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The propagation constants (loss and phase) are determined for the nor-
mal modes in dielectric-lined overmoded (guide radius >> wavelength)
eircular guide by numerical solutions of the appropriate characteristic
equations. It 1is shown that the heat loss of the TM ,, modes is quile low
and decreases with increasing frequency in contrast to the increase in heat
loss predicted by the perturbation theory for thin linings. The primary
effect of the low-loss TM ,, modes on a transmission system using the
TE,; mode is a reduction in the route bend losses.

I. INTRODUCTION

Communications systems are currently under development by the
Bell System and abroad which utilize as the transmission medium
dielectric-lined circular waveguide (DLG) excited in the low-loss
circular electric (TEy,) mode. The presence of a thin dielectric liner,
bonded to the wall of the waveguide, eliminates the undesirable de-
generacy which exists between the phase constants of the TEgy and
TM;; modes in unlined metallic guide. It also significantly modifies the
propagation constant (phase and attenuation) and field distribution
of many other modes compared to their counterparts in unlined
waveguide.
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In order to determine the TE,; transmission characteristics of lined
waveguide, it is necessary to determine the characteristics of the nor-
mal modes of the structure. The general problem of determination of
the modes in a hollow, perfectly conducting metallic cylinder with
a lossless dielectric lining has been of much interest since the initial
investigations of Bucholz! and Wachowski and Beam.?

Unger®* discusses the basic propagation characteristics of a thinly
lined DLG suitable for use as a wide-band carrier in the millimeter-wave
region. He determines the phase velocities of the normal modes exactly,
but uses a first-order perturbation theory, with lining thickness as the
perturbation parameter, to obtain the heat loss of the normal modes of
DLG. It can be shown that the actual heat loss characteristics of the
normal modes of DLG differ significantly from those predicted by the
simple perturbation theory for a thin lining, in that modes not of the
circular electric class may have very low heat loss at high frequencies.
This was discussed briefly in an earlier paper® which treated the loss
characteristics of circular symmetric modes (TE,.» or TM,,) in DLG.
The present paper is a continuation of that work with a more complete
discussion of the characteristics of the normal modes in overmoded
DLG. Representative values for the purely real normal-mode propaga-
tion constants based on a numerical solution of the eigenvalue equation
resulting from the classical boundary value problem formulation for
a lossless DLG are given. The losses were determined using two differ-
ent methods. The methods (“induced current’’ and “wall impedance’)
will be explained in a later section of this paper and we will see that the
results are consistent. The normal-mode loss behavior in DLG was
found to have a simple physical explanation in terms of the plane wave
reflection coefficient of an equivalent infinite impedance plane. When-
ever possible, the algebraic details are omitted or deferred to a suit-
able appendix. Some plots of the electric field lines of the normal modes
and the energy density distribution over the guide cross section are also
given.

II. BOUNDARY VALUE PROBLEM FORMULATION

An idealization of the waveguide structure under investigation is
shown in Fig. 1. It is a perfectly conducting cylinder of radius b to
which a lossless dielectric of relative permittivity e, and thickness ¢ is
bonded. The interior region (r < a) is to be filled with an inert gas and
its electrical properties are those of free-space over the frequency range
of interest.
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Fig. 1—The idealized lossless model for dielectrie-lined guide.

The fields of a normal mode (TE,, or TM,,) in the structure may be
expanded in the usual manner in terms of two sealar functions over the
two regions of the guide cross section. In the empty region of the guide
(r < a), they are of the form

Th = Nudy(Xar) sin po

T% = NuJ,(Xar) cos pé
where N, is a suitably chosen normalization constant. On applying the
usual boundary conditions at the free-space dielectric (continuity of
the tangential electric and magnetic fields) and metallic wall (zero

tangential electric field) boundaries, we obtain a characteristic equa-
tion which must be solved for the eigenvalue k,. Symbolically, we have

r<a (1)

E(kn, f, b, &, p, 1) =0 2)
where £, (the only unknown) is defined as
kn =X, a, (3)

p is the circumferential order of the mode, and f is the frequency of
interest. The fields vary along the z axis as e~7n»: for an assumed e#!
time dependence. The propagation constant h, is related to k, by

B = k? — X3 (4)

where k is the free-space propagation constant.
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The development of the characteristic equation is discussed by
Unger®* and is outlined in Appendix A for reasons of continuity. The
notation used in this paper is consistent with that of Unger.* It should
be noted that the normal mode fields corresponding to the solution of
(2) are not strictly transverse electric (TE) or magnetic (TM) as in
hollow metallic waveguide. (The circularly symmetric modes are pure
TE or TM.) However, we carry the usual TE or TM nomenclature
over with the understanding that this is what the field structure tends
to in the limit of zero lining thickness.

For a lossless structure, the eigenvalue k., as given by the solution of
eq. (2) is either pure real or pure imaginary as is the characteristic eq.
(2). Because of this, it is always possible to obtain a solution of (2) by
the well-known “bisection’’ method on a digital computer.

