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The Interrupted Poisson Process
As An Overflow Process

By ANATOL KUCZURA
(Manuscript received September 18, 1972)

Traffic overflowing a first-choice trunk group can be approximated
accurately by a simple renewal process called an interrupted Poisson
process—a Poisson process which is alternately turned on for an ex-
ponentially distributed time and then turned off for another (independent)
exponentially distributed time. The approximation is obtained by matching
either the first two or three moments of an interrupted Potsson process to
those of an overflow process. Numerical investigation of errors in the
approximation and subsequent experience has shown that this method of
generaling overflow traffic is accurate and very useful in both simulations
and analyses of traffic systems.

I. INTRODUCTION

A Poisson process which is alternately turned on for an exponentially
distributed time and then turned off for another (independent)
exponentially distributed time will be called an interrupted Poisson
process—it can be viewed as a Poisson process modulated by a random
switch. It was suggested by W. S. Hayward of Bell Laboratories that
such a process be used to simulate overflow traffic. We will show that
the interrupted Poisson process provides a simple and aceurate method
of simulating overflow traffic.

The objective is to reduce the cost of computer simulations of
traffic systems by using the interrupted Poisson process to model the
overflow traffic. Generation of actual overflow traffic by simulating
the behavior of the trunk group from which it overflows is time con-
suming since a record must be kept of all calls which are offered to the
subtending trunk group, whether they contribute to the overflow
traffic or not. This is especially true when the traffic is overflowing a
large trunk group. Moreover, the interrupted Poisson process provides
a simple, approximate description of the overflow traffic and conse-
quently facilitates analytical studies.
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This method of generating overflow traffic has been used successfully
in many studies of traffic systems. Examples of its application can be
found in Refs. 1, 2, and 3 and also in numerous unpublished works.
Since the method has been found to be very useful and requests for
wider dissemination have been received by the author, this paper has
been prepared.

In Section II we derive the distribution of the number of busy
trunks in an infinite trunk group when the offered traffic is generated
by an interrupted Poisson process. The corresponding distribution for
an overflow input has been computed by Kosten.* Now, matching the
first three moments of the two distributions, we obtain equations for
the parameters of the interrupted Poisson process. We also give these
equations for a two-moment match. The errors committed in approxi-
mating the distribution given by Kosten are also examined. In Section
III we derive the interarrival time distribution for a traffic stream
generated by an interrupted Poisson process.

II. MOMENT-MATCH EQUATIONS

Let the interrupted Poisson traffic be offered to an infinite trunk
group. Let A be the intensity of the Poisson process, 1/y be the mean
on-time of the random switch, 1/w be the mean off-time, and 1/u be
the mean service time. Let the state of the system be described by
(m, n) with state probabilities p(m, n) where m is the number of
servers busy, and n is the state of the switch taking on the value of 1
or 0 according to whether the process is on or off.

The equilibrium equations for the stationary state probabilities are

(mu + w)p(m, 0) = yp(m, 1) + (m + Dup(m + 1,0), m =0,
(mu + v + Np(m, 1) = wp(m, 0) + (m + Dup(m + 1, 1)
+7\p(m - 1; 1): m gl; (1)
(7 + J\)P(OJ 1) = “"p(OJ 0) + #P(L 1)'
To solve this system of equations we introduce the probability generat-
ing function
G(2) = L pm)zm = Gi(2) + Go(2),
where
Gi(z) = = p(m, Dzm,  Go(2) = X p(m, 0)z",
and
p(m) = p(m, 1) + p(m, 0).

Note that G1(1) = ¥ p(m, 1) is simply the probability of the switch
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being on and is given by «/(y + w). Similarly, Go(1) = X p(m, 0)
= v/(y + w) is the probability of the switch being off. We will now
derive the differential equations for G; and Gy and obtain their
solutions.

From (1) and the definition of G(2) we have

p(z — 1)G3(2) + «Go(z) — ¥Gi(2) = 0,
ulz — DG(2) + (v + X — A2)G1(2) — wGo(z) = 0.

This system of equations is coupled. At the price of increasing the
order, we can decouple the system by means of differentiation and
simple substitution :

piz — DGV (2) + [+ v + « — Mz — 1)]Go(2)

A
- _UJGU(Z) = 01 (2)
m

p(z — DGY (2) + [+ v + @ — Mz — 1)]G1(2)
A
— Z(w+ w)Galz) = 0.
n

Since we are interested in the moments of the distribution of the
number of busy servers, it will be convenient to obtain solutions of (2)
valid about z = 1. Subsequently, the series can be rearranged at the
origin to yield the state probabilities.

