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Synthesis of Multiple-Feedback
Active Filters

By G. SZENTIRMAI
(Manuseript received October 3, 1972)

A synthesis technique is developed for the active RC realization of
transfer functions that have all their transmission zeros on the imaginary
(jw) axis. The method leads to a realization using biquadratic blocks in a
multiple-feedback arrangement that is the generalization of the structure
obtained from the passive, double-terminated reactive equivalents. The
realization combines the easy independent tuning properties of the cas-
cade, with the low-sensitivity characteristics of passive ladders.

I. INTRODUCTION

In the last two decades, the question of how to realize a prescribed
rational transfer function

T(s) = = (1)

by RC active structures was the subject of more than a thousand
learned papers. The consensus at the present time seems to be as
follows:

(i) The active element to be used is an operational amplifier.
(77) Subnetworks (building blocks) realizing biquadratic transfer
functions

ny + nis 4+ nis? _ Ni(s)

Ti(s) = -
© = dst d - D)

(2)

are constructed as intermediate steps.
(727) Finally, the overall transfer function is realized as a cascade
connection of these leading to:

T(s) = ﬁ Ti(s).

i=1

527
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Our objective in this paper is to challenge step (7%7) above and in-
troduce an alternative synthesis method valid for a large class of
transfer functions. This is done by adding one or more feedback loops
to the cascade configuration. The effect of this will be that, while the
transmission zeros of the overall system will remain the concatena-
tion of those of the individual biquadratic blocks, this will not be
true for the poles any more.

We will assume (z) and (#7) to be correct without, however, worrying
about the details of the specific configuration to be used in step ()
above; that is to say, our most elementary building blocks will be
“black boxes’ realizing transfer functions of the form given by (2).
Next we select a particular structure for our investigation and motivate
this selection on the basis of prior work. This is followed by the de-
velopment of a synthesis method for the selected structure that
simultaneously proves the generality of it.

Finally we will illustrate the method and demonstrate its advantages
by an example.

To circumseribe the class of problems that we will consider, note
that T'(s) in eq. (1) is a real, rational function of the complex fre-
quency variable s, and therefore both D(s) and N (s) are real poly-
nomials with the further restrictions:

(1) D(s) is a strict Hurwitz polynomial, i.e., its zeros are in the
open left half of the s plane,
(i7) the degree of N (s) is not greater than that of D(s), in notation:

8N =< éD.
We will need the additional restriction:

(727) all the zeros of N(s) are on the imaginary (jw) axis of the
s-plane. As a consequence, N (s) is either pure even or pure odd.

This restriction, while quite serious, still leaves a very large group
of useful funetions to be considered, especially if the reader notes that
the same restriction applies to functions realized by passive lossless
ladders devoid of (magnetic) coupling.

The reason we are searching for new configurations can be traced
back to a paper by Orchard,! where he has shown by a very simple
physical argument that double-terminated lossless passive structures
have very low sensitivity to changes in component values inside the
passband where the loss is near zero. Furthermore, it is also known
that ladders are good for maintaining high out-of-band suppression.
While Orchard’s argument is not completely valid for voltage transfer
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Fig. 1—Passive ladder.

functions, and therefore cannot be transferred to active realizations,
improved performance has been obtained by simulating passive
ladders by active structures.

The first results of this kind were those of Girling and Good? and
Adams.? Girling and Good recognized that, say, a ladder low-pass filter
of the form shown in Fig. 1 is described by the equations (also see
Ref. 4):

1
Li=——— (Vi — Vi),
Y Bt L 2
1
V2=“C',';;(11“Ia): (3)
Iy = —— (Vo = Vo)
3—_L_8_S 2 out/,
and
Vout = ! I
out C4S+G4 3

and, as such, are also the describing equations for the active RC-struc-
ture of Fig. 2. When it came to more complex filters, the structures
advocated by Girling and Good become considerably more complex
with nonconstant feedback and other undesirable features.

Adams,® working independently, went one step further and realized
that the standard low-pass-to-bandpass transformation applied to
both Figs. 1 and 2 would result in the very convenient realization

-1 -1

1 ) 1 1 I3 1
R, + LS PRI * (3 C,5+G,

Vout

-1

Fig. 2—Simulated passive ladder.
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-1 -1

Vin Vour

-1

Fig. 3—Multiple feedback bandpass.

of Fig. 3 for bandpass filters. Note that all blocks have biquadratic
transfer functions T';, and further note that T, and 7T',. (the first and
last ones) have poles of finite @, but all intermediate blocks have poles
on the imaginary axis of the s-plane. These blocks are therefore,
strictly speaking, unstable standing alone, but the overall structure
is still stable. This becomes less of a surprise if we note that ideal
reactive elements (L’s and (’s) used in passive synthesis are also,
strictly speaking, unstable. The only difference is that natural dis-
sipation will always push passive elements toward the stable side of
the s-plane while marginally stable active building blocks may hover
over either side of the jw axis.

Adams’ numerical results were sufficiently encouraging, showing
substantial reduction in sensitivities to start him and others on the
road searching for similar realizations for more general filter functions.