On solving (2) for k,, we can then determine the propagation con-
stant h, for the TE,, or TM,, mode of interest. The differential propa-
gation constant (A8) between the TE,,(TM,,) mode and the TEoq
mode is an important parameter in the estimation of TEo, loss charac-
teristics. We define AB as

AB = ha — hoi(rad/m). (5)

Although the model used is an idealization of the actual lossy struc-
ture, AB as given by (5) is still an accurate representation of the differ-
ence in propagation constants. We can estimate the attenuation con-
stant o, (Np/m) for a TE,,(TM,.) mode by using a simple physical
approximation.

The fields in the lossless structure are approximately the same as in
the actual lossy guide. Hence they may be used as a very accurate first-
order approximation to obtain the conduction currents in the lossy
metallic walls and the displacement currents in the dielectric lining.
The total heat loss (wall losses and dielectric losses) readily follows.
We shall refer to this as the “induced current’” method in the following
discussion. The details are given in Appendix A. We now define the
differential attenuation constant (Ae), which is also needed to deter-
mine the TE,; transmission characteristics in DLG, as

Aa = an — ap. (6)

In the preceding section we have indicated one well-known method of
determining the attenuation and propagation constants of the normal
modes in DLG. There is another approach, first introduced by Unger,*
which aids greatly in understanding in an intuitive fashion the normal
mode characteristics of DLG. This is in essence a quasi-optics ap-
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Fig. 2—The wall-impedance model for dielectric-lined guide.

proach, as we replace that portion of the DLG in the region r > a of
Fig. 1 by an impedance wall at » = a as indicated in Fig. 2. The values
of the impedances Z, and Z,, which approximate the actual boundary
conditions relating the tangential fields at the free-space dielectric

boundary,
E,
Z, = —

r=a,
¢

(7)

Z¢=Iz

r=a,

are given by a simple plane wave analysis as outlined at the end of
Section ITT. We can then obtain a characteristic equation for the equiv-
alent wall-impedance structure of Fig. 2. Again we defer the details to
Appendix B. The resultant equation has the form

E(km f; ZZ: Zé; (1) =0. (8)

Here Z, and Z4 are complex quantities for a lossy metal wall with a
lossy liner, as is the resulting eigenvalue k,. We use the well-known
Newton-Raphson method to solve (8) for &k, numerically on a digital
computer. In this case, the propagation constant ¥, is complex (the
fields vary along the guide axis as e=97» for e/ time dependence) and

given by
i o= k*— X3 (9)
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where
k., = X»a,

and k is the free-space propagation constant. We define the differen-
tial attenuation constant (Ae) and propagation constant (A8) as in
(6) and (7), where it is understood that

Yo = b + tag.

III. RESULTS

In this section we give results characteristic of those expected of the
DLG for use in typical waveguide transmission systems. The results
are for a polyethylene liner bonded to copper waveguide walls. The
general behavior exhibited, however, is representative of that to be
expected of any low-loss dielectric liner on a good conductor.

Figure 3 is a typical plot of the eigenvalue (k) for the first four circu-
lar symmetric modes for the lossless guide of Fig. 1 based on numerical
solution of the exact characteristic equation. The eigenvalues exhibit
a cyclic or periodic behavior as the lining thickness increases. The
eigenvalue for a TE,,(TM,.) mode in DLG is equal to that of a
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Fig. 3—Eigenvalues vs lining thickness for the TE,, and TM,, modes, lossless
guide; wall-impedance model and the exact solution.
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Fig. 4—Eigenvalues vs lining thickness for the TE;, and TM;, modes, lossless
guide; wall-impedance model and the exact solution.

TE, ..1(TM,, ._;) in unlined guide when the lining is ““‘equivalent’ to
a half wavelength in thickness. The “equivalent wavelength” in the
dielectric is given by A/ve, — 1, where X is the free-space wavelength.
The interested reader is referred to the discussion preceding (11) for
details. Similarly, the eigenvalue for a TE,,(TM,,) mode in DLG is
equal to that for a TM,, ,.(TE,,.—,) in unlined guide when the lining is
a quarter-wavelength thick.

It can be seen that the eigenvalues of the TM,, modes change rapidly
with an initial increase in lining thickness for thin linings, while those
of the TE,, mode do not. This is due to a strong electric field at the
wall for TM,, modes and a vanishing electric field for the TE,, modes.

The TMy, mode eigenvalue behaves in an interesting fashion for
very thin linings. It decreases rapidly to zero as the lining thickness in-
creases and then becomes imaginary. This indicates that the TMg
mode propagates as a slow wave or as a surface wave closely bound to
the lining region in DLG. The other circular symmetric modes ex-
hibit the same surface wave behavior for thicker linings, i.e., a quarter-
wave lining, half-wave lining, ete.

