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The bandwidth required to transmit an FM wave s related to how much
distortion vs allowed in the signal. Here expressions are developed for the
distortion (interchannel interference) produced when an FDM-FM wave
passes through an ideal filter. The signal is represented by a flat (PM)
band of Gaussian noise. The formulas obtained hold only for small rms
frequency deviation, but fortunately this is an important case in micro-
wave communtcation systems. The theoretical expressions agree well with
Monte Carlo results published recently by Anuff and Liou.

I. INTRODUCTION

When a frequency-modulated wave passes through a filter, distor-
tion is produced in the signal by nonlinearity in the filter phase shift
(usually the chief offender) and by the filter attenuation. Much effort
has been spent in devising methods for computing this distortion.

A related problem is “What radio frequency bandwidth is required
to transmit a given FM wave?”’ An approximate answer, known as
“Carson’s rule,” states that the required bandwidth 2f; is given by!

2,[); = 2B + 2Dmaxr (1)

where B is the bandwidth of the baseband signal and D... is the
605
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maximum amount the instantaneous frequency deviates from the
carrier frequency. Note that (1) implies a conventional FM system.
This is the only type we shall consider in this paper. We shall not be
concerned with single-sideband FM or other schemes for reducing the
rf bandwidth.

Carson’s rule has been revised recently by Anuff and Liou.? They
make use of Monte Carlo calculations of the interchannel interference
produced when an FM wave carrying a multichannel signal passes
through an ideal filter. The ideal filter has zero attenuation and phase
shift within the passband, and infinite attenuation outside the band.
Monte Carlo calculations of interchannel interference in microwave
systems have also been made by Grierson and MecGee.?

Here we make a beginning on the analysis (in contrast to Monte
Carlo) required to calculate the interchannel interference produced
by an ideal filter.

The FM wave is cos [wod + ¢(f)] where w, = 27 f, and «(?) is a
stationary, zero-mean Gaussian process with the two-sided power
spectrum

e [ We =B

In (2), W, is a constant and B is the top baseband frequency. In order
to represent an idle channel at frequency f., we take W.(f) =0 in
the narrow slots f. = | f| £ f. + Af., Af. being so small that W.(f)
can be replaced, without appreciable error, by W, in the integrals ap-
pearing in the analysis.

The mean-square value of ¢(t) and the rms frequency deviation D
are given by the ensemble averages

(@%(t)) = 2W, B (rad)?
D2 = ((¢'()/27)!) = 2W, B%/3 (Hz)*

where ¢'(t) = d¢(t)/dt. This ¢(f) gives a convenient approximation to
the preemphasized wave assumed by Anuff and Liou. A representative
value of Dmay in (1) is 4D.

The ideal filter passband extends from f, — fiu to fo + fu. It is
assumed that 2f4/f, << 1 and that nB < fi < (n + 1)B where n Is
a positive integer.

Our aim is to apply results from the theory of Volterra series to ob-
tain an expression for the dominant portion of the interchannel inter-
ference when the normalized rms frequency deviation D/B becomes
small.

(3)
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For the moment, consider one-sided power spectra. Now the power
spectrum of ¢(t) extends from 0 to B and has the value 2W,. The aver-
age signal power (FM) appearing in the channel (f, f 4+ Af) when it is
busy is

S = (2rf)2W,Af (rad/s)% (4)

Let N be the average interchannel interference power which appears
in the same channel. The value of N depends upon whether the channel
is idle or busy. When the channel is idle, the interference can be heard
as crosstalk noise. In our expressions for N/S, we assume that our
particular channel is idle, that all the other channels are busy, and
that N/S is the limit obtained as A f tends to zero.

The nature of our results is illustrated by the following expression
for N/§ in the top baseband channel:

2

N/S = [g%(n F1- %)]zc + O[(D/B)*+2], "
51

¢ 13 (271—21‘-)!(211:—1)!( 1 )4_
T @) E (k= DWEE + D!\ = )1

Here the integer n is determined by the filter semibandwidth f, and
the relation nB < f, < (n + 1)B. The first three values of (,, are
Co = 1/4, Coz = 5/96, and Cy3 = 19/10368. For large n, C,, tends
to 22/ [nl4rn(n + 2)].*

Equations (5) are a special case, f = B, of (52) which gives N/S
in a channel whose frequency f satisfies fi — nB £ f < B. When
0= f< fa—nB, N/Sis of order (D/B)*"+* and the formulas corre-
sponding to (52) do not appear to be known. However, comparison
with Monte Carlo values plotted by Grierson and McGee® indicates
that replacing n by n + 1 in (52) [n still given by nB < f, < (n + 1)B]
gives an expression for N /S which is not greatly in error when f is in
0 < f=f»— nB. The simplest instance of (52) holds for n = 1,
B < fu < 2B, and fin the range f, — B £ f £ B:

v G- 5) - (- 4)] oo o

The explicit part of (6) decreases to zero as f decreases from B to
Ji = B.For0 = f < f, — B, N/S is 0(D*/B*).