There are many ways to handle this problem, brute-force numerical
matehing, flowgraph manipulation, and matrix operations on the
state-variable equations being some of them.? All of these were used
by researchers at one time or another, with mixed results. They were
unable to explain the origin and uses of multiple solutions; or if they
were able to, they led to nonminimal realizations or realizations with
much more complex feedback and feedforward paths.®

Fig. 4—Passive bandpass filter.
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This author also joined in the search and, to his delight, found a
group of bandpass functions where the approach of I'igs. 1 and 2 was
still working. Consider the passive bandpass filter shown in Fig. 4,
which is a so-called minimal-induetance realization of an even degree,
antimetrical filter. This network is described by the equations:

Il = Yl(Vin - VE)
Vy=Zy(I, — Iy)

4)
I:l = YE(VE - Vuut)
Vnut = Z-;Is
or, with a slight modification :
I Y
— = —(Via — V)
S 8§
I I
Vz = SZQ (—]— — —3)
S S (43)
I Y;
- = (V2 - Vnut.)
8 8§
I
Vout = SZ.;“*
8§

and this is identical to the equations describing the structure of Fig. 3,
if we identify:
Y, Y,
Ty=— Ty = —;

7

8 8 (5)
Tz = 322; T4 = SZ4.

Note that all T; are again biquadratic, T, and T's have poles inside
the left-half s-plane, while the poles of T> and T; are on the imaginary
axis.

This led us to expect the general structure of the form of Fig. 3
to be in some ways canonical. Note that the restriction of all feedback
coefficients to —1 does not restrict generality. For instance, the center
loop feedback coefficient may be changed to —F if we simultaneously
multiply T, by k and divide T by k, with no change in the overall
transfer function. This procedure, in fact, can be used to adjust
voltage levels inside the filter to optimize dynamic range at a later
stage in the design process.
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II. SYNTHESIS PROCEDURE

Consider now the general structure shown in Fig. 5 with the following
assumptions :

(i) All T; transfer functions are real, biquadratic functions of s.
If the overall degree is odd, T or T, will become bilinear.
(#7) All internal block transfer functions

T?J T3; ) Tm—l

are even functions of s, i.e., all their singularities are located
symmetrically either on the imaginary or the real axes.

(797) The poles of T; and T,. are inside the left-half s-plane, and
their numerators are either even or odd.

The synthesis problem can now be formulated as follows. Given a
suitably restricted overall rational transfer function of the form of
eq. (1), find the biquadratic transfer functions

N;‘ S
T:’(S) = D.‘ES; t=12, ., m (6)
satisfying () through (i) above, such that these in the structure of
Fig. 5 realize T'(s).

The outline of the proposed solution of this problem is as follows.
First we recognize that our structure is equivalent to a (reciprocal)
ladder network, if we restrict all the feedback coefficients to be —1.
This restriction will be removed later in Appendix B. The synthesis
problem can therefore be solved if we somehow derive a complete
(impedance, admittance, or any other) set of parameters for this
ladder. Once a set of parameters is obtained, the actual synthesis can
follow along lines very similar to the well-known passive filter synthe-
sis method.

Let us use our ladder <+ multiple-feedback analogy backwards now
and construct the ladder network of Fig. 6a (assuming that m is even),

Vourt

Fig. 5—General multiple-feedback structure.
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o a o
Yi=T Y3-T3 Yo = Tma

(a)

Iout

(b)

Fig. 6—(a) Equivalent pseudo-ladder for m = even. (b) Equivalent pseudo-ladder
for m = odd.

where the branches need not be realizable passive immittances. How-
ever, the voltage transfer functions of the two structures are clearly
identical and must be equal to T = N(s)/D(s). Note first that
obviously :

N(s) = II Ni(s). (M)
i=1
The Z and ¥ matrices of our pseudo-ladder must be of the forms:
1 D N
Z = [ ] (8a)
NP LN N\N.R

1 [N.N.R —N
Y = [ ] (8b)

N.QL —N D

where P, Q and R are three unknown polynomials. These follow from
Fig. 6a and the assumptions (¢) through (i%7) above. Considering
degrees and parities of the polynomials in question, we see that, as-
suming N, and N, to both be even:

8D = 2m 8P =2(m — 1)
SN = 2m and pure even 8Q = 2(m — 1) (9)
8R = 2(m — 2) and pure even
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where 86X, as before, denotes the degree of the polynomial X. That R (s)
must be even follows from the fact that, with a short-circuited output

12 _ Y21 N _ Kr
I, Va=0 Yn N.N.BE R

and since this parameter is independent of both ¥, and Z,, it must
be pure even. Here we used the notation:

N = ’EN.-. (10)

Since ZY = 1, the 2 X 2 unit matrix, we get the determinantal

relationship first: i
DR — N\N.N* = PQ. (11)

Note that N; and N, must be known at this stage. The significance
of this is explored further in Appendix B.

In order to proceed further, we must consider the actual synthesis
procedure. Consider, for instance, the parameter

N.R
Q
We can get Y, by extracting the partial fraction

a1 + Bi1s
N,

Y =

plus a constant from 1/y, such that the remainder has a factor
N, in its numerator. More importantly, the remainder must be a pure
even function of s, since it is now independent of both ¥; and Z,..