The hybrid mode eigenvalues exhibit the same sort of repetitive be-
havior as seen in Fig. 4. The eigenvalues repeat as the lining thickness
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increases by a half wavelength. The TM,, eigenvalues change rapidly
as the lining thickness increases for thin linings and then undergo little
further change until the lining is a quarter-wave thick. The TEy
eigenvalue drops to zero and then becomes imaginary for very thin
linings, indicative of a surface-wave-type mode. The TE;, mode eigen-
values (n > 1) change very little for thin linings but undergo rapid
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Fig. 5—Heat loss vs lining thickness for éa.) the TE,, and TM,, modes; induced
current method and (b) the TM,, modes; induced current method.
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changes in the quarter-wavelength lining-thickness region. Figures 3
and 4 also furnish a good comparison of the exact solution (the curves
shown in Figs. 3 and 4) for the eigenvalues and the “wall impedance”
solution (theO’s shown in the figures at selected points). The agreement
is quite good with observed errors of approximately 2 percent or smaller
for the cases shown.

In Figs. 5 and 6, the behavior of the total heat loss for some typical
normal modes of DLG versus lining thickness is shown. We see that
the TE,, modes are low loss for o, A/2, A, - -+ thick linings while the
TM,,» modes exhibit low loss for A/4, 3\/4, --- thick linings.5 The
normal-mode heat loss exhibits the same periodic behavior vs lining
thickness as the eigenvalues. The TEy, loss increases slowly with lining
thickness for a thin lining; as the lining thickness approaches a quarter
wavelength, the TEq, loss increases rapidly as the mode propagates
as a surface wave.

The TEy, loss for a A/2 lining is less than in unlined guide but still
greater than that for the TE,; mode in unlined guide, as it is equivalent
to the TE, mode in a slightly smaller unlined guide.
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Fig. 6—Heat loss vs lining thickness for the TEi, and TM;, modes; induced
current method.
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The TM,, heat loss as shown in Fig. 5a increases rapidly for even
very thin linings as expected for a surface wave mode. The TM,n,
n 3 1 (Figs. 5a and 5b), heat loss initially increases with lining thick-
ness, and the initial slope of the loss curve agrees with the first-order
perturbation theory of Unger,® but the loss then levels off (=25 um
thick lining) and falls rapidly to a minimum for a quarter-wave lining
(650 um). The behavior of the TE;, and TM,, heat loss is similar to
that of the TM,, and TE,, modes as shown in Fig. 6. The initial slope
of the loss curves for the TE;, and TM,, modes versus thickness agrees
with the perturbation theory predictions also, but from Figs. 5 and 6
it is obvious that the first-order perturbation theory is valid for pre-
dicting the normal-mode heat loss for only very thin linings (<20 pm).
It is also quite clear that many modes (i.e., TEq, TEe, TEy, TMuy,
TM,.) as shown in Figs. 5 and 6 exhibit low heat loss (<5 dB/km for
a 200-pm lining) in DLG.

Figure 7 is a comparison of the copper wall losses only for TE,, and
TM,. modes as predicted by the induced current (the curves as shown)
and the “wall impedance’” method (the O’s shown in the figure at
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Fig. 7—Copper-loss comparison, wall impedance vs induced current method for
the TE,, and TM,, modes.
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Fig. 8—Copper-loss comparison, wall impedance vs induced current method for
the TE;2 and TM,, modes.

selected points). The two methods are in excellent agreement over the
range of thickness shown. Even in the regions where the losses are
changing rapidly, the error is only on the order of 5 percent. The
dielectric losses (not shown) are much smaller than the copper losses,
but they also agreed to within 5 percent for the two methods.

Figure 8 is a comparison of the copper wall losses and dielectric
losses predicted by the induced-current and wall-impedance methods
for the TE,» and TM;; modes. The two methods differ by approxi-
mately 3 percent or less for the TM;; mode, but the TE,, difference is
on the order of 10 to 20 percent for a 150 to 200-zm lining. The reason
for this difference lies in the determination of the boundary conditions
Z.and Z, in (7). The approximate values of Z, and Z, were obtained
by use of a plane wave analysis as in Section III. This assumes a mode
may be represented in the region local to the walls of the guide by
a superposition of suitably polarized plane waves propagating in the
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€,= 2.34, 61-mm DIAMETER GUIDE, FREQUENCY = 100 GHz
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Fig. 9—TE; electric field lines and power density vs lining thickness.

plane defined by the normal vector to the waveguide wall and the wave-
guide axis. This assumption is valid only for the circularly symmetric
modes and leads to an error in the estimated boundary conditions (Z.
and Z,) for all other modes. The magnitude of the error is proportional
to lining thickness to first order and has a greater effect on the loss of

€,= 234, 5-mm DIAMETER GUIDE, FREQUENCY = 100 GHz

FIELD

Iy
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Fig. 10—TM,, electric field lines and power density vs lining thickness.
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Fig. 11—TM,;: AB vs frequency, wall-impedance model.

the TE,, modes (n # 1), as they have a much lower loss than the
TMn modes for thin linings.

