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Statistical Behavior of Rain Attenuation®*

By S. H. LIN
(Manusecript received October 25, 1972)

Thirty-one sets of experimental data on the statistics of microwave rain
attenuation at frequencies above 10 GHz, in the U.S.A., England, Japan,
Ttaly, and Canada, indicate that: (7) the distribution of rain atlenuation «,
in dB, is approximately lognormal with a standard deviation o, of logig
ranging from 0.46 to 0.71 for earth-space paths, and from 0.33 lo 0.86
for terrestrial paths; (i7) the distribution of the rain fade duration 7 is also
approximately lognormal with a standard deviation o, of logio T ranging
from 0.44 to 0.76 for bolth earth-space paths and terrestrial paths. We
propose a theory to explain this general behavior. A theoretical upper
bound for the fade duration distribution in the tail region is also given.

The findings in this paper simplify the determination of rain atlenua-
lion stalistics needed for the design of earth-satellite radio links and ter-
restrial radio links.

I. INTRODUCTION

The statistics of rain attenuation are important for the design of
both terrestrial and earth-satellite radio links using frequencies above
10 GHz. Many experiments'™ have been performed to obtain data
on rain attenuation for different frequencies, path lengths, and geo-
graphical locations. This paper presents the behavior of rain attenua-
tion statistics found in our study to be common to the available ex-
perimental data.t

II. DEFINITIONS

Let
V(t) be the time-varying amplitude of the received signal
voltage normalized to its nonfaded level,
* An excerpt of this paper has been presented at the 1972 IEEE International
Conference on Communications at Philadelphia, and included in the Proceedings of
the Conference.

T These data are actual measured microwave rain attenuations and not the ap-
proximate attenuations calculated from rain rate data.
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a(t) = — 20 log;e V(t) be the time-varying rain attenuation
in dB,

P(a = A) be the expected fraction of time that a(f) exceeds any

specified value 4,
P, be the expected fraction of time that rain falls at the
location of the radio link,

P.(a = A) be the expected fraction of raining time that « ex-

ceeds A,
an be the median value of « during the raining time, i.e.,
P.la = an) = 0.5,
7(A) be the duration of rain attenuation fades with « ex-
ceeding any specified threshold 4 in dB,

P[7(4) =2 b] be the probability that the fade duration r(4) ex-

ceeds any specified duration b, and
7(A) bethe average duration.

Notice that

Pla= A) = P, Po(a = A). (1)

Thus, P, may also be called the probability of rainfall and P.(a = 4)
the conditional distribution of « under the condition that the rain is

falling.

III. SUMMARY OF RESULTS

3.1 Attenuation Distribution

(@)

(1)

The available experimental data on both earth-space paths
and terrestrial paths in the U.S.A., England, Japan, Italy, and
Canada show consistently that the conditional distribution,
P.(@ = A), is approximately lognormal within the attenua-
tion range, 1 dB < « < 50 dB, of practical interest.*

We propose a theory to explain the lognormal behavior of
attenuation «(f). In essence, the value of the rain attenuation,
a(t), at any time instant can be multiplicatively affected by a
large number of random time-varying parameters of the
environment such as the present states and the past histories
of the weather conditions at various locations all over the
world. The large number of random multiplicative components
and the central limit theorem lead to the lognormal distribu-
tion of a(t).

* This means the distribution of signal amplitude V() is approximately
log-lognormal.
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(i77) These results indicate that three parameters, P,, o. (the
standard deviation), and @, (the median), are sufficient to
determine the rain attenuation distribution P(a = A). These
parameters depend on geographic locations.

(iv) am increases almost linearly with the path length because the
median rain rate usually is small and is almost uniform over the
entire path.

(v) The dependence of a, on frequency follows the theoretical
prediction of Sezter? for small rain rate because the median
rain rate is usually small. The rain rate data in Refs. 13 and
34 to 37 indicate that the median rain rate ranges from 0.5 to
10 mm/h, depending on location.