* I am indebted to a reviewer for the observation that the presence of the factor
n!=*in C,p and the behavior of the curves in Fig. 1 strongly suggest that the formulas
gwe"useiul results subject only to D/f), (instead of the more restrictive D/B) being
small.
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Fig. 1—Signal-to-noise ratio in top channel. The dashed lines show eq. (5) for
flat baseband phase modulation. The Monte Carlo curve 4.175 is for flat baseband
PM, and the curves 1.5B, 2B, and 3B are for the typical preemphasis used by Anuff
and Liou.

It turns out that the explicit portions of (5) and (52) are obtained
by considering modulation terms of order 2n + 1 and of type
cos 2x[(n + 1)B — nB]t.

The curves labeled fi = 1.5B, 2B, and 3B in Fig. 1 have been
plotted to compare our eq. (5), based on the flat power spectrum (2)
for W,(f), with the Monte Carlo results given by Anuff and Liou for
a typical preemphasis curve. The solid lines and dots show Monte
Carlo values of S/N for the top baseband channel. The dashed lines
are computed from our (5). It is seen that the slopes agree well for
small D/B, but for f, = 3B a separation of about 6 dB appears. For
fr» = 4B (not shown) the separation increases to about 12 dB. Most
of the separation appears to be due to the difference between (2) and
the W (f) used by Anuff and Liou. This is indicated by later Monte
Carlo computations made by Anuff for the W,(f) of (2), and labeled
fn = 4.17B in Fig. 1. There is still a separation of 2 or 3 dB. This
may be due to the granularity of the Monte Carlo approximation
to W,(f) and also to the fact that the Monte Carlo filter is not quite
ideal.
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Section II contains a statement of results from the Volterra series
theory needed in our analysis. In Section III, the simplest case,
B < f» < 2B, involving third-order modulation terms is discussed in
some detail. Section IV and Appendices C and D deal with the gen-
eral nB < f, < (n 4+ 1)B case. In Section V, formulas are given for
the calculation of N/S. Appendices A and B contain material which
provides some insight to the general work of Section IV. Appendix A
discusses the case ¢(f) = A cos w,f, and Appendix B treats a simple
analog of the FM problem.

All of our work deals with the flat power spectrum W ,(f) defined
by (2). The chief obstacle in going to a more general W,(f) is the
evaluation of the multiple integrals which occur in the analysis. Pos-
sibly W,(f) = Af for | f| < B and » > —1 could be handled by the
procedure used here, but this extension has not been studied seriously.

II. RESULTS NEEDED FROM VOLTERRA SERIES THEORY

Because the carrier frequency f, is at the center of the ideal filter
passband, the even-order modulation products vanish. In the notation
of Ref. 4, the Volterra series with the even terms equal to zero is

v0 = 13 [ duwnga (et — w)

1 0 ) o 3
+ 3—|/ dulf dugf dugga (wy, ws, uz) kI-Il x(t — ue) + ---. (7)

When z(f) is a stationary, zero-mean Gaussian process with two-sided
power spectrum W.(f), the Mircea-Sinnreich? series for the two-sided
power spectrum W,(f) of y(f) becomes[eqs. (14) and (160) of Ref, 4]:

W, () = W6 + g [ AW (506G, £y — 1)

i [ A5 [ ARWARW ARG, S =i £ =1 + |

+
+§f dflf AW fOW L f)Wolf — f1 — fo)

X |Gs(fy, fo, £ — f1 — fa)

+ %rzf AW (F)Gs(fy fo = fo — fu iy = fD) + {2

+% dflf dfzf dfa[ dfW(fy)--

W f)Wao(f — fr— - — f)|Gs(--) + |24 . (8)



610 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1973

Here, Gu(fy, f2 =+, fu) is the m-fold Fourier transform of
gm(ts, -+, twm), Le., the mth-order transfer function.

We shall need another result which can be derived from the analysis
of Section VII of Ref. 4. Let z(¢) and y(¢) be as in (7) and (8), and let

yi(t) = f:ﬁ duy g1 (u)x(t — u1) (9)

be the linear part of y(¢). Then the power spectrum of y(¢) — yz(t) is
given by
Wy, (f) = [Series for W,(f) with Gi(f) replaced by 0] (10)

This result can be established by using the series (152) of Ref. 4 for
(y(t + 7)2(t)) to evaluate the four ensemble averages appearing in
the autocorrelation function of y(f) — y.(t).