Figures 9 and 10 are plots of the electric field lines and power dis-
tribution over a quadrant of the guide cross section for the TE;; and
TM,: modes in the free-space region of the guide for various lining
thicknesses at 100 GHz.

It can be seen that the lining drastically alters the field lines and
energy distribution from those in copper waveguide. We also see that
the low-loss regions of Fig. 6 are consistent with the energy distribu-
tions shown in Figs. 9 and 10 (as they correspond to the cases in Figs.
9 and 10 where the energy at the free-space dielectric interface is quite
low). The TE,. energy density also changes much more slowly with
lining thickness than does that for the TM;; mode as expected from
the eigenvalue plots of Fig. 4. Note that the TM;, field lines and energy
density change little over a 100- to 600-um range of lining thickness.
There would be a marked change for a lining thicker than 600 ym, as
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the TM;; mode then assumes a surface wave behavior. The energy
density distribution dependence on lining thickness was found to be
similar for the circular symmetric TE,, and TM,, modes.

In the preceding discussion, we have considered the normal mode
characteristics in DLG for unrealistically thick linings. (In Fig. 5,
the TE,; heat loss is 21 dB/km at 100 GHz for the 600-um thick poly-
ethylene lining considered.) In the following paragraphs we will
present some data for more representative lining thickness over a
typical frequency band (40 to 110 GHz).

It is well known that a dielectric lining is required to break the de-
generacy between the TEo and TM;; modes in unlined guide. In Fig.
11, ABrwm,, is plotted for several lining thicknesses versus frequency.
We see that for a lining thickness of greater than 150 pm the increase
in A is relatively small over the frequency range 70 to 110 GHz. We
also note that AB is approximately inversely proportional to frequency
for frequencies greater than 60 GHz for a 200-um lining.
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Fig. 12—TEy; copper loss vs frequency; wall-impedance model.
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Conversely, in Figs. 12 and 13 it can be seen that a lining of 200 um
increases the TEy, copper loss by 0.12 dB/km at 110 GHz. The dielec-
tric loss is negligible (=0.01 dB/km) for a 200-um or thinner lining with
a tan & of 83 X 10~%. On the other hand, the same liner with a tan & of
10~* would have a significant (0.12 dB/km) dielectric loss at 110 GHz.
The preceding indicates a polyethylene liner with a thickness of 100 to
200 pm, and a tan § < 10~ is suitable for a transmission system using
51-mm diameter guide. A more precise determination of the optimal
lining thickness is beyond the scope of this paper, as it depends in a
complex fashion on the geometrical aberrations of the guide in situ.

Figures 14 through 16 are AB plots for several TE and TM modes
over the 40- to 110-GHz band in 51-mm guide for 0, 100, and 200 gm
polyethylene linings. The TE,, and TE;.(n > 1) mode AB’s are quite
close to the unlined guide Af’s for a 200-um lining and are essentially
inversely proportional to frequency. The TM ,, mode AB’s are strongly
dependent on lining thickness for linings of 100 um or less and essen-
tially little changed for linings greater than 200 um. The TM,, mode
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Fig. 13—TE,, dielectric losses vs frequency ; wall-impedance model.
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Fig. 14—TE,, and TM,, AB vs frequency; wall-impedance model.

AB's shown exhibit the 1/f-type frequency dependence for a 200-um
lining for frequencies > 90 GHz. It should be noted that the TMy,
mode has a very low Ag for a 200-um lining which necessitates the
avoidance of long mechanical wavelength elliptical distortions over the
guide cross section.

The TE,; A8’s are strongly dependent on lining thickness over the
entire 40- to 110-GHz band, and their behavior is quite different from
that of the other modes. This is due to the surface wave character of
these modes. As a consequence of this, the TE,; modes having eigen-
values >3.83171 (the TEy; eigenvalue in unlined guide) may become
degenerate with the TEq, mode at selected frequencies within the band
of interest as shown in Fig. 17. The TEa; mode goes through a degener-
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Fig. 15—TE,, and TM,, Ag vs frequency; wall-impedance model.

acy at a frequency <40 GHz, while the TE,, and TE,; modes are never
degenerate.

In Figs. 18 through 23, the heat loss of several normal modes is
plotted for a 0-, 100-, and 200-um polyethylene lining in 51-mm guide
over the 40- to 110-GHz band. The characteristics may be summarized
as:

() The TM,, (except for the TMy, mode) heat loss initially in-
creases with frequency, levels off, and then decreases by an
order of magnitude for a 200-um lining from 40 to 110 GHz.
The presence of the lining substantially reduces the heat loss
at 110 GHz. The losses are as low as 3 dB/km at 110 GHaz.