(v]) o. decreases slightly as the path length increases because of
the averaging effect of the propagation volume.? 2

(vi7) o, decreases slightly as frequency increases.

3.2 Fade Duration Distribution

(7)) The experimental data indicate that the fade duration dis-
tributions, P[r(A) = b], are also approximately lognormal.
The physical reason for the lognormal duration is the same
as that for the lognormal attenuation.

(#7) The probability of occurrence of long fade durations has an
absolute upper bound given by

T 1 IOgloX H
P(—gX) g—erfc< ) (2)*
2 M

for any X = 1. For example, P(r/7 = 10) < 0.0161 means
that no more than 1.61 percent of the total number of fades
will have durations longer than 10- 7.

IV. EXPERIMENTAL DATA
4.1 Rain Attenuation Distribution

Thirty-one sets of experimental data on rain attenuation distribu-
tion, each with a time base of six months or longer, are summarized
in Tables I, II, and III for earth-space paths, long terrestrial paths
(> 10 km), and short terrestrial paths (< 10 km), respectively.’

* The constant M is defined in eq. (13).

t In the literature, there are many other sets of experimental data with a time
base less than six months. Those data are not included because the short-term dis-
tributions of rain attenuation are fairly random.
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60
{1) 30 GHz, NEW JERSEY

50 (2) 16 GHz, NEW JERSEY

0 (3) 19 GHz, ENGLAND

PERCENT OF RAINING TIME THATa = A

0.01 | gl ] 111 v
1 10 100
RAIN ATTENUATION A IN dB

Fig. 1—Lognormal distributions of rain attenuation on earth-space paths.

The original data are all given in terms of the unconditional dis-
tribution P(a = A). Based upon P, (either available or estimated),
we convert these unconditional distributions into the conditional dis-
tribution P.(a = A) by eq. (1). This conversion is done to exclude the
dry periods in which the rain attenuation is identically zero.*

When plotted on a lognormal coordinate system, these conditional
distributions, P.(e@ = A), are all approximately straight lines within
the attenuation range, 1 dB =« = 50 dB, of practical interest.
Figures 1 to 3 show nine examples. The equation describing the
lognormal distribution is

3)

logio A — ue
P.la = A) = 1erfe [M]

Fi

where erfe (~) denotes the complementary error function; o, is the
standard deviation of logo o during the raining time ; and

Ha = lOglo Om (4)

is the mean value of logio e during the raining time. The estimated
values of ¢, and a,, are given in Tables I, II, and III.
However, the accuracy of these estimated values of ¢, and a, is

* Absorption by the clear atmosphere is not considered in this paper.
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(1) 11 GHz, 43.5 Km, ALABAMA

701 (2) 12.62 GHz, B0 Km, JAPAN

504 (3) 15 GHz, 165.78 Km, CANADA
{4) 18 GHz, 24 Km, ENGLAND
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Fig. 2—Lognormal distributions of rain attenuation on long terrestrial paths.

limited by two problems:

() The time base of the experiment may not be sufficiently long
to yield stable statistics, and

(%) some of the published experimental data do not provide the
probability P, of rain during the experiment.*

Let
_ Hogwa(®)] — #a

Ta

(5)

B(H)

If « is lognormally distributed, then g will be normally distributed with
zero mean and unity standard deviation. This allows us to pool all
the available data of 8 on the same graph paper for comparison. Figures
4, 5, and 6 show the pooled data of the earth-space paths, long ter-
restrial paths, and short terrestrial paths, respectively. It is seen that
these experimental results of 8 are indeed normally distributed with
zero mean and unity standard deviation.

* The P, values at Crawford Hill, New Jersey, are provided by D. C. Hogg and
R. A. Desmond from their rain gauge records. The P, values in Alabama, England,

Japan, and Canada are estimated from the information in Refs. 6, 8, 11, and 13.
The P, values in Italy and Massachusetts are assumed values using some judgment.
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Fig. 3—Lognormal distributions of rain attenuation on short terrestrial paths.