The change of variable \

E=-(-1
n

transforms (2) into

£Q0(8) + (e — HQu(E) — BQ(E) =0,
EQY(8) + (e — HQWE) — (1 + B)i(E) =0,

(3)

where

and

Q:(8) = Gi(a), Q:(8) = G:2(2).
Equations (3) have the solutions
Qo(8) = C1F1(B; ¢; 8),
Q:1(8) = DiF1(1 + B;¢;8),
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where @
® (@)ac™

Fi(a;b;¢) =
e c) ED ()]

with
(@)n =al@a+ N@+2)---(a+n-—-1), (@)o = 1,
is the confluent hypergeometric function and C and D are arbitrary

constants. The conditions G (1) = w/(y + «) and Go(1) = v/(y + «)
determine C and D and hence

Y F|:B al 1)]
14 ; €,— (2 —
Y+ w #

G(z) =

A
11 |:1 +8;6—(z — 1):[ (4)
v+ w ©

The power series in (z — 1) on the right-hand side of (4) is con-
vergent since ,F; is an entire function. The factorial moments of the
distribution of the number of busy servers, being the coefficients of
the expansion (4), are simply

G(n)(l) =X n =0:1r21 R (5)
where we have made the normalization u = 1. For computational
purposes, the following recurrence relation is useful :

(w+n
G (1) = R—_)..iG(n)(]_). (6)
(v +w+mn)

To obtain the state probabilities p(m) = p(m,0) + p(m, 1) we
rearrange the series (4) at the origin and identify the coeflicients in
this new expansion as the state probabilities

1 (—D*

p(m) = — ¥ Gomhi(1)
ml k=0 k

_ Am 2 (=A™ (w); '
m!jom (J — m)! (v + w);

@)

We now show that the interrupted Poisson process provides an
accurate method of generating overflow traffic. Let a erlangs of Poisson
traffic be offered to an Erlang B system of ¢ trunks. Let the overflow
traffic be routed to an infinite trunk group and let ¥ be the number of
busy servers in the infinite trunk group under statistical equilib-
rium. The factorial moments M, of ¥ and the state probabilities
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f(m) = p[Y = m] have been computed by Kosten:*

Mo, = an 249
an(c)
' (8)
ar:+m w0 (_a)k
flm) = )
em! o k !0’1-4.,"(6)
where
ac cfi+1—1 ac? .
G‘D(C)=_, UJ(C)=E( . )—_: 321121"'-
c! i—o ) (c — 1)

For a more accessible reference which gives the derivation of the
factorial moments, see the appendix prepared by J. Riordan in Ref. 5.

Now consider an interrupted Poisson traffic of original intensity A
offered to an infinite trunk group, and let X be the number of busy
servers under statistical equilibrium. The factorial moments of X and
the state probabilities are given by (5) and (7) respectively. In this
system we have three parameters, A, v, and «, which are to be chosen
so that the interrupted Poisson process gives the best approximation
to the overflow process. In the present analysis we choose the moment
approximation and, in particular, take the factorial moments. Thus we
require that

GM(1) = M, n=1,23, (9
and define the error
En(ax C) = f(n) - p(n).! n = 01 11 2: T (10)
With the aid of the recurrence relation (6), we can express (9) as
x(—“’—i) = ab, n=0,1,2 (11)
wt+y+n
where
_ M (1) . aa(c) .
ToaMay o)

Equations (11) have the solution _
82(81 — 80) — do(d2 — 81)

= 1 )
(81 — 80) — (82 — &)
6o /N — ad,
5 , 12
“T (51 - an) (12)

w(k—ﬂsn)
Y=—\——)
a 8o
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The parameters \, w, and vy can be computed from (12) whenever
a and c are specified. Often, however, one is concerned with final-route
traffic in which only the mean, o, and variance, v, (or peakedness ratio
z = v/a) are known. There are two ways to proceed in this case.

First, using Wilkinson’s equivalent random method,® determine S,
the number of trunks, and A, the equivalent random load correspond-
ing to the overflow traffic of mean « and variance v. Now set ¢ = A
and ¢ = S and use eqgs. (12) to compute A, w, and y for a three-moment
match.