Separating Q(s) into even and odd parts and performing the opera-
tions outlined, we see that € (s) must be of the form:

ky
Qs) = A(s) + ;sR(S) (12)

where 64 = 2(m — 1) and pure even, and k; = 28, is a constant. A
similar argument applied to z;, shows that P(s) must be of the form:

P(s) = B(s) + %sR(s) (13)

where 6B = 2(m — 1) and pure even, and k, is a constant. Let us
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now separate D(s) into even E:(s) and odd sE,(s) parts:
D(s) = sE,(s) + E.(s). (14)

Substitute (12) through (14) into the determinantal equation (11) and
separate even and odd parts:

2F = knA +k:B (15)
. k2
B — NiNoN* = AB + - s°R? (16)

where we introduced kik,. = k>
Considering eq. (16) a quadratic in the unknown polynomial R (s),
this will have a polynomial solution if and only if the discriminant:

Ej — k%*AB + N.N.N?) £ G2 (17)
is a full square for some even polynomial (. In such a case, the solu-
tion is given by :

2
B — (K. £ @)

k252

and, in order to get a polynomial, we must select the negative sign,
since from (17) we see that the constant terms of E, and G will be
identical and hence eancel from the difference:

2(E: — @
R = 2B — @) (18)
k282
Let us next express, say, B from eq. (15) and substitute it into (17) :
E3 — k2N \NulN? — 2kns?EiAd + k% s?A2 = G2 (19)

This is again a quadratic in A, having a polynomial solution if and
only if ; )
s?E} — E} + k*s?N /N .N? + G* = s*H? (20)

for some even polynomial H. Note that, by eq. (17), the left side of
(20) must have a double zero at s = 0; hence the factor s? on the right.
The solution to eq. (19) is then of the form:

E,+ H
A= (21)
km
and consequently :
E,.+H
B = - (22)

k1
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Now we have exchanged our three unknown polynomials R, 4, and B
for two new ones, (¢ and H, both even and

8G = 2m

8H = 2(m — 1).
Let us however write eq. (20) in the form:

(B3 — s2E}) — k%N, N,.N? = (G2 — s2H?). (23)
Now introduce the notation:
F(s) = G(s) + sH(s)

and use (14) to write eq. (23) in the form:

D(s)D(—s) — k*s*N,N,,N? = F(s)F(—5s) (24)

which is our design equation. Once we pick N, and N, the left side is
known save for the constant k2, which can be selected arbitrarily as
long as the left side does not have pure imaginary roots of odd mul-
tiplicity. This condition is clearly satisfied for k* = 0 and hence, by
continuity, there must be a finite range

2 2

0 k é kmax

IIA

for which it is satisfied.
Our synthesis process is now straightforward and is as follows:

() Select Nyand N,,.
(73) Select %k? arbitrarily but such that

D(s)D(—s) — k*s*N N, N?

has no imaginary roots of odd multiplicity and factor this
polynomial into
F(s)F(—s).

Note that F (s) need not be a Hurwitz polynomial.
(777) Generate G and H from:

F(s) = G(s) + sH(s)
and E; and E, from:
D(s) = Es(s) + sEi(s)

where E;, E,, G and H are all even polynomials.
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Form A, B and R from eqs. (21), (22) and (18) respectively
and P and @ from eqgs. (13) and (12), giving:

o (Br= Q) +s(BFH) D) — F(k9)

(25)
kls kls
and (Es — G) + s(Ex &= H) D(s) — F(Fs)
9 — S s) — S
Q= ' - - (26)
kms ks

Select the sequence of the remaining numerators N;(s), 1 = 2,
3, -+, m — 1 and synthesize the network by a technique very
similar to the standard “zero shifting” technique’ used in
passive reactive ladder network synthesis. The difference is
merely that here we deal with even rather than odd rational
fractions.

Clearly, this process has several problems.

(a)

(b)

(e)

The above is only one of many cases depending on the parity
of m, the parity of D, N,, and N,. All these cases have been
analyzed, and the general design equations are summarized in
Appendix A.

No guarantee is available that the resulting T'.(s) functions
will have all positive coefficients. This is similar to the passive
ladder form of realization, where all positive element values
cannot, in general, be guaranteed either. However, positive
coefficients for 7T':(s) are not necessary for realization. See
Appendix D for further comments on this matter.

We must make the morc-or-less arbitrary choices in steps (2)
and (¥7) above. Our first concern is to minimize overall sen-
sitivity. We will consider this problem in Appendix B after we
have discussed the calculation of the sensitivity.

III. CALCULATION OF T; TRANSFER FUNCTIONS

Step (v) above concerns the final step, that is, the calculation of the
coefficients of the individual 7'; transfer functions. The method is a
slightly modified version of the reactive ladder synthesis, but for
completeness we describe it here in some detail.

First we note that we must select an arbitrary (positive) constant
ky and then k, is determined from k;k, = k% This constant is im-
material, since we may later multiply all odd indexed T'; by a constant
and divide all even indexed T'; by the same constant. This procedure
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will leave the overall transfer function unchanged if there are an even
number of 7'; blocks, or will multiply it by the same constant if there
are an odd number of blocks in the network.