However, Fig. 6 shows that the data of short paths have significant
deviations from the normal distribution in the tail region (8 = 2.8).
Furthermore, most of the deviations in the tail region are downward
from the straight line approximation. The reason for this nonsym-
metric deviation is discussed in Appendix B.

60 POOLED DATA OF SIX EXPERIMENTS
ON EARTH — SPACE PATHS
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o
o
=

Fig. 4—Normal distribution of 8 of earth-space paths.
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Fig. 6—Normal distribution of 8 of short terrestrial paths.
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(1) 2.6 Km, CRAWFORD HILL, N.J.

(2) EARTH — SPACE, CRAWFORD HILL, N.J.
3l (3) 20 Km, ITALY

{4) 24 Km, ENGLAND

(4)
[

Ao

0 10 20 30 40
FREQUENCY IN GHz

Fig. 7—Effect of frequency on median attenuation am.

4,2 Dependence of o, and o, on Path Length and Frequency

The experimental results, discussed in Section 4.1, show that the
three parameters, P,, oa, and a, are sufficient to determine the dis-
tribution P(a = A). Therefore, it is important to study the depend-
ence of o, and e, on path length and frequency.

The effects of path length and frequency on ¢, and a., are shown in
Tigs. 7 to 10. These experimental results indicate the effects of path

S {1) 2.6 Km, CRAWFORD HILL, N.J.
{2) EARTH — SPACE, CRAWFORD HILL, N.J.
(3) 20Km, ITALY
(4) 24 Km, ENGLAND
1.0
n '-_-——_.____
- [ ]
0.5 (4) e ] .
0 1 ] I I
0 10 20 30 40

FREQUENCY IN GHz

Fig. 8 —Effect of frequency on standard deviation a,.
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B —
{1) 18.5 GHz, CRAWFORD HILL, N.J.
(2) 17 GHz, MOBILE, ALABAMA
{3) 11 GHz, ENGLAND
B -
o
o
z a4
E
d
{2)
2 —
3
[4)]
oL_g—=e | | | | 1 |
h] 10 20 30 40 50 60

PATH LENGTH IN Km

Fig. 9—Effect of path length on median attenuation am.

length and frequency on ¢, and a,, as stated in terms (i) to (vii) of
Section 3.1.*

The theoretical calculation? indicates that the increase of rain at-
tenuation with frequency f is slightly faster than the square law in the
range: 10 GHz £ f < 60 GHz, and 1 mm/h = rain rate £ 15 mm/h.
This is the basis of the dashed curves in Fig. 7. The slopes of straight
lines in Fig. 9 are proportional to median rain rate and extinction
coefficient. Curves (1) and (2) in Fig. 9 indicate that the median rain
rate in Alabama is much larger than that in New Jersey.

4.3 Fade Duration Distribution

The available nine sets of experimental data on the histogram of the
durations 7(4) of rain attenuation fades are summarized in Table IV.1
We convert these histograms into the cumulative distribution
P[+(4A) 2 b]. On a lognormal coordinate system, these fade dura-
tion distributions are all approximately straight lines. Figure 11 shows
two examples.

* In Fig. 8, the ¢ in England seems to increase slightly with frequency in contrast
to those in the U.S.A. and Italy. A possible reason for this inconsistency is that the
time bases for the three sets of data for 11, 18, and 36 GHz measured in England
are not concurrent.

" Some of the available data in the literature are not included because of short
time base.
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(1) 18.5 GHz, CRAWFORD HILL, N.J,
(2) 17 GHz, MOBILE, ALABAMA
(3) 11 GHz, ENGLAND
1.0
(1)
—
&
05 {2)
—O)
0 ! L ! I L J
0 10 20 30 40 50 60

The equation describing the lognormal distribution of 7(4) is

PATH LENGTH IN Km

Fig. 10—Effect of path length on standard deviation o,.

logie b — s
P[r(A) = b] = } erfc [3*5“’—“]

V2o,

(6)

where g, and o, are the mean and the standard deviation respectively
of logio 7(A). The estimated values of o, and the average fade dura-
tion 7(A) are given in Table IV. Again, the unstable statistics, caused
by insufficient time bases, limit the accuracy of these estimated values
of o, and 7.