(#7) The TE,, losses decrease with frequency, but not in the f-!
fashion as in unlined guide. The presence of a lining leads to
a frequency-dependent increase in heat loss over the 40- to
100-GHz band; approximately 5 percent and 30 percent for



470

AB, RAD/m

THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1973

20

—

5+-mm DIAMETER GUIDE
200 um_~~ €, = 2.34, TAN§=83 x 1076

-

00 um -

TEy3
| | | | | |

(i3)

(@)

(v)

50 60 70 80 90 100 110
FREQUENCY IN GHz

Fig. 16—TE,, and TMa, A8 vs frequency ; wall-impedance method.

the TEq mode at 40 and 110 GHz, respectively, for a 200-gm
lining,.

The TE,; and TMy, heat loss is quite high (> 100 dB/km) for
even thin linings, as these are surface-wave-type modes.

The TE,. (n # 1) heat loss is low (<10 dB/km), and the
presence of the lining actually reduces the heat loss over much
of the 40- to 110-GHz range.

The heat loss is substantially different from that predicted by
the simple perturbation® theory for thin linings (for linings
>10 pm) except in the case of the TE,. modes.

The normal mode characteristics, and in particular the low loss of the
TM,, modes, discussed in the previous paragraphs (Figs. 3 through
23) can be easily understood on recognizing that the lower-order modes
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Fig. 17—TE, ApB vs frequency; exact solution.

have a plane-wave-type field structure. The electric field of the plane
waves may be polarized perpendicular (TE,, modes) to or parallel
(TM,, modes) to the plane of incidence as shown in Fig. 24. A TE,.
or TM,, mode (for p > 0) is necessarily a superposition of both
polarizations.

In examining the interaction of these plane waves with the walls of
the guide, it is helpful to consider the transmission line equivalent
structures of Fig. 24. The transmission line parameters (characteristic
impedance Z, and propagation constant k. in the radial direction) are
dependent on the polarization. In the empty region of the waveguide
they are given by:

Perpendicular Polarization Parallel Polarization
TE,. Modes TM,» Modes
kr = ka/a kr = ka/a
ka kn 10
Zc =N Zc =N ( )

kn ka
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Fig. 18—TM,, heat loss vs frequency; wall-impedance model.
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Fig. 21—TE,; and TE,; heat loss vs frequency; wall-impedance model.
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Fig. 24—Equivalent transmission line structures for the TE.. and TM,, modes.

where 7 is the impedance of free space, k. the eigenvalue for the mode
of interest, a the guide radius, and % the free-space propagation con-
stant. In the dielectric region we have for the near grazing incidence
(8; = 90°) case:
Perpendicular Polarization Parallel Polarization
TE,. Modes TM,. Modes
b, = kve, — 1 k= kVe, — 1
chn/VEr—]- ch"]"dfr_l/fr
The single-layer case may be generalized to the multilayer case by
simply adding the equivalent transmission line sections. The copper

walls of the structure have a skin-effect surface impedance on the order
of 0.05 + 70.05 to 0.1 + 7 0.1 ohms at 40 and 110 GHz, respectively,

(11)
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for both polarizations. On transforming these impedances in the nor-
mal way through a 200-um polyethylene liner with equivalent trans-
mission line parameters as given by (11), we obtain the wall impedances
Z. and Z, which are seen at the dielectric free-space interface. These
are on the order of 0.05 + j 50 to 0.1 + 7 200 ohms. On the other hand,
the characteristic impedances as given in (10) for the lower-order
modes of most interest in the empty region of the guide are on the
order of 10 to 80 ohms for parallel polarization (TM,, modes), while
the perpendicular polarization (TE,,) characteristic impedances are
on the order of 1000 to 10,000 ochms.

The reflection coefficients of the dielectric-clad copper wall for the
equivalent transmission line structures in Fig. 24 are a function of
Z./Z. or Zs/Z.. The propagation constant h, or attenuation constant
a for the mode of interest is related to the phase or amplitude of the
appropriate reflection coefficient, respectively. In unlined copper guide,
both of these ratios (%./%.and Z,;/Z.) are <1. For the TM ,, modes in
DLG, |Z.| is on the order of or much greater than Z., and thus these
modes are drastically changed from their copper guide equivalents.
This is shown by the large changes in AS for these modes and the drastic
reduction in the heat loss. On the other hand, |Z4| is much less than
Z, for the TE,, modes, and hence the A8 and heat loss of these modes
is little changed from that in copper guide. The TE,. modes (n # 1,
p # 0) have a TE,,-like field structure in the region of the wall in
copper guide and thus are little affected by the lining. The TM,,
and TE,; modes have a TM ,.-like field structure in the wall region in
copper guide, and they are drastically altered by the presence of a lining
as we have observed.

