube waveguide is only slightly (approximately
40 percent) larger than the radius of the HE, mode of the optical
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fiber. A large mode radius appears desirable from the point of view

of

alignment tolerances of fiber splices. With a large mode radius, the

alignment of the waveguide centers would be less critical. The tube
waveguide does not appear to offer a significant advantage for this
purpose.

REFERENCES

1

10.

. Kapron, F. P., Keck, D. B., and Maurer, R. D., “Radiation Losses in Glass
Optical Waveguides,”” Appl. Phys. Ltrs,, 17, No. 10 (November 15, 1970),
pp. 423-425.

. Stone, J., “Optical Transmission Loss in Liquid-Core, Hollow Fibers,” Conference
on Integrated Optics-Guided Waves, Materials, and Devices, Optical Society
of America, Digest of Technical Papers, pp. WA5-1-WA5-4.

. Stone, J., “Optical Transmission in Liquid-Core Quartz Fibers,”” Appl. Phys.
Ltrs., 20, No. 7 (April 1972), pp. 239-240.

. Beam, R. E., Astrahan, M. M., Jakes, W. C., Wachowski, H. M., and Firestone,
W. L., “Dielectric Tube Waveguides,” Final Report on Investigation of
Multi-Mode Propagation in Waveguides and Microwave Opties, Microwave
Laboratory, Northwestern University, Evanston, Illinois, May 1, 1949-
November 30, 1950.

. Kharadly, M. M. Z., and Lewis, J. E., “Properties of Dielectric-Tube Wave-
guides,”” Proc. IEEE, 116, No. 2 (February 1969), pp. 214-224.

. Snyder, A. W., “Asymptotic Expressions for_ Eigenfunctions and Eigenvalues
of a Dielectric or Optical Waveguide,”” IEEE Trans. Microwave Theory
Techniques, M TT-17, No. 12 (December 1969), pp. 1130-1138,

. Gloge, D., “Weakly Guiding Fibers,” Appl. Opt., 10, No. 10 (October 1971),
Pp. 2252-2258.

. Marcuse, D., Light Transmission Optics, New York: Van Nostrand Reinhold
Company, 1972.

. Jahnke, E., and Emde, F., Tables of Functions with Formulas and Curves, 4th

Edition, New York: Dover Publications, 1945.
Grandshteyn, I. 8., and Ryzhik, I. M., Tables of Integrals, Series and Products,
4th Edition, New York: Academic Press, 1965.