80

Zhb
~
o

60
50
40

30

PERCENT OF FADES FOR WHICH 7
3

(1) 30 GHz, 21 dB FADE THRESHOLD, N.J.
(2} 19 GHz, 5dB FADE THRESHOLD, ENGLAND

FADE DURATION b IN MINUTES

Fig. 11—Lognormal distributions of fade duration.
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V. THEORY
5.1 Rain Attenuation Distribution

Existing theory'—* and experimental data'~19:2-3 indicate that
rain attenuation is a complicated function of many parameters of the
propagation medium: the total number of rain drops in the path, the
drop size distribution, the fine grain spatial characteristics of the rain
density along the path, wind velocity, the presence of up or down
drafts, raindrop shape, raindrop cant angles, the storm cell shapes and
sizes, raindrop temperature, ete. In other words, the attenuation «(t)
is a funetion of many random time-varying parameters of the medium.
Furthermore, through the coupling of the atmosphere, the above-
mentioned parameters of the propagation medium depend on the
present states and the past histories of the weather conditions at
many near or faraway locations and altitudes.

We will assume that the rain attenuation can be affected by a large
number of random time-varying multiplicative components:

a(t) = Si(f) S (t) - Ss(t) - - - Sa(t). (M

Each of {S;(t)}i=} represents the random modification factor due to
an environmental parameter.
Taking logarithms on both sides of eq. (7) yields

loga = log S§; + log S: + --- 4+ log S, (8)

which shows that log « is a summation of a large number of random
variables. Then by the central limit theorem,*® the distribution of
log « approaches a normal distribution for large n if there is no domi-
nant component. Therefore, the distribution of « is approximately
lognormal.**

The basis for the multiplicative formulation (7) is that the environ-
mental parameters affect the rain attenuation «(f) in a proportional
fashion (i.e., in terms of percentage) rather than an additive fashion.
TFor example, at 30 GHz frequency, the theoretical calculation shows
that, when the rain temperature decreases from 20°C to 5°C, the rain
attenuation increases by approximately 4 percent. This means the

* It is interesting to note that, in Fig. 12 of Ref, 10, the lognormal distribution
appears to be n reasonable fit to the probability distribution of rainfall rate. The
physical reason for this behavior probably is similar to that for rain attenuation o
discussed in this section.

A basic characteristic of a lognormal random variable y is that its value can vary
in the entire semi-infinite range: 0 < y < =. For the rain attenuation problem,
the attenuation «(dB) possesses this basic characteristic. On the other hand, the

normalized signal amplitude V (¢) is strictly confined to the finite range: 0 < V(t) = 1,
which rules out the possibility of a lognormal distribution for V (¢).



572 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1973

variation of rain attenuation, due to 15°C variation of rain tempera-
ture, can be 4 dB, 0.4 dB, or 0.04 dB if the attenuation at 5°C is 100
dB, 10 dB, or 1 dB, respectively. Similar arguments apply to the
effects of other parameters on the attenuation. A more general inter-
pretation of formulation (7) is discussed in Appendix A.

We emphasize that some of the components {S;:(f) }¥Z7 may be
extremely slowly varying functions, which may take several months
or even several years in order to show their effects. For example, the
rainfall intensity-duration-frequency data of the Weather Bureau®®
show that in New Jersey the return period® for a rain rate exceeding
150 mm/h, which continues for a 5-minute duration, is about 5 years.
Therefore, if the time base of a rain attenuation experiment is less
than 5 years, the chance of missing these rare and extreme events is
very high. The justification for considering such a long-term distribu-
tion of a(f) is that the microwave radio systems, which are designed
based on these statistics, contains many repeaters, each sampling its
own rain universe and contributing to total path outage.