A second way to proceed is to determine the equivalent random
load A as before, and set A = 4 in the last two equations of (12) to
compute w and v for & two-moment match. A satisfactory value of the
equivalent random load A is given by Rapp’s approximation :*

A=az+320z—1), (13)

where z is the peakedness ratio v/a. In terms of a, 2, and A, these
equations can be written as

a fA —a
w=—-( -—1),
A\z—1

oy

Note that for a two-moment match it is necessary to fix one of the
parameters \, w, or v. However, for a positive solution, they cannot
be chosen arbitrarily-for positivity we must choose A > a, such as
in (13).

To illustrate the procedure, let us take an example with overflow
trafic of mean 0.61 and variance 0.95. By Wilkinson’s equivalent
random method, we obtain § = 4 trunks and A = 3 erlangs. The
first three moments from (8) with ¢ =S8 =4 and a = 4 = 3 are

(14)

Y

M(l) = 0618
M = 0.708 (15)
M3 = 1.025.

The three-moment match yields an interrupted Poisson process with
parameters

A = 2.553
w = 0.646
v = 2.022,

and of course the same first three moments as in (15).
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For the two-moment match, we set A = A = 3 and from (14) obtain
w = 0.669
v = 2.621.

The first two moments will be equal to M 1y and M (5 of (15) and the
third moment is found to be

G®(1) = 1.049

which is not significantly different from A (5, in (15). Computing the
state probabilities, we obtain the following result in which the two-
moment match of the negative binomial fit® was included for
comparison :

Exact State Three-Moment Two-Moment  Negative

State Probabilities Match Match Binomial
0 0.6164 0.6161 0.6149 0.6086
1 0.2312 0.2318 0.2344 0.2464
2 0.0965 0.0962 0.0953 0.0924
3 0.0372 0.0372 0.0366 0.0337
4 0.0130 0.0130 0.0129 0.0122
H 0.0041 0.0041 0.0042 0.0043
6 0.0012 0.0012 0.0012 0.0015
7 0.0003 0.0003 0.0003 0.0005
8 0.0001 0.0001 0.0001 0.0002

We now examine the error £, (a,c). Since little additional com-
putation is required to obtain the three-moment match, we feel it
should be done to obtain a better fit. Consequently, we examined the
error for a three-moment match only. Calculations of f(n), the state
probabilities as they are given exactly, and p(n), the interrupted
Poisson approximation, have been made. This was done for groups of
1, 2, 4, 8, 16, 32, 40, and 48 trunks in the primary group with offered
occupancies of 0.75 and 1, and for a group of 64 with offered occupancy
of 0.75. For larger trunk groups, significant loss of accuracy prevented
successful computation. We note that for the case of one trunk the
approximation is exact. Where comparison could be made with pre-
viously reported results for the negative binomial and the confluent
hypergeometric approximations,” it was found that the three-moment
match using the interrupted Poisson process gave uniformly better fit
to the state probabilities.

A typical result of the computations made is displayed in Table I.
It was found that for a fixed occupancy the errors would increase,
reach & maximum, and then decrease as the number of trunks was
increased. This behavior can be seen in Fig. 1 where

E = max |E.(a,c)| = max |f(n) — p(n)|
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TasLE [—THREE-MOMENT MATCH
(¢ =16, a/c = 0.75, A\ = 6.83, w = 0.366, v = 3.09)

E.(12,16) E,(12,16)
State n fn) p(n) = f(n) —p(n) f(n)
0 0.64866359 0.64765765 0.00100593 0.00155078
1 0.17173954 0.17395867 —0.00221912 | —0.01292144
2 0.08460030 0.08381668 0.00078362 0.00926265
3 0.04523738 0.04463748 0.00059990 0.01326127
4 0.02430285 0.02417444 0.00012841 0.00528357
5 0.01280780 0.01290307 —0.00009527 | —0.00743819
6 0.00655960 0.00668314 —0.0001235¢ | —0.01883330
7 0.00325188 0.00333032 —0.00007845 —0.02412386
8 0.00155792 0.00158885 —0.00003093 | —0.01985106
9 0.00072097 0.00072378 —0.00000280 | —0.00388859
10 0.00032234 0.00031441 0.00000793 0.02460252
11 0.00013930 0.00013020 0.00000910 0.06530564
12 0.00005822 0.00005142 0.00000681 0.11694969
13 0.00002356 0.00001937 0.00000418 0.17756000
14 0.00000923 0.00000697 0.00000226 0.24472624
15 0.00000351 0.00000240 0.00000111 0.31590026
16 0.00000129 0.00000079 0.00000050 0.38876238
17 0.00000046 0.00000025 0.00000021 0.46060149
18 0.00000016 0.00000008 0.00000009 0.53013187
19 0.00000005 0.00000002 0.00000003 0.59587179