For computational simplicity, let us start by using y1,, which in the
case of the network shown in Fig. 6a does not depend on Z,, hence
will only suffice for the caleulation of Ty, T, - - -, T'm_1. The last block
will therefore have to be calculated from another function, say, zs..
From eqs. (8b), (18) and (26) we get:

N.R 2N(E: — @)

= : 27
Q  kus[D(s) — F(=£s)] ¢0

Yu =

Inverting this, we immediately recognize that it can be written in
the form:

1 kls[Ez + SE1 — G + SH] _ ]C1S k]_ 82(E1 =+ H)
Y1 2N1(E2 - G) 2N, 2 N1(E2 — G)
Both of these terms are known and the second is pure even; hence

from this point on (that is, nearly from the beginning) we are dealing
with pure even functions simplifying the work considerably. Denoting

ky s*(E:1 & H)
2 Ny(E: - @)
we first note that this still has a pole pair at s = = jwi, the zero of

N, because of the factor N, in its denominator. We remove this by
calculating:

(28)

(@)
(29)

(Z'L) 21

_ k1 32(E1 =+ H)

= Nz, _ 30
(#12) ay 1271 e, 2 E,—G ead (30)
and calculate:

ai
29 = Zr1 — I\Tl (31)

that will not have the factor N, in its denominator any more. Next we
select the transmission zero = jw, for the next block and calculate:

(iv) B = zr2|:’=—«r; (32)

which leaves a remainder:
2y3 = Zr2 — Bl (33)

that will have the factor N, in its numerator. At this stage we com-
pleted a full eycle and calculate the transfer function of the first block
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as.:
ks
-— 38
) 1 2 +a1+‘8 D, (34)
y —_— = — —— = —
T N, N:. = N

and have a remainder z,; that is two degrees lower. We may invert
this now and go back to step (¢7) (with an admittance function this
time) and repeat this loop as many times as required. Equation (34),
of course, will contain only the «;/N; and g8; terms giving us the re-
quired even 7'; transfer functions except when ¢z = 1.

Finally, to obtain the last block as well as to check on the ac-
curacy of computations, we repeat the same process from the output
end using z;.. The resulting two structures should be identical save
for a constant multiplier, that is to say, denoting the T transfer
functions obtained from z.. by 7%, to distinguish them from those (7';)
obtained from y;,, we must have:

I Ty
Ty, = CT,
T 1T
3 = 6 3
T, = CT, /(35)
Ty = L7
C
cTn 1

T, and T, have no pairs since y1; and 2. are independent of 7', and
T, respectively. The degree to which this set of equations is satisfied
with a constant C' is the numerical accuracy maintained throughout the
computation. The procedure varies slightly when N (s) is odd and/or
the degree of D(s) is odd, but only in calculating the first (and last)
block. These variations are self-evident and hence will not be dealt
with here.

Clearly, the internal sequence of zeros (those excluding N, and N )
is arbitrary at this stage.

Finally, one may note that to ease the numerical accuracy problem,
the commonly used transform variable®® or the product method!® may
also be used.
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IV. EXAMPLE

Many numerical examples have been calculated by the afore-
mentioned method ; here we will illustrate it with one. The example is
a bandpass filter with passband from ws = 0.8 to wp = 1.25 with a
0.5 dB passband ripple. The filter contains four pairs of transmission

zeros at:
Z12 = + j0.25

Zs,s = %+ 70.50
Zse = £ j2.0
Z75 = =+ j4.0.
The corresponding transfer funection poles are at:
P,. = — 0.028950107 + 70.79624226
P3 s = — 0.087386703 & ;0.90192127
Ps.s = — 0.10642659 £+ 71.0984326

P15 = — 0.045602221 £ j1.2542411.

Following our procedure, the resulting structure contains four bi-
quadratic blocks with transfer functions of the form of eq. (2); the
coefficients are tabulated in Table I.

For the synthesis, we have selected (see Appendix B):

N, = (s¢ + (0.25)%)
Nm=Ns= (4 (4.)%

Il

and
k2 = 3.3 X 10-¢

which is slightly below kZ,,. Next, we selected k; = k and kn = k
and performed the synthesis in both directions. These had a ratio

C = 8.00488 X 108

that was constant to the indicated six decimal digits through all the
coefficients. Rescaling the coefficients by VC (that is to say, selecting
ky = k/VC and k, = VCk) resulted in identical values up to six
decimal digits in the two syntheses, and these are the values tabulated
in Table I. The computed performance of this structure is shown in
Fig. 7. All computations were done in double precision arithmetic
(= 16 decimal digits), and the indication is that, for higher order cases,
either the transformed variable method" or, preferably, the product
method" will have to be used to avoid numerical accuracy problems.
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TABLE I—F1nAL COEFFICIENTS OF EXAMPLE

541

1 1 2 3 4
o 0.0625 4.0 0.25 16.0
n1 0 0 0 0
na 1.0 1.0 1.0 1.0
do 7.98786 3.08873 9.31590 11.3657
dy 2.56983 0 0 2.56983
ds 7.74668 3.02573 9.50989 11.6790

4.1 Practical Results

The filter, scaled to 1-kHz center frequency, was constructed in the
laboratory, using the three-operational amplifier biquad realization?
for the second-order building blocks. The total structure (see Fig. 8)
needed two additional phase inverters to get the correct signs for the
feedback loops. The component values are shown in Table II. The
measured loss (save for a 3-dB flat difference) is also shown on Fig. 7.
The agreement is the kind or better than the kind one usually expects
in a passive realization, with no tuning.