In problems in which cos [27 f.f + ¢(t)] enters a filter with transfer
function K(f), the normalized transfer function

I(f) = K(fo + )/E(fo) (11)
appears. For the ideal filter of our problem, I'(f) =1 when
—fn < f < frand T'(f) = 0 when | f| > fi Furthermore, the power
spectrum W(f) of the output phase angle 8(f) is given by the expres-
sion obtained from (8) by replacing W.(f) by W,(f) and Gi(f1),
Ga(f1, fa, f3), - -+ by [Mircea® and (52), (71), and (72) of Ref. 47:

Gm(fl) = F(fl);
Gos(f1, fo, f3) = J2ALT(fL + fo + f3) — T(fIT(f2 + f3)
— I(fAT(fi + fa) — T(fDT(f1 + Jo)

+ 2T (f) T(f2) T(f3) ],
Gy, -+ fi) = JAL(12345) — 11 (1)(2845) — 113 (12)(345)

+212.7(1)@) (345) + 2! E’ (1)(23)(45)
- 3! %’ (1)(2)(3)(45) + 41(1)(2)(3)(H)(5) ],

Gonlfry -+ y fu) = J" gl(—l)t—l(e—l)'. IR

(v; {,m)
X P(fl + - + f’:)F(f'|+l + - + f'ri—":)' t
XF(fm—v£+1 + e + fm)‘
The Is and f’s have been omitted and the subscripts written within

parentheses in Ggs. In Gy, the summation over £ and (v; £, m) is es-
sentially a summation over the partitions of m, £ being the number of
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parts and vy, vs, -, v, the parts:
vitrat o+ =m,
et 13)

The summation ):’ extends over the N (not to be confused with the

N denoting noise powel) nonidentical products that can be obtained
by permuting the subseripts on the f’s. The number of terms in the
summation Y.’ is

N

N = ??E!/Vﬂl’g!' . 'V{!?‘ll?‘g!' . 'J'}\-! (14)
where 7, is the number of equal #’s in the first run of equalities in the
arrangement »; < y3 £ -+ = v, 1 the number in the second run, ete.

When the »’s are unequal, the »'s do not appear. A more complete
explanation of the notation is given in (24) to (29) of Ref. 4.

In our work, Ge(zns1) will be either 0 or —1 when n = 1.

When ¢(f) is bandlimited to | f| < B and £, exceeds B, the linear
portion of () is equal to ¢(t). This can be seen formally by assuming
¢(t) to have a Fourier transform F(f) which vanishes for |f| > B.
Then, from (9) and Goi(f) = T'(f) = 1 for | f| < f4, it follows that

0:0) = [ dugn(wett —w
= [ arGnnrcpene

= [ dfF (et = o(1). (15)

Most of our analysis will consist of using the combination of (8)
and (10) to obtain expressions for W, _.(f), the power spectrum of the
difference 6(t) — () between the output and input phase angles.

ur. We_(f) waen B < [, < 2B

In this section we take B < f < 2B, f, — B < f < B, and assume
D/B (and consequently W,B) to be small. The power spectrum of the
output phase angle 6 is, from (8) with ¢ in place of ¥,

We(f) = Wo(H|T(f)

i [ W LDGn(s, 5~ 1) + 0(w3sy|

+ ?,[ dflf Afs Wl i)Wl fIWolf — f1 — o)
X |Gaa( fr, for J— Jr — f2) + O(W,B) |2+ 0(WEBY). (16)
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From (2), W (f;) and W‘,(f,-), 7 =1, 2, can be replaced by W, in
the integrals. However, W (f — f1 — f:) will be retained for the
present because it serves to make the integral vanish when
|f — fi — fz| > B. For completeness, we shall carry the first line in
(16) along in the analysis even though it will vanish when we calculate
the crosstalk noise in an idle channel represented by a slot in W, at
(f, + A

Since the linear portion of 6(t) is equal to ¢(#), the power spectrum
Wo_.(f) of 8(t) — «(t) is given by (16) with I'(f) in the first line re-
placed by zero:

B 2
Wo o) = Ww(f)’ L[ agw.Guts, 5, =50
[ anf” apwiw s = = 521Gt o d = S I
+ 0(WiB®). (17)
In obtaining (17), we have used the fact that the integrand in the
first line is an even function of fi.

Examination of (17) shows that the dominant terms in Ws_,(f) are
0(W3B2) and hence correspond to third-order modulation. When f does
not lie in an idle channel (i.e., W,(f) # 0), some of the third-order
terms in Wy(f) arise from the cross term I'(f)0(W3B?*) which requires
a knowledge of (g5 for its evaluation. For this reason, we prefer to deal
with Ws_,(f) [instead of We(f)] which requires only G, for the cal-
culation of all its third-order terms.

When 0 < f < Band 0 < f; £ B, as in (17), all of the I'"s in

Gos(f, f1, — 1) = —T(f) + D(NHTO) + T(HT — )

+ (=T + fi) = 2D(HT(OT(=f) (18)
are unity except possibly T'(f + fi) which is unity if f + fi < frand
zero if f+ fi > fu Hence, Gos(f, f1, — f1) is zero if fi < f» — fand
is —1if fu — f < fi. It follows that

%fﬂﬂ AfiW o Gua S, fiy — 1)

+

—(B = fi+ NHW,, fzfi—B (19)
0, fEhHh—8B

The function W,(f — fi — f2) vanishes for |f— fi — f:| > B,
and the function

Gos(fr, fo, F — 1 — [2)
= —T(f) + T(fOT(f — f) + T(f)T(f — fo)
+ T(f — fr = f2)T(f1 + fo) — 20(fOT(fIT(f — fr — f2)  (20)

vanishes in part of the square f; = =B, f, = &B. The result is that,
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as will be shown, the region of integration for the double integral in
(17) reduces to the shaded areas shown in Fig. 2. In Fig. 2, it is as-
sumed that f, — B < f<B. When 0 < f =< f, — B, the double
integral in (17) is zero because Gy; is zero.