is plotted against ¢ for different values of the offered occupancy a/c
and again in Fig. 2 where the relative error corresponding to the state
n at which | F,(a, ¢)| attained its maximum is plotted.

III. INTERARRIVAL TIME DISTRIBUTION

In analytical studies of systems, a description of overflow traffic is
sometimes needed in terms of the interarrival time distribution.? This
distribution is complicated and may be difficult to compute whenever
the size of the trunk group which the Poisson traffic is overflowing is
large.? If the interrupted Poisson traffic is used to generate the overflow
traffic, the resulting interarrival time distribution, say A (t), is simple.
Indeed, we show that this distribution is given simply by the mixture
of two exponential distributions:

A() = k(1 — e1t) 4 ko (1 — e, (16)
where

n=ir+totr+ 0+t )= D,
n=iAtoty— V0 +o+7) =4l

A—r
b= ——0 )\
Ty — T2
k2=1—k1.
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Fig. 1—Maximum absolute error E.

The proof goes as follows. Let W, be the waiting time from ¢ = 0
until the time of the nth arrival and H,(t) be the distribution of W,.
To obtain the interarrival time distribution, it is not necessary to
find H,(t) for all n. The distribution H,(t) and proper choice of initial
conditions at ¢{ = 0 is sufficient to find A (f). We include the more
general case here for completeness.

If N(t) counts the number of arrivals in (0, {) and

then

n—1
1 — 2 pel?). (17)

k=0

H.(t)
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Fig. 2—Relative absolute error corresponding to Fig. 1.

This equation follows from the observation that W, > ¢t if and only
fN{ < n

Taking the Laplace-Stieltjes transform of both sides of (17) we
obtain

n—=1

1 —s Z Tk(s): (18)

k=0

an(s)

where

an(s) = [w e *dH (1),

Ti(s) = ‘/.w e "pp(t)dt.
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The initial conditions used to obtain (18) are

on =" *70 (19)
PRYY =10, &k >o0.

We will compute 7, (s) and hence determine a, (s). From the expression
for @, (s) we then determine the interarrival distribution A (¢).

Let pin(t) be the probability that there were k arrivals in (0, t),
given that an arrival occurred at ¢ = 0 and that at the instant ¢ the
switch is on if m = 1 and off if m = 0. These functions satisfy the
system of differential equations

po1(t) = wpod(t) — (A + ¥)parlt),
ph(t) = wpro(t) — A + Y)Pu) + Api-1a(D), k=1,2,---, (20)
Pho(t) = — wpro(t) + vPia(), k=01,2"---,
and the initial condition pp(0) = 1.
Taking the Laplace transform of (20), we obtain

stor(s) = wmreo(s) — (N + ¥)wou(s) + 1,
S-Jn,,1(s) = w‘ﬂ'ko(S) - O\ + "r_)ﬂ'kl(é') + 7\11‘1:—1.1(8); k= 1; 2: Ty
371'/:0(3) = - (JJ?Tk[}(S) + )\‘-Tkl(s): k= 0: 17 21 ]

where
i (8) =f e "p;(t)dt.
0

This system of difference equations can be solved for mi(s) and
71 (s) and hence 7 (s), since . (s) is the sum m4o(s) + mi1(s). Omitting
the details, we have

S+w+7[)\(s+w)
7(8) 7(s)

mi(s) =

k
]s k:0:1x2:"'1 (21)

where
() =4+ N+ v+ w)s + ha.
Substituting (21) into (18), we obtain
A n
wals) =[_(S+_‘”)] n=1,2 . (22)
7(s)

The interarrival time distribution is given by the distribution of the



448 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1973

waiting time until the first arrival and hence its Laplace-Stieltjes
transform is given by a;(s). Inverting a:(s), we obtain eq. (16).
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