80
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- %60 0 o o
- &
] | |

L] 0.5 1.0 15 20 25

FREQUENCY IN kHz
Fig. 7—Computed performance of the filter of example.
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Fig. 8—(a) Basic second-order block. (b) Complete filter.
TABLE II—ELEMENT VALUES oF THE REALIZATION OF Fig. 9
Sections
1 4
R1 48.1 ko —_ —_ 14.5 k@
R2 154 kQ 15.8 k@ 6.42 kQ 3.29 kQ
R3 16.7 kQ 15.8 k@ 6.42 kQ 3.16 kQ
R4 392, k@ — — 169. kQ
RS 1.97 MQ 12.1 kQ 237. kQ 2,34 kQ
R6 77.7 kQ 6.04 kQ 953 kQ 17.2 kQ
R7 9.53 ko 2. ko 10. kQ 1.47 kQ
R8 10. k@ 2. ko 10. kQ 1.47 kQ
C1 0.01 uF 0.01 pF 0.025 uF 0.05 uF
C2 0.01 xF 0.01 xF 0.025 uF 0.05 uF
RHA — 12.1 ko — —
R6A — 6.04 kQ — —
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V. SENSITIVITY

There are many ways to analyze the sensitivity of different realiza-
tions, and the final component sensitivities will clearly depend on the
particular realization used for the individual biquadratic blocks. In
order to avoid this last step and provide some meaningful insight into
the sensitivity properties of the multiple-feedback structure, we will
compare it with a straightforward cascade realization.

If several biquadratic sections with transfer functions T';(s) are
connected in cascade, the overall function is given by:

T(s) = II Ti(s) (36)
i=1
and consequently the sensitivities are simple:
§ho= Ty foralld (37)
=== or all 7.
T aT,

Clearly in our multiple-feedback structure, the situation is somewhat
more complex. However, by the use of continuants,’ we can derive
closed-form expressions.

A continuant K,(Xy, -+, Xn_s, X._1, X.) is defined by the re-
cursion formula:

Kn(-Xl, Ty Xn—z; -Xn—l; Xn) = Xnanl(XI, Yy Xn—2, Xﬂ—l)
+ Kaa(Xy, -+0, Xua)  (38)
and the two starting values:

Kn() =1
Kl(Xl) = Xl.

With these definitions, the overall transfer function of the multiple-
feedback structure (with all feedback coefficients equal to —1) is

given by:
1 1 1 1
_=Km _;_)"'J-—)' (40)
T T, T, Tm

Differentiating and rearranging, using some of the properties of
continuants, we get the following expression for the sensitivity:

T T: oT T oK, 1
T'_TaT.-_T,-a(l)_l—l-X

(39)

(41)

T:
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where
X (1 1 + 1 1 )
Y R —
T, Tiohn Tin Tn
X=T; - (42)
1 1 1 1
Kisl—, ,— ) Knil—, -+, —
TI Ti—l Tl'-l-l Tm

From this expression, we see that near a transmission zero, where
T: = 0, the sensitivity is about unity, that is, it is the same as for the
cascade case. However, wherever T'; 3> 1, which will occur somewhere
in the passband, the corresponding sensitivity becomes very small.
No other feature is obvious from this equation, hence a specific case
will be used to illustrate the numbers involved.

One additional problem arises in the case of the multiple-feedback
structure, namely, the feedback coefficients can also vary from their
nominal (—1) value. This can be taken into account by substituting
a change

— 15 -1+

in the kth feedback path by the changes:

Tk+2t'+1 — (1 + E)Tk+2,;+1 1, = 0, 1, ‘s
and
Throi— (1 + €7 Thyas i=1,2, .

This way we do not need to develop additional formulas for the sen-
sitivities of the feedback coefficients.

The resulting sensitivity, neglecting the possible multiplier on the
overall transfer function, can therefore be derived as follows: A
change AF./F, in the kth feedback coefficient has the same effect,
AT, on the overall transfer function as the changes:

AT}:+£ | AF, .
= (—1)+t 1=1,2,---,m—k. (43)
Tk+{ Fk
In other words:
ar =5 O ap =Y (e ST AT gy
im1 0T kps e i=1 ki e Fy
or
m—k .
A_T = E& ¥ (—1)#t Tiys 0T
T Fr o T 0Ty
AF) mk i1
=—— % (-178E (45)

Fﬂ‘- i=]
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and finally: .
To= L (=17 SE . (46)
i=1

Consequently, the sensitivity to a feedback coefficient can be easily
calculated in terms of the already calculated sensitivities to the second-
order block transfer functions.