In the present case, B < f, < 2B, it is convenient to set

f3=f*f1*fz (21)

so that the lines f; = £B, or fi + fo = f+ B, mark boundaries
outside of which W (f — f1 — f.) is zero. Equation (21) also enables
us to write the boundaries fy = f— fi and fo = f — f, as fo 4 fa
= fuand fi + fi = fu, respectively, as shown in Fig. 2.

The expression (20) for Gos(fi, fo, f — f1 — fa) is equal to —1 in
the shaded areas of Fig. 2. This follows from the fact that all of the
I"s in (20) are unity except possibly I'(f — f1), I'(f — f.), and
I'(f1 + f2), which are 0 when their arguments exceed f;. The possi-
bilities f — fi < — faand f — f» < — f, are ruled out because f > 0,
and fi + f: < — fi is discarded because it makes f; > B. Performing
the integration over the shaded areas in Fig. 2 is equivalent to adding

- B

le— fi=1—-14,

é Tyt 1=,

_ B

B \\n ="

-
-
fi+f,=f-B,~
f3=B

fo=f—t,,
faf =1\
1 3 h \\

Fig. 2—The three areas of integration for the double integral in eq. (17) for Ws_o(f).
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the areas and gives

B B
" anf" apwiws = = £)1Gul fo S = 51
= 1[(2B — f)* — (B — NIW, (22)
when fi, — B < f < B. As mentioned earlier, the double integral
vanishes when f = fi — B.

The main result of this section is obtained by substituting the values
(19) and (22) of the integrals in the expression (17) for Wo_o(f):
Wo_olf) = Wo(S)(B + f— [1)*W;

+ 1WIL(2B — f1)* — (B — /)*] + 0(W3B%)  (23)

where f), and f satisfy B < fi < 2B and fy — B = f = B, respec-
tively. When 0 < f < fi — B, the Gg's are zero in the corresponding
ranges of integration and it follows from (16) (with I'(f) replaced by
zero) that
Wa_o(f) = 0(WEBY). (24)

It also appears that the third-order part of Ws_,(f) is constant when
B < f< fa

Although it may not be obvious in Fig. 2, the areas of the three
shaded regions are equal, and each contributes the same amount to
Wo_o(f). There is an underlying symmetry which becomes evident
when the boundaries of the three regions are written as follows:

Hi=B J: =B fs =B

f2=B f3=B f1=B

fa=—B fi=—B fa= —B (25)
f1+f2=f.l. f2+f3=fh f3+f1=fh-

Furthermore, the double integral in (17) can be written as

5 [ afi[ s [ Ao Wo(JOW S FIW o f)8(] — f1 — fo — 1)
X | Gos(f1, fo, fa)|* (26)

where, replacing 8(z) by the limit as e — 0 of h(z) = 1/e for |z < ¢/2
and h(z) = 0 for |x| > €/2, the integration extends over three por-
tions of a three-dimensional slab bounded by the planes fi + f» + f3
= f =4 ¢/2. The three portions are cut out of the slab by the planes
defined by eqs. (25). When the integration is accomplished by inte-
grating with respect to f; first (the thickness of the slab is ¢/3% and
f; is integrated over a length ¢), the areas of integration for fi and f
are those shown in Fig. 2.

Thus the twofold integral is equal to the sum of three equal con-
tributions where each contribution can be regarded as arising from
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a region near one of the corners of a three-dimensional cube. It turns
out that the corresponding 2n-fold integral encountered later is equal
to the sum of (2n 4 1)!/n!(n + 1)! contributions arising from regions
near (2n + 1)!/nl(n + 1)! of the 22! corners of a (2n + 1)-dimen-
sional cube. The corners are those whose (2n 4+ 1) coordinates consist
of (n 4 1) plus B’s and n minus B's.

wv. Wo_o(f) waEN 0B < f), < (n 4+ 1)B
For fi and fsuch that nB < f, < (n + 1)B, n =1, 2, ---, and
fu —nB = f = B, the dominant terms in Wy_,(f) are given by

Wooll) = W, (f)\““’ I

It

X Goansny (F, f1s — i o+, fi *f,I)’

d W B .
+Z (2?;-!—])‘./‘1([}" ,[ﬁ Adfss Wo (f — fi— =+ — fa)

'n k

X [ty [ st [ i Guanen( ) fon =

= = e Su =S e — fak) + O(Wirt? B2ty (27)

where for & = n it is understood that the quantity within the absolute
value signs becomes Gouyny(f1, -, fau, S — S1— -+ fau). No G
for m < 2n 4 1 appears in (27) because, from Appendix D, all such
terms vanish over the region of integration.