IV. SYSTEM IMPLICATIONS

In the preceding sections, we have seen that the TM;; and TE;,
modes have very low heat losses (<3 dB/km) at 110 GHz. This low
heat loss leads to a reduction in route bend losses as can be seen in the
following. Unger® shows that the TE,; mode undergoes added losses in
a route bend due to two different effects. The first effect, called mode
conversion loss, arises from the fact that a portion of the TEy, energy
is converted into other modes (predominantly TM;; and TE;; in
DLG) in the bend and is not reconverted back to the TEq mode but
instead emerges from the bend as a spurious mode.

The second loss mechanism, defined as the added heat loss, is associ-
ated with the energy initially converted from the TEq mode to the
TE;: or TM;; mode and then reconverted back to the TEq mode as
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the bend is traversed. Since this energy travels in the higher-loss TE;,
and TM,; modes over a portion of the bend, it suffers additional at-
tenuation over and above the TE,,; heat loss in DLG. For a given mode,
the mode conversion loss and added heat loss in a route bend of radius
R and total bend length L, with a taper length £ (the radius of curvature
is assumed to have a linear taper of 0 to K from 0 to £ and R to 0 for
L — ¢ to L), is given by

L -3 C?
Lrp_am (added heat IOSS) = Aan
R? ApB:
(12)
L (mod ion loss) :
RB—MC (INlOde conversion 108s) = —— .
(RO)* ABY

Here C is the normalized coupling coefficient® due to curvature of the
guide axis, and the other parameters are as previously defined. In
Figs. 25 and 26, the total added TEy, loss, due to the route bend, as

10-2
8 TOTAL
e —
al- T™y4
ADDED HEAT
2 TE,,
ADDED HEAT
E 1073 ™, M.C.
g e
it AR TE,, M.C.
2 =
Q
-
g 51-mm DIAMETER GUIDE
@ 2 200-pm LINER
E € =234
é 10-41— LOSS TANGENT = 83 x 10~8
a 5-90° BENDS/km
& 61.0m (200 FEET) BEND RADIUS
TAPER LENGTH 10m
ar- (53% OF LENGTH IS IN
BENDS)
2
10-5 | | 1
40 60 80 100 120 140

FREQUENCY IN GHz
Fig. 256—Theoretical route bend losses.
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Fig. 26—Theoretical route bend losses.

well as the individual components comprising it is plotted for some
idealized routes comprised of five 90-degree bends with a constant
radius of curvature (61 m) and linear tapers of 1 or 10 m in length in
DLG over a length of 1 km.

From Fig. 26, it is obvious that the mode conversion losses are far
more significant then the added heat loss in route bends with a short
taper (or zero) length. On the other hand, for a reasonable taper length
(10 m), the mode conversion losses are significantly lower than the
added heat loss arising from coupling to the TMy; and TE;, modes.
The linear taper is probably a reasonable approximation to that ex-
pected in practice as the radius of curvature will change in a smooth
fashion as the waveguide progresses from a straight run into a curve.

The added heat loss is substantially reduced by the presence of the
lining due to the great reduction in the TM,; heat loss. For example,
at 110 GHz the TM;; mode yields an added heat loss for the route
bends of Fig. 25 of approximately 0.005 dB/km. If the TM,, mode
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heat loss had followed the perturbation® theory prediction, the added
heat loss for the same route bend would be =~0.250 dB/km.

V. CONCLUSION

We have discussed the basic propagation characteristies of the nor-
mal modes of dielectrie-lined overmoded circular waveguide. Some of
the results obtained differ in surprising fashion from those predicted
by the perturbation theory of Unger.? The most significant result is
the low heat loss of the TM,, modes at the upper end of the 40- to
110-GHz band discussed. This effect greatly reducés the added heat
loss for the TEq mode in route bends over this pare of the frequency
spectrum.

A simple physical explanation based on an equivalent transmission
line problem derived from an analogous plane-wave problem was ad-
vanced to support the results eontained here. An experimental investi-
gation of the decreasing TM;, heat loss® vs frequency has been com-
pleted, and the data confirm the trends predicted herein.
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APPENDIX A
Fxact Formulation

The waveguide structure under consideration is shown in Fig. 1
of the main text of this paper. The notation used conforms with that of
Unger.* Much of the following is similar to that contained in Unger?*
but is repeated here for reasons of continuity and completeness.

The fields in the guide can be derived from two suitable scalar wave
funections composed of suitable products of trigonometric and Bessel
functions.

Tw = NuJp(Xar) sin pe

0<r<a (13)
T% = NnJp(Xar) cos pe
X3 an(x,gr) .
Tw=Nn—dJy(ks) ————sinp¢
Xs52 Zon (k%)
a<r<hb (14)
™ — N X2 7.k )an(xir)
n = "XEF pfn ij (k:) cos p¢
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where

Zy(Xsr) = H(X37) — cHP ()

Zoa(Xar) = HP(X57) — ¢ H{V(X57).
Z., and Z,, are the derivatives of the above expressions with respect
to the entire argument. The constants ¢ and ¢’ will be defined later. The
T functions satisfy the wave equation

17ea aT d f1aT
a2 D) 2] an
rlLar ar d¢ \r d¢

where X? is given by X2 or X% for 0 < r < a ora < r < brespectively,
and V! is the transverse Laplacian operator.