In order to simplify the problem of comparing the multiple-feedback
structure with, say, the cascade realization, we have adopted the
following procedure.

We calculated the sensitivities of the overall transfer function T
with respect to all the coefficients ¢; of the individual biquadratic
blocks Tk This was done for both the cascade and the leapfrog-
feedback cases, and in the latter the parameters ¢; also included the
feedback coefficients.

Next we calculated the quantity :

2

o =3 (Re ST (47)

as a function of frequency. This quantity would give a measure of the
spread of the loss if all coefficients are assumed to be statistically in-
dependent variables with the same standard deviation.

Finally, the quantity

2
gc

R = 10log (48)

2
MF

is calculated where the subscript MF indicates multiple-feedback,
while the subsecript C refers to the cascade configuration. R is there-
fore a measure of the improvement of the sensitivity of the multiple-
feedback structure over that of the cascade realization.

This quantity R is plotted as a function of frequency for the ex-
ample of Section IV above and is shown in Fig. 9. The curve is ex-
tremely interesting, and it shows a slight deterioration in this measure
of sensitivity in the stop-band, but a spectacular improvement in the
passband. The worsening in the stop-bands is minor, but the pass-
band improvement is substantially more than an order of magnitude.
This behavior is very desirable since a 1-dB spread in the stop-band
is almost always immaterial, while the same spread in the passband
loss can be disastrous.

In order to provide another comparison, a Monte Carlo yield study
was made of this filter under the following assumptions.
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0 0.26 0.50 0.756 1.00 1.256 1.50 1.76 2.00

FREQUENCY IN kHz

Fig. 9—Sensitivity improvement.

(2) Passband is acceptable if loss varies less than 1 dB from 800 Hz

to 1250 Hz.
(7%) Stop-band is acceptable if loss is at least 60 dB from 0 to 500

Hz and from 1310 Hz up.
(777) The operational amplifiers are close to ideal.
(fv) All passive components have the same tolerance with a flat

distribution.
The resulting yields are tabulated in Table III for various tolerances.

For comparison, the same calculations were performed for a cascade
realization of the same filter, under the same assumptions. The results

speak for themselves.

TaBLE III—COMPARISON OF YIELDS OF EXAMPLE
AND EQUIVALENT CASCADE

Yield ¢,

Tolerance MF Filter Cascade
1.009%, 44 _—
0.50%, 78.5 25
0.25%, 100 67.5




MULTIPLE-FEEDBACK ACTIVE FILTERS 547

Clearly, one cannot draw conclusions on the basis of a single ex-
ample, but a general proof of the low sensitivity of the multi-feedback
structure is lacking. Note also that no attempt has been made in the
design of this example to minimize sensitivity apart from the crude
heuristic arguments indicated in Appendix B.

VI. CONCLUSIONS

We have demonstrated that the multiple-feedback structure of
Fig. 5 is a general one for transfer functions with pure imaginary
zeros, and we developed a general synthesis procedure for this struc-
ture. The advantages of this realization are the low-sensitivity prop-
erties of passive ladders combined with the individually tunable
transmission zeros of the cascade structure. The resulting configura-
tion is minimal (no pole-zero cancellation occurs) and hence also
stable.

The low-sensitivity properties of the realization have only been
demonstrated through examples; a general proof of it is still to be
found. I'urthermore, apart from some heuristic arguments, no general
guidelines are available for selecting the one continuously variable
free parameter or to help us at the two additional places where dis-
crete choices are to be made.

Apart from, conceivably, further optimizing the sensitivity prop-
erties of the structure, one could also use these choices, as well as
additional sealing of the individual biquadratic transfer functions and
the feedback coefficients, to optimize the dynamic range of the filter.
All of these questions merit further investigations.
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APPENDIX A
Summary of General Results

The results given in Section II of this paper were derived for a
special case. The general results are as follows:
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N(s)

T®) = b

where the degree of D is n, and denoting:

n+1
m = |: 5 :| (number of blocks)
i.e., the integer part of 1/2(n 4 1) and
m—1
N(s) = X Ni(s)
=2

N(s) = N1(s)Nm(s)N(s)

(49)

(50)

where all N;(s) are, at most, second order, and N,(s) and N.(s) are
either even or odd, while the others are strictly even. Now we define:

Nim(s) if N1.m i8 even

— 2
Vim(s) =1 _ (1 + s_) if Ni,m 18 odd.
w?.
1,m
The defining equation for
F(s) = G(s) + sH(s)

is:

D()D(—s) — (=1)"kV () Vm(s) V2 (s) = F(s)F (—s)

The resulting pseudo-ladder is of the form shown in Fig. 6a if “

even, while if “m” is odd, it is as Fig. 6b, where:
Ni(s)

T =59

t=12 ---,m
The Z and ¥ matrices of these networks are of the form:

. 1[9 N}
" N.PLN  NN.R

Y = —
NmQ "'N D

(51)

(52)

(53)

m’’ is

(54)