To aid in the evaluation of the integrals which arise in dealing with
(27) we shall use”

ffi.'l'j e '-/‘dr-m H(U'm) (Tn ]}1f ]{(Z)z”‘—ldz
K<o,<L (28)

where K 2 0, 0., = 1+ 22 + --- + x,,, and the integration on the
left extends over the region specified by ; = 0,7 =1, 2, ---, m and
K = on £ L. The integrations with respect to the f/s in our problem
extend over regions where f; is near +B or —B; and we shall use (28)
by making the change of variable f, = B — z; 0or fi = —B + z..

The Gyany1y in the second line of (27) is different from 0 (and, from
Appendix D, equal to —1) only if

F+ 7+ + > (29)
Setting fi = B — x;,7 = 1,2, - -, n carries this inequality into

vt v+t < fHaB—fi=P—Q (30)
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where we have introduced the parameters

P=(n+1)B—fu
Q=B—-7F
and have assumed P > Q. When P < Q, the inequality (29) and its
analogues for the other terms in (27) cannot be satisfied. Consequently,
all the Gpuany’s are zero and all the modulation terms of order
(2n + 1) vanish from (27) when P < Q.
From (28) withm = n, K = 0,L = P — Q,and H(z) = —1, we get

(31)

= W(HWIMP — @)2/n!* (32)
for the first term on the right in (27).
Now consider the kth term in the sum in (27). For Gy2nq1) to be —1

instead of 0, the sum of (n + 1) of its arguments must exceed fi
(Appendix D). It can be shown that (n — k) of the arguments must

be f1,---, fa_x and that the remaining (k + 1) arguments come from
the set of 2k 4+ 1 elements

T fo -0y fa = 1 — o = fon (33)

There are (2k+ 1)1/(k + 1)!k! different choices of (k + 1) items

from the set (33). Let fi, fa, -+, frr1represent the typical choice and

fitfod+ -+ fint ht ot + fus (34)

be the typical sum of (n + 1) elements of Gacuy1y) which exceeds fi.
Each sum is associated with a region of integration, one boundary of
which is obtained by setting (34) equal to fi. For k = 1, there are
three regions and, after the integrations with respect to the fi’s have
been performed, the regions become the ones shown in Fig. 2 with f,
replaced by fi — (n — 1)B. For k arbitrary, the regions correspond to
the corners of a (2k + 1)-dimensional cube, the corner coordinates
consisting of (k 4+ 1) plus B’s and k minus B’s. By virtue of the type
of symmetry shown by (25) and (26) for the case B < fi < 2B, each
of the (2k + 1)!/(k + 1)'k! regions contributes the same amount to
the kth term in (27).

The first step in evaluating the kth term (k < n) is to perform the
integrations with respect to fi, -+, fa—z Suppose that the values of
the typical choice fi, - - -, fir1 are given. Then for Gaqnyr) to be equal
to —1, it is necessary that

fl'+---+fn_’k>fh—‘f1"“"'—fk+1- (35)
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Setting fi = B —z,i=1,2

s+ rat -+ au < (n—k)B
— it fit Lot + fen (36)

Using (28) with m =n — k, K = 0, H(0o) = —1, and L equal to the
right side of (36) shows that the quantity inside the absolute value
signs in the kth term is equal to

wr—k L o
(n—k)!n—k— 1)!]0 (—1)zn—*"1dz
= —-W{,’—kL”—k/(n — k)12 (37)

, =+, 7 — k carries (35) into

where L = 0

Next, we integrate with respect to fi, fa, - -+, frs1. The restriction
that the right side of (36) be positive gives
h+fi+t -+ fisi> fi —(n—k)B (38)
and the fact that the argument of W,(f — fi — -+ — fs) must ex-
ceed — B gives
ht+fit -+ forn<B+f— fipo— - — far (39)
Setting f;=B —x;fori=1,2, -+, k+ 1 and fi = —B + z, for
t=k+2 -, 2k carries (38), (39), and the L in (37) into

ittt <+ DB - fi=P
Tt x> B — [+
=Q + Tpp2+ -0+ (40)
L—P"-xj_—'ﬂ'?z— crr Thyls
At this stage, the kth term in (27) is, for k > 1,
W (2k + 1)!
@101 G £ ] B [l [ [ w,

X WITHP —xy — oo — )™ %/ (n — k)14 (41)
where (2k + 1)!/(k + 1)!k! is the number of equally contributing
regions of integration. For fixed xx., - -+ , Tss, the integration with re-
spect to xy, - -+, Tx41 can be performed by using (28) withm = k + 1,

=Q + Thya+ - + 2, L =P, and H(z) = (P — 2)?* 2 Ex-
pression (41) becomes

W3n+1
(k + 1)k (n — k) [4/d$k+2‘ : '/dIEk

,
X5 (P — z)metiztdz. (42)
k! Q+Tkyoteertaap
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The integration in (42) extends over the region defined by z: = 0,

i=k+2 ---, 2k and the inequality obtained by combining the
two inequalities in (40):
Ik+2+"'+1‘2k<P—Q. (43)

Using (28) withm =k — 1, K =0, L = P — @, and
P
HE) = [ (2= yrhydy (44)
Q+z

leads to a double integral which can be reduced to a single integral by
reversing the order of integration:

1 P—Q 1 P
aa [, H@E = g [P -y — @y
ok Z‘; (2n = 2k)!2k — £ —1)!

& 0k —012n — 0!