The fields in the guide may be derived from the scalar wave functions
as in Unger*

B =SV [aTﬂ p aT’n]
TS "Lor " rd¢
B s v [BTR d 8T51:|
b "lree o
T, hi aT%
H.=—-31, [ — da :l €
n 1"6¢o kzé ar
Ho=S1 I:aTn h aT’n] (16)
i " ar " ke ro¢ ‘
x2
H; = jwéén Z V"dnﬁ T’n
a7
. x’
E; = prggInE‘I—c—zTn

where uy and e are the permeability and permittivity of free-space,
respectively, e is the relative permittivity (1 for 0 <r < a, & for
a < r < b) over the guide cross section, k¥ = wVuoeoe is the intrinsic
plane-wave propagation constant in the various regions of the guide.
Here, ¢, k, and X have constant but different values over the guide
cross section as may the separation constant d.. A mode for the strue-
ture consists of one term in the series given in (16) and (17). For a given
modal field distribution, the individual V. and I.’s in (16) and (17)
represent a single forward or backward traveling wave, and they are
related to each other by the modal impedance Z,
Vﬂ hfl
Z, = . (18)

I, weg
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Imposition of the appropriate boundary conditions atr = a, andr = b
leads to a determination of d,, ¢, ¢/, X,, and X on solution of a trans-
cendental equation. From Unger* we have

H{P (pks)
c=—"—
H{P(ok?)
H{2 (oh2)
¢ =——-
H{ (ph2)

(19)

(20)

where the ' associated with the Bessel function denotes differentiation
with respect to the entire argument. We also define p, k., and k.

p=>b/a (21)
kn = X,a (22)
ke = Xt a. (23)

We find d, is constant over the guide cross section and is given by

. e Ly () = ¥pn (k)] (24)
dn  phtad(e, — 1) 207" pr A

where ’
I (kn)

" Tond (o)

Zla (k8)
Y (ki) = ———— 25
on (k%) k& Z pn (k5) (25)
Zlon (k2) .
ks Zon (k5)

Ypn

an (k%) =

k. and k; are related by
k?ﬁ = (mﬂin,uu _— h?.)az (26)
k3?2 = (MEErEu,uo - h",’.)az.

The individual modes may be determined by solution of the eigenvalue
equation :

['ypn(kn) - an(ki)]'[ypn(kn) — € an(k;)] = P2(Er - ]-)2

2 J.2 44

k4 ks

(27)

for quasi TE,,, TM,, modes, p = 0. For circular electric waves
(p = 0), the eigenvalue equation is

[yon(kn) - Yan(k:ea)] = 0 (28)
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For circular magnetic waves (TM;,) we have
[yon(kn) — €r Yan(kfl)] =0. (283)

The constant N, is given by imposing an ortho-normalization cri-
terion on the transverse fields given in (16). This condition is

/[E X Hp-ds=1 n=m

0 n # m.

On evaluation of this integral, we find that N, is exactly given by

™ dihi D2
EN%k%J%(kn) {(1 + ™ )(1 = + kiyhn + 290
k2 ek2/ kst
kn\? d3 Al Z% ks 2
+ () @ “pWD-p]
ks k? pn(k ) pt kg2
.pZ
~ [1 — ot YR+ zyﬂ]

Z3(pks, 2
G = R O R
P"’ n

for TE,, or TM,, modes, p # 0 and by

aNi k% T3k

2
{(1 + k2 yda + 2yon)

+ (h)z[ 2@_ (1 + ke ¥%, + 2¥ ):” =1
we) L7 Za.(ks) o or

WN?. k%Jg(}cn) {(1 + k%ly?)ﬂ. + 2yan)

ro®)] T (e ar]) -
€\ — — . n on on =
k) L 235

for circular electric (TEy») and magnetic (TM,,) modes, respectively.
We shall use a subscript n when referring to TE ,, or TM,, modes and
a subsequent m for TE,, modes.

Solution of the appropriate eigenvalue equation (27) or (28) leads
to a value for the propagation constant (A, or h,) which is pure real
as we have assumed a lossless dielectric-lined guide in the above analy-
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sis. For an actual guide, h, and h,, have a small imaéinary part which
we call the attenuation constant (a,m or a,,) for the mode in question.
The loss is due to currents flowing in the metal walls of the guide and
the lossy dielectric.

The heat loss or attenuation constant («) due to currents flowing in
the metal walls of the structure is given by

1P, ‘
2Py "

[

where

1 1 1 2n
P = —[z‘-z‘*R.dS = —f f (H. HY + Hy-Hy)|  R.bdedz,
2 2 /)0 Jo b

r=

i.e., power loss/unit length,

a

1 1
PT=§/E,XHTdS=§[EzXH:ds=%VnIM

i.e., the total average power flowing through the guide cross section
for a given mode, and R, is the surface resistance of the metal walls.