(55)
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for “m’’ even and

1 [N.@ N
B N1N,,.R1: N NlP] (56)
y = = [N‘P 'N:‘ (57)
DL-N N.Q

where ‘“m’" is odd. In these equations, the still undefined quantities
are the polynomial B = R(s) that is always pure even, and the poly-
nomials P = P(s) and Q(s) that are given by

P(s)} B D(s) &+ F(xs)

N, 58
Q) () (58)

k13W1(S) m
and "o
R(s) =

|2N1(s)N,,.(s)|:D(s) + F(s)] (59)

k252 W 1 (s) W m(s)
where Evf } means the even part of { |},
Ni,m(s) if N1,m(s) is even

_ 2
Wim(s) = (1 + z_) if Ny,m(s) is odd ©0
w

1,m

and
kikn, =

Here as well as above in the definition of Vi .(s) the factors:

w
1,m

82
(1 + 2—) = Ev Dl,,,.(s).

Hence, they are unknown initially. Note also that if n is odd then one
of the Dy and D, is only linear in s, i.e., the corresponding «} or w2, — 0,

For that case where w; and/or w., are present, an iterative procedure
must be employed, since these factors must be such that P(s), Q(s)
and R (s) are all polynomials of the correct degree.

This condition is satisfied if (1 + s*/w?}) and (1 + s2/w?) are factors
of (E, + H) and (E, — H) respectively, and thus can be obtained
iteratively as follows. One picks the factors (1 + $2/w?) and (1 + §2/wk)
arbitrarily, but their zeros should be in or near the passband. Then
one performs the factorization of the polynomial F(s) and calculates
the zeros of both (E, + H) and (E, — H). At this stage, we can re-
place our arbitrary factors by the nearest factors of (£, + H) and
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(E. — H), selecting one factor from each. A repetition of this process,
or a modification of it, will converge to the desired solution.

If there is only one unknown factor involved, the iteration is some-
what simpler and any of the factors of (E, &= H) can be used. One
must further show that, once this iteration converged, one can always
select sign combinations in the expressions for P(s), @(s) and RE(s)
such that the resulting expressions reduce to simple polynomials of
the correct degrees. This can be shown directly in the limiting case
k? = 0 (when, of course, no iteration is needed), and the existence of a
solution for a (finite) range of nonzero k* > 0 values can then be
inferred from continuity again. In order to keep the length of this
paper within bounds, the details of this step are left for the reader.
Finally, note that not all sign combinations shown in egs. (58) and
(59) are allowed, but at least one will always work.

APPENDIX B
Selection of the Parameter k* as Well as the End Factors N, and N,

In Sections II and III we pointed out a number of arbitrary choices
the designer must make. The following comments may help in some
of these decisions.

In order that eq. (53) be factorable in the form of F(s)F(—s), with
F(s) a real polynomial, it is necessary and sufficient that the left side
have no imaginary root of odd multiplicity. Since this is clearly true
for the case k* = 0 and since the roots will be continuous functions of
k2, the condition will be satisfied for a range of values

0 <k’ < ke

The upper limit k2. can be calculated as follows: Since D(s) cannot
have a pure imaginary root, F (s)F (—s) will have no imaginary root of
any multiplicity as long as

F(s)F(—s) 1 [(— 1)"s2V1(s) Vam(s) N*(s)
D(s)D(—8) ls=ju D(s)D(—s)

or as long as

o [(= D)™tV 3(8) Vn(5) WE(s)
k [ D(s)D(—s) :I..:j.., <1

and therefore this condition will be satisfied as long as
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LN

w

In the limiting case k* = k2., there will be at least one s = jw value
where F(s)F(—s) will be zero, but all of these will necessarily be of
even multiplicity. Moreover, since this limiting case in passive filters
corresponds to the maximum power transfer from source to load, we
conjecture that it will also be optimum in our active case in the sense
of providing us with the least sensitive results.

Going one step further, we note that in the passive case all the pure
imaginary zeros of F(s) fall inside the passband. In order to achieve
this in the active case, as well as to make as many zeros of F(s) ap-
proach the imaginary axis as close as possible, the factors V,(s) and
V w(8) should be selected such that

(—1)ms2V(s) Viml(s)
Ni(s)N1(—8)N () N(—8) lsmju

(63)

is as close to a positive constant in the passband as possible. For
instance, if N, and N, are both even and ‘“m” is also even, this can be
achieved by selecting N,(s) to be the lowest transmission zero below
the passband and N,.(s) to be the highest transmission zero above.
The reason for the above requirement is simply the fact that in the
passband

N(s)N(—s)

DED(—8)|omso (64)

will usually be close to a positive constant, and therefore the product
of (63) and (64) will also have this property, leading to an F(s)F(—s)
that is “small” inside the filter passband.

Finally, we come to the question of separating F(s) out of
F(s)F(—s). Since F(s) need not be a Hurwitz polynomial and since
only a few, if any, of the zeros of F(s)F(—s) will be purely imaginary
(and of even multiplicity), we will have a finite number of possibilities
to choose from. At this time we have no guideline to offer, we simply
note that in many cases we had to select roots with alternating real
parts in order to reduce the size of the coefficients of F(s), as this pro-
cedure seemed to be necessary to insure the positiveness of the final
coefficient values.