When (45) is used in the expression (42) for the kth term in We_,(f),
(42) becomes

W2 ti(2n — 2k)! & (2 — 0= DIQ(P — Q)
k+ DKk — Diln — HB & 0k — 0@ — 0l

It can be verified that (46) also holds for £ = 1, even though & > 1 was
assumed in the derivation. Adding the expression (32) to the sum of
(46) from k& = 1 to n and interchanging the order of summation gives
the equation sought in this section:

Waolf) = W)W — Q)2rni=t 4 WEH ?;“ﬂ Con QUP — Q)2

+ O(Wgn+2 B2ty (47)
where 7 is a positive integer, nB < f, < (n 4+ 1)B, P > @, P and @
are given by (31), and

1 " 2k — ¢ — 1)!(2n — 2k)!
00C2n — ) pmmeman (B — ONE — DEWE + 1)I(n — k)
When P < Q, ie., f < fi» — nB, our analysis tells us only that We_,(f)
is Q(W3n+3p2nt2),

QP — Q¥ t. (45)

(46)

Cin = (48)

V. THE NOISE TO SIGNAL RATIO N /S

According to (4) the average signal power (FM) in the channel
(f, f + Af) when it is busy is

S = (2nf)A2W )AL (49)
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Likewise, the average interchannel interference noise power is

N = 2rf)2[2We_ (N)]AS (50)
and hence

N/S = We_o()/W.. (51)

When the channel is idle, W.(f) is 0 in (f, f+ Af), and if all of
the other channels are busy, (51) and (47) give

N/S = W gﬂ CoQUP — Q) + O[(W, B)2n+1]

(3BT el e - 5)

+ OL(D/B)*+*]  (52)

provided nB < f; < (n + 1)B, fy — nB £ f £ B, and D/B is small.
In going to the second line, we have used W,B = 3D?/(2B?) from (3)
and the definitions (31) of P and Q. Equations (5) and (6) given as
examples in Section I are obtained by setting f = B and n = 1, re-
spectively, in (52).

The first few values of C'r, X 107 are listed below.

{=0 1 2 3 4
n =1 2.5 5.0
2 5.208 19.44 2.083
3 1.832 9.375 3.906 0.193
4 0.1994 1.226 1.182 0.2122 0.0060
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APPENDIX A
Stnusoidal Modulation

Some idea of how the FM distortion depends upon the radio fre-
quency bandwidth when the deviation ratio, say A, is small can be ob-
tained from the case ¢(t) = 4 cos w.t, w, = 27 f,. The carrier fre-
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quency and ideal filter are the same as in Section I, but now n is such
that nf, < fi < (n + 1) fa.
The input to the ideal filter is the real part of

exp [jw.t + je()] = ; cm exp (Jwot + jmwat) (63)
where ¢ = j™Jm(A), Ju(A) is the Bessel function of order m, and
exp (jA cos w.t) = i 7S m(A) exp (jmaat). (54)

Since 2f1/f, < 1, the filter output is nearly equal to the real part of

exp [jwot + j80] = 3 emexp (juol + jmwst).  (55)

m=—n

Subtracting (54) from (55) and dividing by exp [jw.t + je(f)] gives

—n—1 0

git—ie = ] — e—isa( Z + Z

+1

) Cm €XP (et ) (56)

where the argument ¢ has been omitted in 8(t) and (f).
Replacing exp (— j¢) on the right by its series obtained from (53)
and taking logarithms give the known first-order approximation

80— ¢ = —Im{ i (_gl + 2 )c]cmexp Li(m — wa t]

=—u0 m=—nug m=n+1

+ terms of order [Xt: (X + )71 (B7)

Since A is small and ¢, = ™ n(4), we have form = 0
Cm = C_m = (JA/2)"/m! + 0(A™2). (58)
The interchannel interference in a microwave system corresponds to

the exp (jw.t) and exp (— jw.t) components in the expression (57) for
# — ¢. The largest contribution to these components comes from the

values m =n + 1, { = —n, and m = —n — 1, £ = n, respectively:
_ ) _ » (A /2)2n+1
—_ = — n+n+lgjuwat ntn+l wa
(0 = @lug = —ImLjmrrrieient + jmrtettem e o =
+ 0(A2n+2)
2 A 2 2a+1
= — n(l(n/i‘gl)‘ CoS wql + 0(A2"+2). (59)
It follows that the average power in the cos w, ¢ component of § — ¢ is
dn+2
P(a) = ZARTT 4 g(amm) (60)

n'%(n 4+ 1)12
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and dividing by the average power A2/2 in ¢(f) = A cos w,t gives

P(4) _(A/2)im
ave. powerin ¢ nl(n + 1)1

+ 0(A 4+, (61)