5.2 Fade Duration Distribution

We also assume that the duration 7(4) of a rain attenuation fade
with @ = A is affected by a large number of random time varying
multiplicative components

r(A) = X;- X, X3 - X, 9)

Each of {X}iZ} represents the random modification factor of an
environmental parameter. Therefore, the long-term distribution of
7(A) is also approximately lognormal.

5.3 Upper Bound for Fade Duration Distribution

In radio system design, one is concerned with the occurrence prob-
ability of an unusually long continuous outage. It is desirable to have a
“quick estimate” of the fade duration distribution, especially in the
tail region of long duration. In our experimental and theoretical
study*—% of the lognormal distributions of durations of rain and
multipath fading, W. T. Barnett* has found an upper bound on the
fade duration distribution as discussed in the following.

Let*
(10)

r =

=

* The idea of normalizing fade duration r to the average duration 7 originates
from the work#® of S. O. Rice on fade duration distributions.
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The lognormal distribution of z can be written as

logio X —
Pz 2 X) = } erfe [—ogLJ} (11)
Vio

where x and ¢ are the mean and the standard deviation, respectively,
of logio . For lognormally distributed =, it is easily shown that

I = enlM+h(et M) (12)
where Z is the mean value of z, and
M = logio e =2 0.434. (13)
The definition (10) implies that

1_.
T
Equations (12) and (14) show that
1q? (15)
B = oM \

Substituting (15) into (11) yields

(16)

1 X + o2/2M
Pz =z X) =%erfc|:0gm o/ ]

Vo

Therefore, the lognormal distribution of z is completely determined
by only one parameter o.
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Fig. 12—Effect of standard deviation ¢ on the probability of long duration of fade.
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which implies that for any X = 1 the probability P(z = X) as a
function of ¢ has a maximum value:

log1o X
Posle 2 X) = %erfe[ E (18)

T = \N2M IOgm X. (19)

For example, Fig. 12 shows P(x = 10) as a function of ¢.
Figure 13 shows the maximum probability Pn.(x = X) as a fune-
tion of X as given by eq. (18). By the use of “C-discriminant equa-

at
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Fig. 14—The envelope of the family of lognormal duration distributions.
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tion” in the theory of ordinary differential equation,* it can be shown
that eq. (18) is, in fact, the envelope of the family of lognormal dis-
tributions (16) with ¢ as the family parameter. In other words, the
family (16) are all tangent to (18) as shown in Fig. 14. The shaded
area in Fig. 13 is a forbidden region where the lognormal duration dis-
tribution will never penetrate. Therefore, the upper bound for the
fade duration distribution is given by eq. (2).

VI. CONCLUSION

Both the experimental data and theory indicate that both the rain
attenuation distribution and the fade duration distribution are
lognormal. The detailed results have already been given in Section I1I
(Summary of Results).
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APPENDIX A
Generalized Interpretation of Formulation (7)

From a more general viewpoint, the effect of an environmental
parameter Z;({) on «() may be more complicated than the simple
linear proportional relation

alt) « Z;@t), i=1,2, -, n (20)

For example, «(¢) may depend not only on the present value, but also
on the past history of the environmental parameter Z;(t); then the
relation between «(t) and Z;(f) becomes

aft) = f_m H(t, t")Z:(t)dt’ (@1)

1:=1,2,...,n

where H;(t, t') is the impulse response of «(t) if the input Z;(t) is an
impulse (¢ — #') applied at #. In order to allow for the more general
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and complicated relation between «(f) and Z:(t), we shall use the
mathematical operator notation:

a(t) o« G,[Z,(t):l, 1= 1: 2; 3: e, n (22)

where (7; is a transformation from Z;(¢) into «(f). Then the formulation
becomes
a(t) = Gi(Z))-Ga(Z2)- - -Gn(Z.). (23)
Let
S:() =G[Z:))] i=1,2,3, ---, n. (24)

Substituting (24) into (23) leads to (7).