Clearly, the selection of F(s) will affect the final network sensitivity
properties, but further study is needed to clarify the role F(s) plays
in influencing the sensitivity.
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APPENDIX C
Modifying the Feedback Coefficients

As mentioned in Section I of this paper, the restriction of all feed-
back coefficients to — 1 does not restrict the generality of our structure
and can be modified to scale the individual T(s) blocks. Such a
scaling is necessary to obtain the maximum overall dynamie range for
the structure and can be performed simply as follows.

The T, transfer function can be multiplied by a constant a if all
subsequent transfer functions are modified as

Tk_;.z,' —"t!.l.-Tk+2i 1‘
K

=1,2, -
Titoici = — Thqrina
ay

Depending on the number of blocks following 7T, this will either
leave the overall transfer function unchanged, or will multiply it by
ar. Also, the —1 in the (kK — 1)th feedback loop must be replaced by
—1/a;. This procedure works for all blocks. In the case of the first
block, an alternative is to multiply 7', by a constant «,, multiply the
second feedback loop coefficient and divide T's by the same a; constant.
This way one can scale each and every one of the T transfer functions
without any effect on the overall transfer function save for a constant
multiplier.

For the purpose of adjusting the dynamic range of the individual
blocks, one must be able to calculate the input and output voltage
levels of each block. In the case of all —1 feedback coefficients, this
can be easily done by recognizing that these voltages are numerically
equal to the branch ‘“voltages’” and “currents’” of our pseudo-ladders
of I'igs. 6a or b. As such, these can be readily computed by the use of
continuants again or by any other convenient way.

APPENDIX D
Comments on the Positiveness of the Coefficients

Consider now the realizability of the multiple-feedback structure.
The synthesis technique given above guarantees the existence of a set
of T biquadratic transfer functions with the specified properties for
any 0 < k? £ k2., and arbitrarily specified zero sequence. However,
some of the coefficients may turn out to be negative. In such a case,
it is preferable that one or more of the T blocks have an overall
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Fig. 10—Passive bandpass ladder filter.

negative sign rather than blocks having coefficients of mixed signs.
We have so far been able to achieve this in all of the many examples
calculated, but we had to put up with negative T blocks in certain
cases. In particular, nonbandpass filters are likely to have negative
blocks in their realization.

However, this is not a shortcoming of the method, since it appears
even if the structure was derived from a passive double-terminated
ladder with all positive elements. The sensitivity improvement is still
realized and no instability will be generated, since our structure is
minimal. Consequently, there are no pole-zero cancellations and, since
the overall system poles are the zeros of D(s), the system will be
stable if the original requirements called for a stable transfer function.

As an example, consider the passive bandpass filter of Fig. 10. To be
specific, let us select a passband from 660 Hz to 980 Hz with 0.25-dB
loss ripple and transmission zeros at

Z1i2=10
Z34 =
Zsg = =+ j1280 Hz
Zqg =®.

The resulting poles normalized to the geometric center frequency are

TasLE [IV—ELEMENT VALUEs oF CirculT IN Fig. 10

EI =10 6378 C: = 5.46300

1 = 0.2563 _ QEc
Cy = 371840 Li = 0.173352
L, = 0.981823 C; = 72.1868
C. = 0.402048 Le = 0.0129235

C} = 0.556146 Rs = 0.00327825
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TasLe V—COEFFICIENTS OF A MULTIPLE-FEEDBACK REALIZATION
oF THE PassIvE FILTER SHOWN IN FI1g. 10

1 2 3 4
no — 1.0 —1.0 0.413433
n — — — —
n; 0.256378 0.394775 — —
do 1.0 1.98114 5.87644 1.0
dy 0.256378 — — 0.236646
da 0.953318 1.76393 5.17359 0.932908

located at
Py, = — 0.041320302 & ;0.81446903

P, = — 0.096338325 + 70.94746237
Pss = — 0.085145570 + 751.1203830
Pq3 = — 0.030860810 =+ ;1.2239735.

This filter can be realized as shown in Fig. 10 with element values
(normalized to 1-ohm input impedance level and 1 rad/s center fre-
quency) given in Table IV.

20

| o

| ] | | |l
0 0.5 1.0 15 2.0 25 3.0

f/ty

Fig. 11—Sensitivity improvement.
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One can derive an active multiple-feedback equivalent of the form
of Fig. 3 for this structure by writing down the branch equations as
we have done in Section I, and then eliminate the variables V; and V5
from them.

The resulting (normalized) coefficients are given in Table V and the
most noteworthy result is that the third block has a negative sign as-
sociated with it. On the basis of Appendix C, this is equivalent to
having a +1 (positive) feedback coefficient in the second and third
loops.

Our synthesis technique was then used to generate other (equiva-
lent) realizations, but we have failed to find one with all positive
coefficients. Nevertheless, the realization shown above is quite satis-
factory; the sensitivity improvement compared to the cascade reali-
zation is shown in Fig. 11.

Under what conditions are we to accept one or more negative blocks
in the realization is a question that remains to be answered.
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