If, instead of the pure sinusoidal signal A cos w,t, the signal ¢(f)
were a very narrow band of Gaussian noise centered at the frequency
fay its envelope R would fluctuate slowly according to a Rayleigh proba-
bility density

p(R) = o7*R exp (— R?/20¢?) (62)

where 02 is the average power in ¢(f). Replacing 4 in P(4) by R and
averaging with the help of (62) shows that the average of the total
power in the components of § — ¢ clustered around f, is

N = " Prprr

(2n + 1)!g4n+?
= m“w + 0(c*"*3), (63)

This expression for N can be checked by using W.(f) = ¢%(| f| — f.)/2

in place of W (f) = W,, | f| < B, in the analysis of Sections IT to V.
Division by the average power S = ¢?in ¢(f) gives

N (2n 4+ 1)lgtn _—
5 = at(n + gm0 (&4)
In ¢(t) = A cos w.t, A is the deviation ratio and in (64) ¢ is the rms
frequency deviation ratio. The fact that N/S varies as o%" in (64)
agrees with the case in which ¢(f) has a flat spectrum. However, (64)

is larger by roughly the factor (2n + 1)!

APPENDIX B
Simple Analogue of Relation Between ¢ and 6

The relation between the FM input ¢ and output 8 is somewhat
similar to the relation between z and y given by

a
y=x + (_m1 22+l (65)

where @ is real and z is a stationary, zero-mean Gaussian process with
two-sided spectrum W.(f) and autocorrelation function R, = R(r)
= (x(t + 7)z(t)). We are given W.(f) and want to find W,(f) and
Wy—(f).

Our aim here is to obtain some insight regarding the origin of the
various terms in the series (17) and (27) for Wo_,(/).
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From Volterra series theory, taking (65) to be the series, we get
Gi(f1) = 1, Gawpr(fr, fo, =+ fengr) = @, and G, = 0 for all other
values of m[Ref. 4, (22), (23)]. The Mircea-Sinnreich series [ Ref. 4,
(156), (160)] for W,(f) becomes

W) = W1+ e [ st [T agi Wiy W]
ta [ an [T AR WA WAIWAT = = 1

1 . 2
X (?2. — I)I‘2n lf ” dfl f dfﬂ 1IV (fl W:(jn—l)a
+ N
1 o 0
g Lt [ W W)

XWAf— fr— fo— -+ — faw)|a|® (66)

According to (10), the power spectrum W,_.(f) of y — z is equal to

the expression obtained by replacing the 1 [i.e., Gi(f)] by zero in the
first line of eq. (66) for W,(f).

In this particular example, W,(f) can be obtained as the Fourier

transform of the autocorrelation function (y()y(t + 7)). Let y(8),

y(t + 7), x(t), 2(t + 7) be denoted by y1, ¥z, &1, 2, respectively. Then

(nyE) = (:Elxg) -+ (2'11.—11)—! [(561 fc5u+1> + ( 2;:-&-1”82)]

2
+ (2n i 1)12 (@i Hizg ). (67)

From
(exp (Juxy + jors)) = exp [—27'(u® + v )Ry — wR,]
we have the known results
{ya"t) = @P ) = (2n + 1)IR, R}/ (n!27)
(pintiggntly = kgﬂ (2n E;k]_)—lf_ﬂR;k‘(i'?:(f é??;n—u (68)
Substituting in (67) and taking the Fourier transform:

W.,(f) = f_: e~y  ya)dr

2aR.R?  a*R.(R./2)*"

n!2n nl?
n azngH(Rn/z)zn—zk
t L @ F D - PE

T

—o0

|- oo
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The point being made in this appendix is that the terms in (69) have
[after using 1 4 2a + o®> = (1 4+ «)%] a one-to-one correspondence
with the terms in the Mircea-Sinnreich series (66). This can be seen
with the help of

Il)‘o = j‘w .n'x(f;)df:l

—u

[j’ L _ dfy--- f: AW oS - W s fons)
XWAf—fi— o = fur). (70)

APPENDIX C
Inequalities for Sums of Frequencies
Let fi, fa, -+, fans1 denote the (2n + 1) arguments of any one of
the Ge(2.11)'s oceurring in the expression (27) for W,_.(f). They satisfy
the relations
| il = B, i=1,2 - ,2n+1
it ot oo+ fop=f

where f satisties 0 < f = B and is the frequeney at which W,_,(f) is
being evaluated.

We shall call a set of » of the f/s an “r-tuple” and the sum of the
fi's the “sum’ of the r-tuple.

Tirst we show that

f—nB = sum of any (n + 1)-tuple £ f + nB. (72)

Let fi+ fo+ --- 4 fus1 represent the typical (n + 1)-tuple sum.
Then (72) follows upon using | f;| = B on the right side of

f1+ +fn+l: f_fn-}-?— R PR (73)
The next inequality is
—nB = sum of any r-tuple < nB (74)

where r = 1,2, .-, n,n+ 2, -+ (2n 4+ 1). When r < n, (74) fol-
lows from | f;| £ B, and when » 2 n + 2 it can be proved by using
equations similar to (73).