The formulation can be further generalized to include the cases
where the effects of various environmental parameters on « are not
completely separable. Let

v = logio«, (25)
citi = logie  8i = logie Gi(Z5)

1=12,3,---,n— 1, and (26)

R = logm S.. (27)

Substituting (25), (26), and (27) into (8) gives

y(&r, &2y ooy Enmr) =7+ Cr(d1— &) + Co(br — &) + -
+ Cﬂ—l(Enfl - én—l) + (R - R) (28)

where

¥ = CiEy+ Cobs+ -+ 4+ Caibny + R. (29)
Equation (28) can be interpreted as the first-order Taylor ser_ies ex-
pansion of y(&,, &, - -+, £x—1) with a remainder term,* R — R. The

main point in eq. (28) is that the effects of the (n — 1) random vari-
ables {£}i=7~! on v do not have to be completely separable because
of the remainder term R — R. If R — R does not dominate the sum in
the right-hand side of eq. (28), then, by central limit theorem, the
distribution of ¥ (i.e., logio @) is approximately normal even if the
effects of various environmental parameters are not completely
separable. (This argument originates from Refs. 46 and 47.) Therefore,
the formulation (7) includes very general and eomplicated relation-
ships between the environmental parameters and rain attenuation a(f).

* If higher-order derivatives of v (&), £, -+, £a_1) exist, then B — R represents
the sum of all the higher-order terms; otherwise, R — R represents the difference
between (1, £, -+, En1) and its first-order Taylor series expansion.
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APPENDIX B
Deviations of Experimental Data From Lognormal Distribution

Aside from the experimental error, there are two major factors which
contribute to the deviations of experimental data from the lognormal
distribution.

B.1 Effect of Finite Number of Components

Davenport and Root® have indicated that when the number, n, of
components is finite, the normal distribution may well give a poor
approximation to the tasls of the distribution of the sum (8) even
though the limiting form of the sum distribution is, in fact, normal.
Therefore, in practice, we believe that the deviation of the experimental
data from the lognormal distribution may increase toward the tails.

B.2 Effect of Time Base

Since some of the components in eq. (7) are extremely slowly
varying, reducing the time base will reduce the number of contribut-
ing components since the influences of slow components are approxi-
mately constant in a short experiment. Therefore, we expect the
deviation of the experimental data from the lognormal distribution to
increase as the time base decreases.

The minimum required time base for the convergence of the experi-
mental data to the lognormal distribution increases as

() path length decreases, or
(74) operating frequency decreases, or
(77) attenuation range of interest increases.

Furthermore, when the time base of a rain attenuation experiment
is not long enough, the deviations of the short-term distribution
P,(a = A) from the long-term distribution P(a = A) are usually non-
symmetric in the deep fade region, i.e., P;(a = A) is more likely to
be less than P(a = A4). This nonsymmetry is caused by :

(7) The distribution of fade duration r(A4) is lognormal, which is
nonsymmetric with respect to the average fade duration
7(A). Typically, about 70 percent of fade durations are
shorter than the average duration.

(77) The probability distribution of the number N (4, T) of ob-
served deep fades, exceeding the margin A dB in the period T,
is somewhat similar to a Poisson distribution which is also
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nonsymmetric with respect to the average number N (4, T) of
deep fades in a period T.

Since, when the time base is too short, both N (4, T) and (4) have
a higher chance of being less than their average values N (4, T) and
7(4), respectively, then the short-term distribution P,(a = A4) tends
to deviate downward from the long-term distribution in the tail
region.*

B.3 Effect of Time Base on Standard Deviation o,

Since it takes a long time base to include appreciable effects of
slow components, we expect that o, increases slightly as the time base
increases, and reaches an asymptotic value only after the time base
is long enough to include the effects of all the possible slow components.
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