Vada sy D0
non n) T S
who N B ,.
X3 Zhon(pkt, hi Z on(Pkt)
H#(b)=InEan_l:x$i P(p )_dn d p@ ]Smp¢
xe? Z pn(k$) w?uoe & b Zpalks)
noting I, = V,./K, where K, = h,/we,. We find
Ik R, ka\*
ap = — |N,J2(k—;) Ji(kn)b

n
copper 2 weg

5
X X
hn

Hib) = ]

n

2

, Zon(pks) B dohip  Zpu(pkt)
" Zonks) @ pocoerd Zpn(ks)

(Ll et
Wio an(kf.)
We find for TEs.. modes using a similar argument that

Thm km\* dnl\? Zom(pk)

Gom = RNl (—) $(kn)b (' f) oo [Zonel)
copper wep ke, Aym Zom(k)%,

and for TM,,
mh. R, ka\* wer €9\ 2

CGon
copper weg n

1

n(pks)
" Zpn(k3)

2
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The dielectric heat loss may be found in a similar manner as we now
have

1 1 oE oE* 1 1 p2I ]
Pp=—- -/.ii*pdv = _f dV = - f f f cE - E*rdrdedz
2 2 o 2/0 Jo a

where ¢ is the conductivity of the dielectrie. Using field approximations
in the lining as given in Unger we have

—V.A [(X‘S) + (d fC)] cos I:(p - 2) ka] sin pé
) i~
R

A= N () 70tk

1 1

E,

E,

where

——; O :
sin &k3 cos 8ks

By substituting for the fields and performing the integration the
power loss is obtained. Note that ¢ = we, &g X [lining loss tangent ]

where e, is the relative dielectric constant of the lining.
For the TE,, or TM,, modes

n

ITh, ka\*
Upn i e = T[e,(loss tangent) ]| N |2 (k_ﬁ.) Ju(kx)

P (5 + o]

+ i[k¢ sin 26ks 4 3(1 — cos 26k3)]

X [sz (1 - %2) C?|da| ] + SC[Re (d»)Ip sin 20k

+ C?|d.|?) + } sin 20k5(—8% + C?|d.|®)]}-

We find for TE,,, modes that

km C?|dn|?
= hm[ e (loss tangent) ]| N |2 (k

) Ti(kn)

X [(6 + 2)oks2 — ks sin 26ks, — 3(1 — cos 26k4) ]

om .
dieleotric
m
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and for TM,, modes

kn

Mh, ¢
= [er(loss tangent) ]| N, |2 ( ) Ji(kn)

a
andiﬂleutric [

n

e2

X 82 {(s + 2)6ks (1 + %) + [ks sin 26ks
n xﬁz
+ 3(1 — cos 258k3)] (1 - #-)]

hi

APPENDIX B
Wall I'mpedance Formulation

The determination of the wall impedance (Z, and Z,) are discussed
in Section III of the text. Here, we will outline the derivation of the
eigenvalue equation and the subsequent determination of the propaga-
tion and attenuation constants. The boundary conditions at r = a are

Zy = E¢/H=lr=u
Z,= —E,/Hy| 0.
As before, we can express the fields in the simplified wall impedance
structure of Fig. 2 as a superposition of two sealar functions.
Tn = N.J(Xar) sin po
TLA = N.Jp(Xnr) cos pe.

(30)

(31)

Here p is an integer, and we must solve a suitable eigenvalue equation
to determine X, as before
Xna =k, (32)

and 7, the longitudinal propagation constant is given by
X3 = k% — 73 (33)
The tangential fields at the wall (r = a) are given by

aT, aT" )
By = V,.[ —dn :| g Jhnz
rd¢ or Jlr=a
2
E, = jwug I"ﬁ T, r=ae—f"ﬂ’=
aT, k3 a7 (34)
H, = I,,|: +d,— :| g~ 7hnz
ar k? rogpdlr=a
X%
H. = juegV.d,—Th g~ shnz,
k? r—a
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On applying the boundary conditions (30) we obtain the desired
eigenvalue equation

. Xn
o d (k) [ (k) + Jwéoz¢k—2Jp(kn)]
JweoaZ, — =0
P hi 1 ' : Xn
= BT + Thlk) [ (k) + jwesZs ﬁJp(fcn)]

where J,(k,) is defined

d
Jo(ka) = = J»(z) (35)

z=kn

The solutions (k,) of this equation were determined numerically on
a digital computer using a Newton-Raphson iterative scheme. The
wall impedances Z, and Z, are complex for the most general type of
wall impedance waveguide as is the eigenvalue k,. On determination
of k., we obtain the complex propagation constant ¥, from (33). The
attenuation constant e, (propagation constant h,) is then simply the
imaginary (real) part of Y,.
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