The number of different (n + 1)-tuples is (2n + 1)!/(n + 1)!n!
If, for given set of values of the f/’s, any one of the (n + 1)-tuples, call
it A, has a sum greater than #B, the sum of any one of the remaining
(n 4 1)-tuples satisfies

(71)

f—nB = sum of any (n + 1)-tuple except A = nB. (75)
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The left inequality follows from (72). To obtain the right inequality,
note that all (n + 1) elements (the f/s) in A must be positive. Con-
sider any other (n + 1)-tuple, say C. Then A contains k elements
1 < k < n which are not in C. Let fy, - -+, fas1represent the elements
of C so that the left side of (73) gives the sum of C. Then the right side
of (73) contains k elements of A. Since the elements of A are positive,
the right side of (73) is less than f + (n — k)B, and (75) follows from

f+n—kB=f+(n—1)B=nB. (76)

APPENDIX D

Values of Goznsr) (f1, =+ fratr)

The notation used in this appendix is the same as that in Appendix
C.

Let Goany stand for Goasny(f1, fo, - -+ 5 fansr) Where the fi's satisfy
the relations (71). Here we show that

Goensny = 0, fin>(m+ 1B (77)

where n = 1 and f, is the ideal filter semibandwidth. Furthermore, for
a given set of fi, fa, -+, fausn, it has been shown in Appendix C that
there is at most only one (n + 1)-tuple, the sum of which exceeds nB.
There may be none. When nB < fi < (n + 1)B withn = 1 we shall

show that
Gonyry = — 1 if one (n + 1)-tuple sum > fi, (78)
Goanery = 01f no (n + 1)-tuple sum > fj. (79)

The inequalities (72) and (74) show that all of the I"s in Gs(zn+1) are
unity () when fi > (n + 1)B or (it) when no (n + 1)-tuple sum ex-
ceeds f, where nB < fi < (n + 1)B. Therefore, to prove (77) and
(79), it is sufficient to show that Gem(f1, -+, fm), m = 2, is zero when
all of the I's in its expression (12) are equal to unity.

Consider the sum

m;m) %’ T(fi+ -+ ) D(fmogpr + -0+ fm). (80)
When all of the I'"s = 1, this sum is equal to the number of different
ways m different objects (fi, fz, - - - , fw) can be put in ¢ identical boxes
with no box empty (the ¢ pairs of parentheses enclosing the arguments
of the £ I''s). From combinatorial theory, this number is S(m, €) the
Stirling number of the second kind given by the generating equation®,
forn = 1,

i = ?; SCn, Rt — 1)---(t — k + 1). (81)
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To illustrate (80), let m = 4 and ¢ = 2. Equations (13) show that the
sum over (v; {, m) in (80) now extends over the partitions of m = 4
which have f = 2 parts. There are two such partitions: vy = 1, v, = 3
and »; = 2, v» = 2. From (14), the corresponding values of N are
4!/113! = 4 and 4!/2!212! = 3, respectively. Hence the sum (80) is equal
to4 + 3 = 7. This agrees with the known value S(4, 2) = 7. To return
to the box problem, the 7 different ways of putting 4 different objects
into 2 identical boxes with neither box empty is indicated by

(1)(234),  (2)(134),  (3)(124), (H(123),
(12)(34),  (13)(24),  (14)(23).

The expression (12) for G, consists of the sumfrom £ = 1tof{ = m
of jm='(—=1)'(£ — 1)! times the sum (80). When all the I'’s are unity
this gives

Gom = jm ;i (—1)1(f — 1)!S(m, £)

1, m = 1

0, m > 1 (82)

where the summation is accomplished by dividing (81) by ¢ and then
letting { — 0. Setting m = 2n + 1 then gives (77) and (79).

Now we turn to (78). Let fui1 + fuy2 + -+ + f2.41 be the single
(n + 1)-tuple whose sum exceeds f,. Then I'(fax:1 + -+ + foup1) = 0
and all the other I's in G(2u41) are unity. The problem is to de-
termine the contribution of all of the terms in Gg(zny1) containing
P(futr + -+ + fanyr). Subtracting this contribution from 0 will give
the value of Goinsy.

Setting m = 2n + 1 in (12) shows that the terms in Ggny1) con-
taining I'(fuy1 + - -+ + fans1) as a factor are those for which ¢ and the
parts v; of the partition of (2n 4 1) into £ parts are such that

{=2, vy = n, ve =n + 1,
£=3, V1+V2:n, vs=n+1, (83)
L=n+1, w4 - dva=n  vms=n+L

Therefore, with k& = £ — 1, the terms are the product of

j2n gl (_)kk! (y.;") %f p(fl —+ .. _|_ f“). s
P(fronrr + - + fn)  (84)
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and T(f.s1 + -+ + fanyr) where now
vitrve+ - tvi=mn

SnSm< -

IIA

Vi
N = ?1‘./V11.' - 'Dk!'ﬁ!?'z!' RN

When all of the I''s in (84) are unity, (84) becomes

J Y (=)ERYS(n, k) = (=1 =1 (85)
k=1
where the summation is performed by setting ¢ = —1 in the generating
equation (81). Subtracting the contribution (85) from 0 gives the
value Gyongeny = —1 stated in (78).
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